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Abstract

The 0-1 knapsack problem is considered. A parallel dy-
namic programming multi-method using dominance tech-
nique and processor cooperation is proposed. Different
load balancing approaches are studied. Computational ex-
periments carried out on an Origin 3800 supercomputer are
reported and analyzed.

1 Introduction

In this paper, we propose an efficient parallel dynamic
programming multi-method using dominance technique
and processor cooperation. This method is applied to a large
class of integer programming problems: the 0-1 knapsack
problem, which has many applications in operation research
(see [27]). More precisely, we concentrate on an approach
proposed by Ahrens and Finke (see [3]) which presents the
advantage to limit the number of states using dominance
techniques. The number of states, or undominated pairs, is
unforeseeable. The main drawback of this approach is that
it creates irregular data structures. As a consequence, the
parallelization of this method is not easy and the design of
an efficient load balancing strategy is very important.

In [11], a parallelization of the one list dynamic pro-
gramming method using dominance technique has been
proposed. Three load balancing approaches have also been
proposed in [11]. In this paper, we present an original par-
allel dynamic programming multi-method which combines
two load balancing techniques studied in [11].

We note that our contribution is different from the other
works in the literature devoted to parallel dynamic program-
ming for 0-1 knapsack problems. In particular, it is dif-
ferent from [6] and [18], where the authors have proposed
solution for arrays with up to ���

�

� � processors, where �
is the number of variables in the knapsack problem. Our
work is also different from [8], where the authors have stud-

ied the parallel implementation of a two lists algorithm on
a MIMD architecture for the solution of a particular class
of 0-1 knapsack problems: the exact subset sum problem,
where profits are equal to weights. In this later approach,
total work is decomposed initially and processors do not
cooperate. Note that our parallel algorithm is designed for a
broad class of 0-1 knapsack problems including subset sum
problems and presents better time complexity than the par-
allel algorithm studied in [8]. Reference is also made to [7]
and [13], for different approaches concerning the paralleli-
sation of the dynamic programming method.

Section II deals with the 0-1 knapsack problem and its
solution via dynamic programming. A first parallel algo-
rithm is presented in Section III. Load balancing techniques
and the parallel multi-method are studied in Section IV.
Computational results carried out on an Origin 3800 super-
computer are displayed and analyzed in Section V.

2 The 0-1 Knapsack Problem

The 0-1 unidimensional knapsack problem is defined as
follows:
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� ��
���

���� �
��

���

���� � �� �� � ��� ��� � �� � � � � �

�

(1)
where � denotes the capacity of the knapsack, � the num-
ber of items, �� and �� � respectively, the profit and weight,
respectively, associated with the �-th item. Without loss of
generality, we assume that all the data are positive integers.
In order to avoid trivial solutions, we assume that we have:��

��� �� 	 � and �� 
 � for all � � ��� ���� ��� Several
methods have been proposed in order to solve problem (1).
We can quote for example: branch and bound methods
proposed by Fayard and Plateau (see [12]), Lauriere (see
[17]) and Martello and Toth (see [19]), methods based
on dynamic programming studied by Horowitz and Sahni
(see [14]), Ahrens and Finke (see [3]) and finally mixed



algorithms combining dynamic programming and branch
and bound methods presented by Martello and Toth (see
[20]) and Plateau and Elkihel (see [26]).

In this paper, we concentrate on a dynamic program-
ming method proposed by Ahrens and Finke whose time
and space complexity are ���	
���� ���� (see [3]) and
which is based on the concepts of list and dominance.
We shall generate recursively lists �� of pairs ��� ���
� � �� �� � � � � �� where � is a weight and � a profit.
According to the dominance principle, all states ��� �� such
that there exists a state ���� ��� which satisfies: �� � � and
� � ��� are dominated. Initially, we have �� � ���� ����
The lists �� are organized as sets of monotonically in-
creasing ordered pairs in both weight and profit. As a
consequence, the largest pair of the list ��, corresponds to
the optimal value of the knapsack problem. The reader is
referred to [11] for more details on the generation of lists in
the sequential case.

