AN EFFICIENT DYNAMIC PROGRAMMING PARALLEL
ALGORITHM FOR THE 0-1 KNAPSACK PROBLEM

M. ELKIHEL AND D. EL BAZ

LAAS du CNRS, 7, avenue du Colonel Roche, Toulouse 31077, France
E-mail: elkihel@laas.fr elbaz@laas.fr

An efficient parallel algorithm for the 0-1 knapsack problem is presented. The
algorithm is based on dynamic programming in conjunction with dominance of
states techniques. An original load balancing strategy which is designed in order
to achieve good performance of the parallel algorithm is proposed. To the best
of our knowledge, this is the first time for which a load balancing strategy is
considered for this type of algorithm. Finally, computational results obtained with
an Origin 2000 supercomputer are displayed and analyzed.

1 Introduction

In this paper, we consider the parallel solution of the 0-1 knapsack problem.
The 0-1 knapsack problem is a combinatorial optimization problem which is
used to model many industrial situations such as, for example: cargo loading,
assignation problems, capital budgeting, or cutting stocks. Moreover, this
problem occurs as a subproblem to be solved when more complex optimiza-
tion problems are solved. This problem is well known to be NP-hard.

The 0-1 knapsack problem has been intensively studied in the past (see
Horowitz and Sahni 7, Ahrens and Finke !, Fayard and Plateau °, Martello
and Toth ? and Plateau and Elkihel ''). More recently, several authors have
proposed parallel algorithms for the solution of this combinatorial problem.

Cosnard and Ferreira # have presented a parallel implementation of the
two lists dynamic programming algorithm on a MIMD architecture for the
solution of the exact subset sum knapsack problem. We note that data ex-
changes are not needed for this type of application.

Other interesting parallel approaches for the solution of dense problems
which are based on dynamic programming have been proposed. We can quote
for example Chen, Chern and Jang ? for a method carried out on pipeline ar-
chitectures and Bouzoufi, Boulenouar and Andonov 2 for an efficient parallel
algorithm using tiling techniques on MIMD architectures.

The reader is referred to Gerash and Wang © for a survey of parallel al-
gorithms for the 0-1 knapsack problem.

In this paper, we propose an efficient parallel algorithm for the 0-1 knap-
sack problem. The algorithm is based on dynamic programming in conjunc-
tion with dominance of states techniques. We present also an original load

balancing strategy which is designed in order to achieve good performance of
the parallel algorithm studied. To the best of our knowledge, this is the first
time for which a load balancing strategy is proposed for this type of algorithm.
Finally, computational results obtained with an Origin 2000 supercomputer
are displayed and analyzed.

Section 2 deals with the 0-1 knapsack problem and its solution via dy-
namic programming. An original parallel algorithm and associated load bal-
ancing strategy are presented in Section 3. Finally, computational results
obtained with an Origin 2000 supercomputer are displayed and analyzed in
Section 4.

2 The 0-1 Knapsack Problem

The 0-1 unidimensional knapsack problem is defined as follows:

n n
max{ijxj|ijxj <C;zj€{0,1},5 = 1,27...,11}7 (1)

j=1 j=1

where C' denotes the capacity of the knapsack, n the total number of items
considered, p; and wj, respectively, the profit and weight, respectively, asso-
ciated with the j-th item. Without loss of generality, we assume that all the
data are positive integers. In order to avoid trivial solutions we assume more-
over that we have: Z;LZI w; > C and wy < Cfor all j € {1,...,n}. Several
methods have been proposed in order to solve problem (1). We can quote for
example methods based on dynamic programming studied by Horowitz and
Sahni 7, Ahrens and Finke ! and Toth 2, branch and bound methods pro-
posed by Fayard and Plateau ®, Lauriere 8, Martello and Toth ° and finally
mixed algorithms combining dynamic programming and branch and bound
methods studied by Martello and Toth '° and Plateau and Elkihel .

In this paper, we concentrate on a dynamic programming procedure (see
Ahrens and Finke ') which is based on the concepts of list and dominance.
For each positive integer k, we define the dynamic programming recursive list
L;, as the following set of monotone increasing ordered pairs :

k k
Ly = {(w,p) |w§0andw:2wjxj, p:ijxj}. (2)
Jj=1 Jj=1
According to the dominance principle, all states (w, p) such that there exists
a state (w’,p") which satisfies: w’ < w and p < p’, must be removed from the
list Lj. In this case, we usually say that the state (w',p’) dominates the state
(w,p). As a consequence, we note that by using the dominance concept, any

two pairs (w,p), (w',p') of the list Ly must satisfy: p < p' if w < w'. The
following sequential algorithm permits one to build recursively the list L,
from which we can derive the optimal solution of problem (1).