3 Basic Parallel Algorithm

This Section deals with parallelization of the one list
dynamic programming method using dominance technique.
The parallel algorithm which is presented in detail in
[11] is designed according to the SPMD model for a
parallel architecture that can be viewed as a shared memory
machine on a logical point of view. The main feature of
the parallel algorithm is that all processors cooperate via
data exchange to the construction of the global list. The
global list is partitioned into sublists. Sublists are organized
as sets of monotonically increasing ordered pairs in both
weight and profit. Each sublist is generated by a processor
of the parallel architecture. In particular, all dominated
pairs are removed at each stage of the parallel dynamic
programming method. More precisely, at stage �� each
processor� generates a sublist of the global list ��� which
is denoted by ��

�� The total work is shared by the different
processors and data exchange permits processors to remove
all dominated pairs from their sublists.

��� ��������	���
�� �
� ���
��
����
�
��� ���� ����������

Initialization of parallel algorithm is performed by a se-
quential dynamic programming algorithm using dominance
technique. First, a sequential process performs ���� stages
of the dynamic programming algorithm. This process
generates a list which contains at least �� pairs, where �

denotes the total number of processors and � the minimal
number of pairs per processor. Let ����� be the ordered
list which results from the sequential initialization. The list

����� is partitionned as follows: ����� � ����
����

�
����� with

� ��
���� �� �� for � � �� ���� � � � and � ��

���� �� �� where

� ��
���� � denotes cardinality of the sublist ��

�����

If all processors � generate independently their sublist
��
� without sharing data with any other processor, then,

on a global point of view, some dominated pairs may
still belong to the sublists ��

�� which will induce finally
an overhead. Thus, in the beginning of each stage, it is
necessary to synchronize all processors and to make them
share part of the data produced at the previous stage in
order to discard globally all dominated pairs.

��� ������� �
������

We give now some details on the parallel algorithm. We
present first the construction process of the sublists ��

� gen-
erated at each stage. We introduce the various sublists that
are created by the different processors �� � � �� ���� � � ��
at each stage � in order to generate the sublists ��

�� For all
� � ��� ���� � � ��� the smallest pair of ��

� in both weight
and profit is denoted by �����

� � �
���
� �� The various sublists

are defined as follows. For all � � �� ���� � � ��
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The sublist � �
� corresponds to the list of new pairs created

at stage � by processor � from the sublist ��
��� and the

�-th item, which is assigned to processor �� Some pairs
clearly do not belong to the sublist � �

�� i.e. the pairs for
which the weight ����

��� � �� is greater than or equal to the

weight ������
��� of the smallest pair of the list ����

��� gener-
ated by processor ���� Those discarded pairs which are
stored as shared variables are used by processors � with
� 
 �� in order to generate their sublists ��

� as we shall see
in the sequel. It is important to note at this point that for all
� � ��� ���� � � ��� data exchange can occur only between
processor � and processors � with � 
 �� For this pur-
pose, consider now the series of sets ��

� defined as follows.
For all � � ��� ���� � � ���
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The sublist��
� is the set of pairs that are exchanged between

all processors �� with � 
 � and processor �� either to
complete the sublist ��

� that will be produced by processor
� at stage � or to permit processor � to discard from its
sublist some dominated pairs, at stage �� This last decision
being made on a global point of view. It is important to
note that all processors � � with � 	 �� must share with
processor � all the pairs created by � that will permit �

to eliminate dominated pairs. In order to discard all the pairs
which must not belong to the sublist ��

� and in particular
dominated pairs, we introduce the series of sets ��

�� For all
� � �� ���� � � ��

��
� � ��

� � ���� �� � � 
 �
�����
��� and � � �

�����
��� �� (7)
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We note that ��
� is the subset of��

� which contains all dom-
inated pairs of processor � at stage �� A similar remark
can be made for the set ����

� � We note also that copies of
the same pair may belong to different processors. These
copies permit processors to check dominance relationship.
All copies must be removed at each stage but one, i.e. the
last one. As a consequence, the dynamic programming
recursive sublists ��

� are defined as the following sets of
monotonically increasing ordered pairs in both weight and
profit. For all positive integer � and all � � �� ���� � � ��

��
� � ��

��� �� �
� � ��

� ���
�� (10)

Correctness of the parallel algorithm is studied in [11].