Sequential Algorithm

Lo = {(0,0)}
FOR k=1TOn DO 3)
L, = {(w+wpxg,p+ prrg) | (w,p) € Ly—1 and w4+ wyzy, < C,

with z;, € {0,1}} — Dy,

where Dy, denotes the set of all dominated pairs at stage k.

3 Parallel Algorithm

In this Section, we present an original parallel algorithm based on the
dynamic programming method. The main feature of this parallel algorithm
is that all processors cooperate via data exchange to the construction of the
list. In particular, all dominated pairs are removed from the list at each stage
of the parallel dynamic programming method. More precisely, each processor
creates its own part of the global list Lj at each stage k; so that the total
work is shared by the different processors and data exchange permits each
processor to remove all dominated pairs.

Several issues must be addressed when considering the design of a
parallel algorithm: the initialization of the parallel algorithm, the work
decomposition and tasks assignation and the load balancing strategy.

3.1 Initialization, Work Decomposition and Task Assignation

The initialization of the parallel algorithm is sequential. First of all, a
sequential process performs k(0) stages of the dynamic programming algo-
rithm. This process generates a list which contains at least g pairs ; where
q denotes the total number of processors and [the minimal number of pairs
per processor. Let L be the ordered list which results from the sequential
initialization. The list L is partitionned as follows: L = Ly U ...U L,, with
| L; |=1,fori=1,..,g—1and | Ly |> I, where | L; | denotes the number of
elements of the sublist L;. For simplicity of presentation, L; will denote in
the sequel the sublist assigned to processor E;.

We note that if the different processors F; work independently on their
list L; without sharing any data, then at the global level some dominated

pairs may not be removed from the local sublists; which induces an overhead.
Thus, it is necessary to synchronize the processors at each iteration and share
part of the data produced at the previous iteration in order to eliminate
all the dominated pairs from a global point of view. These operations may
reduce the size of the sublists L; and the size of the union of the sublists will
be the same as if the list was generated by a sequential algorithm.

We detail now the parallel algorithm. In the case where the iteration
number k is odd, data exchange occurs only between any processor E; and
processors F;ii,..., ;. In the case where k£ is even data exchange occurs
between any processor FE; and processors FEi,...,E;_1, for natural load
balancing.

We note that for simplicity of presentation, we consider here only the
case where the iteration number k is odd. In the following parallel algorithm
we present computation and communication at iteration k. We shall denote
by L; the sublist associated with processor E; and the smallest pair of L;
will be denoted by (w;1,pi1)-

Parallel Algorithm

FORi=1TO ¢ DO
BEGIN
IFi#1
THEN
Processor E; copies (w;1,p;1) in the shared memory;
IF i # ¢
THEN
CASE
The pair (w;t1,1,Pi+1,1) is available
Processor E; copies the following pairs in the shared memory:
{(wij,pig) | wij+wr > wiy11}
Processor E; merges the list L; with all pairs (w;,. + wg, p;,. + k)
which are such that w;; —wr <wj,. < wijp11 —wg and j <14
All dominated pairs are removed;
IFi=g¢q
THEN
Processor E; merges the list L; with all pairs (w;,. + wg, p;,. + k)
which are such that w;; —wy <w;, <C and j <1
All dominated pairs are removed;
END

We note that the copy of (w;1,pi1) stored in the shared memory by
processor E; will be used by processors Ej, ..., E; 1, in order to know what
part of its sublist must be copied in the memory for the purpose of removing
dominated pairs.

We have chosen to exchange data between any processor FE; and
processors E;i1,...,E, every odd iteration and between any processor E;
and processors E1, ..., E;_; every even iteration. This strategy is designed in
order to realize a kind of simple and natural load balancing. With this type
of data exchange, two processors, say ; and E,, play a particular part since,
generally, they tend to accumulate more pairs than other processors. In this
sense, processors E; and E, contain valuable information that will permit
one to design an efficient load balancing strategy as we shall see in the next
subsection.

3.2 Load Balancing Strategy

In order to obtain a good performance of the parallel algorithm, it is necessary
to design an efficient load balancing strategy. As a matter of fact, if no load
balancing technique is implemented, then it results from the merging process
described in the Parallel Algorithm of the previous Section that processors F
and E,; become often overloaded.

We propose a load balancing strategy which is designed in order to obtain
a good efficiency while presenting a small overhead. As a consequence, the
strategy considered does not balance loads at each iteration; it is rather an
adaptive strategy which takes into account several measures which are pre-
sented in the sequel.

The strategy chosen is such that a load balancing is made if a typical
processor which is overloaded can take benefit of it. The main test is made
systematically on processor F; since we have chosen to take a decision every
two iterations and processor F; can become overloaded every odd iterations
according to the Parallel Algorithm presented in Section 2. The load bal-
ancing process will assign an equal load i.e. an equal number of pairs to all
processors.

In the sequel, Oy, Oy, respectively, will denote a measure of the load
balancing overhead at iteration k, and an estimation of the load balancing
overhead at iteration k + 2, respectively. Oy, is function of the total number
of pairs in the global list and Of, is estimated in function of the augmen-
tation of pairs ratios per processor. Similarly, Ty, Ty, ,, Ty, ,, respectively,
denote the computation time of processor E; at iteration k&, and estimations of

the computation time of processor E; at iterations k+1 and k+2, respectively.
These estimations are computed according to:

T, =Ty and T¢,, = r*Ty, (4)

where the ratio r satisfies:

T
r= T (5)
More generally, we shall use the following notations:
p—1
Ty(k) =Y Tpi+ Ok, (6)
i=0
p—1
Tp2(k) = ZTk—i + T+ Tiys + Of g (7)
i=0

We note that iteration k — p is relative to the last load balancing phase. The
condition for load balancing will be:

Tp(k) < Tp,Q(k). (8)

D p+2

If this condition is satisfied, then all the benefit of the load balancing will
be for processor E;, and as a consequence for the parallel machine (load
balancing is then made at the end of iteration k); else, there is no load
balancing. So, load balancing is made according to the following algorithm:

Load Balancing Algorithm

p=0
FOR k=k(0)+2TO n—-2,2 DO
BEGIN _ —
comTp?:)e PTT (T)ld -
IF == < s
THEN
perform load balancing
p=0
ELSE
p=p+2

END

Table 1. Computing time in seconds and efficiency for a gap 100 and range 10000.

1 processor 2 processors 4 processors 8 processors
size time time | efficiency | time | efficiency | time | efficiency
200 4.42 2.58 86% 2.04 64% 1.25 43%
400 33.36 18.46 90% 11.88 70% 9.10 46%
600 107.90 56.89 95% 34.19 79% 23.02 59%

Table 2. Computing time in seconds and efficiency for a gap 10 and range 10000.

1 processor 2 processors 4 processors 8 processors
size time time efficiency | time | efficiency | time | efficiency
200 19.92 10.18 98% 6.91 72% 5.11 49%
400 114.68 60.69 94% 34.84 82% 21.01 68%
600 300.29 164.54 91% 89.36 84% 58.70 64%

4 Numerical Results

The numerical experiments presented here are relative to difficult 0-1 knapsack
problems. It is well known that the number of variables is not the fundamen-
tal criterion for difficulty. We have studied several series of strongly coupled
problems which are considered as difficult problems. The numerous instances
considered are relative to problem sizes which are equal to 200, 400, 600, re-
spectively, with data range defined as follows. The weights w; are randomly
distributed in the segment [1,10000] and the profits p; in [w; — g,w; + g],
where the gap, denoted by g, is equal to 100 for the first set of data and 10
for the second set. We have considered problems such that C'= 0.5377_, w;.

The parallel algorithm has been implemented on a NUMA shared mem-
ory supercomputer Origin 2000 by using the Open MP environment. Parallel
numerical experiments have been carried out with up to 8 processors. Numer-
ical results are displayed on Tables 1 and 2, where the average running time in
seconds and efficiency are given at each time for over 20 instances randomly
generated of knapsack problems.

From Tables 1 and 2, we note that the efficiency of parallel algorithms
generally increases with the size of the problem. We note also that the ef-
ficiency increases with the difficulty of the combinatorial problem: parallel
algorithms are generally more efficient for problems with a smaller gap. We
see that the efficiency decreases when the number of processors increases.
However, the efficiency remains good; which shows that the load balancing
strategy is efficient.

Acknowledgments

Part of this study has been made possible by a support of CALMIP, Toulouse
and CINES, Montpellier.

References

1.

2.

10.
11.

12

J. H. Ahrens and G. Finke, Journal of the Association for Computing
Machinery 23, 1099 (1975).

H. Bouzoufi and S. Boulenouar and R. Andonov Actes du Colloque Ren-
Par’10 (1998).

G. H. Chen and M. S. Chern and J. H. Jang, Parallel Computing 13, 111
(1990).

M. Cosnard and A. G. Ferreira, Parallel Computing 9, 385 (1989).

D. Fayard and G. Plateau, Mathematical Programming 8, 272 (1975).
GerWan94

T. E. Gerash and P. Y. Wang, INFOR 32, 163 (1994).

E. Horowitz and S. Sahni, Journal of the Association for Computing
Machinery 21, 275 (1974).

M. Lauriere, Mathematical Programming 14, 1 (1978).

S. Martello and P. Toth, European Journal of Operational Research 1,
169 (1977).

S. Martello and P. Toth, Computing 21, 81 (1978).

G. Plateau and M. Elkihel, Methods of Operations Research 49, 277
(1985).

P. Toth, Computing 25, 29 (1980).