4 Load Balancing

In order to obtain good performance, it is necessary to
design an efficient load balancing strategy. As a matter

of fact, if no load balancing technique is implemented,
then it results in particular from the data exchange process
described in the previous Section that some processors, e.g.
���� can become overloaded.

In this Section, we propose a multi-method that com-
bines two load balancing strategies which are designed
in order to obtain a good efficiency. When using load
balancing, the time complexity of the parallel algorithm
presented in Section 3 is ���	
� �

�

�
� ��

�
��� since pairs will

be fairly distributed on all processors. On one processor,
space complexity of the parallel algorithm is ���

�
�� if the

solution vector is stored as a word of several bytes. In this
case, the value of component �� at the solution is given by
the value of the �-th bit of the word (either 0 or 1).

��� ������� �
�� ��������� ��� !

We present now a load balancing strategy that is called
dynamic since load balancing decision is taken at each
stage. This strategy relies on a load balancing test that is
based upon a comparison of the work needed for perform-
ing the load balancing on the one hand and the extra work
resulting from the load unbalancing on the other hand. The
later work is related to the difference of number of pairs
between the largest sublist and the other lists. If the work
resulting from load unbalancing costs more than the load
balancing work, then loads are balanced, otherwise they are
unbalanced. The load balancing process will assign fairly
loads to processors, i.e. it tends to assign the same number
of pairs to all processors as we shall see in what follows.

In the sequel, �	� �
 and ��� respectively, denote the
processing time, the writing time and the reading time rel-
ative to one pair, respectively. At any given stage �� the
number of pairs of the largest sublist is denoted by �� and
the total number of pairs assigned to all processors is de-
noted by �� The load unbalancing cost which is denoted
by �� is given as

�� � �	���� �
�

�
�� (11)

The load balancing cost, denoted by ��� is given as follows

�� � ������ � �
�� (12)

since read and write are made in parallel in each processor.
Thus, the test will be basically as follows. If �� 	 ��� then
loads are balanced, else the loads are not balanced. The test
can be rewritten as follows

�� �
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In the next Section, we shall present computational ex-
periments carried out on the Origin 3800 parallel supercom-
puter. We have obtained the following measurements on the
Origin 3800 for �	� �� and �
�

�	 � ��������� s, �� � �������� s and �
 � �������� s.
(16)

Thus, for this machine we have

��� � �
�

�	
� ����� (17)

and the practical test is given as follows.

���� 	
�

����
� (18)

The reader is referred to [22] for dynamic load bal-
ancing approaches which present some similarities with
our dynamic strategy and which are applied to adaptive
grid-calculations for unsteady three-dimensional problems.
However, we note that our test (13) is different from the
test used in [22] (reference is also made to [9] and [16]).

��� �������� �
�� ��������� ��� !

The implicit load balancing technique has been designed
with a specific version of the parallel dynamic programming
list method in order to obtain fair and natural load balanc-
ing as well as a very small overhead. The principle of this
technique is very simple. Since the capacity � of the knap-
sack is given and the size of the lists �� is at most equal
to �� the idea is that pairs must be assigned to processors
merely according to the value of their weight. For example
pairs with weight between � and ��

�
� where � denotes the

number of processors, must be assigned to processor ��

Similarly, pairs with weight between ��
�
 � � and ����

�


must be assigned to processor � and so on. We use a
parallel algorithm which is slightly different from the one
presented in Section III. This algorithm still relies on dy-
namic programming and dominance techniques. However,
the parallel algorithm does not necessitate any given initial-
ization. Another difference with the parallel algorithm pre-
sented in Section III, is that for all � � ��� ���� ��� the weight
of the smallest pair of ��

� in both weight and profit, denoted
by �

���
� � if it exists, is the weight � of the smallest pair

��� �� � �� which satisfies: ����
�
�� � � � ��������

�
�

for all � � ��� ���� � � ��� � � � � ��
�
� for � � � and

�� � �����
�
� � � � � �� for � � � � ��

The main advantage of this approach is that loads tend to
be balanced in a fair and implicit way among all processors.

As a consequence, the overhead is very small. On the other
hand, the main drawback of this technique seems to be its
poor efficiency at initialization, since some processors, e.g.
���� may be idle for a while. However, we will see in
the next Section that this approach is performant even if the
number of processors is large. As a matter of fact, the load
of the different processors tends to be very well balanced in
working regime since the number of pairs assigned to the
different processors tends to be very similar and constant.

��� "#���$���%
� �"!

We propose now a parallel dynamic programming
multi-method which combines the advantages of dynamic
and implicit load balancing. More precisely, we shall use
dynamic load balancing in the beginning of the treatment
since it must perform better than implicit load balancing.
We recall that in the beginning, some processors may be
inactive with the implicit load balancing approach while all
processors are active with dynamic load balancing. Then,
we shall end treatment with the implicit load balancing
approach, since it presents a small overhead, contrarily to
dynamic load balancing.

The major questions at this point are: at what time
must we swap methods and what is the expected gain
in combining dynamic and implicit load balancing as
compared with both methods taken solely?

We propose an automatic procedure which swaps meth-
ods. This procedure is based on the fact that the implicit
load balancing approach will be very efficient when total
work will be shared by all processors; i.e. when processor
��� will start to be assigned pairs with weight between
�� � ����

�
� � and �� In the sequel �������

� � �
�����
� � will

denote the largest pair of ����
� in both weight and profit.

The following algorithm shows how multi-method works.

� � ���� � �
WHILE �

�����
� � �� � ����

�
 and � � �

DO
BEGIN
Run a stage of the parallel algorithm with DLB
� � � � �
END

IF � � �

THEN
DO

Assign loads to processors according to ILB
FOR � � � TO �

BEGIN
Run a stage of the parallel algorithm using ILB
END

We note that in some cases the multi-method may only
implement dynamic load balancing. This is particularly true



if the number of processors is large; in that case �������
�


may be very close to � and there is no guarantee that even
for a large � there exists a pair with weight ������

� greater
than �� � ����

�
� We note also that the multi-method

swaps very fast methods using dynamic and implicit load
balancing with regards to the total processing time. The
swaping cost corresponds merely to a reassignment of pairs
in order to match the intervals defined in the beginning of
subsection IV B; thus, this cost is similar to a typical load
balancing cost.

5 Computational Experiments

Numerical experiments presented in this Section cor-
respond to weakly correlated problems. These problems
can be considered as difficult (see [10]). We have avoided
treating noncorrelated problems which induce a large
number of dominated pairs and which are easier to solve.

The various instances considered are relative to prob-
lems with 200, 400, 1000 and 5000 variables, respectively,
with data range defined as follows. The weights �� are
randomly distributed in the interval ��� ����� and the non-
negative profits �� in the interval ��� � �� �� � ��� where
the gap, denoted by �� is equal to ���� We have considered
problems with � � ���

��

��� �� � which correspond in
general to difficult instances.

Parallel algorithms have been implemented in C on a
NUMA (non uniform memory access) shared memory
supercomputer Origin 3800, using the Open MP envi-
ronment. The architecture of the machine is hybrid, i.e.
there is some shared and distributed memory. However,
total memory can be viewed as shared on a logical point
of view. More precisely, the parallel architecture is an
hypercube constituted by 512 processors MIPS R14000
with 500 MHz clock frequency and 500 Mo of memory
per processor. The operating system is IRIX 6.5 IP35. The
total bandwith of the communication network is 716 Go/s.
We note that generally, all processors do not have the same
read or write time for every value. With this architecture,
the read or write time in a remote part of the memory may
be 2 or 3 times greater than the read or write time in the
local memory of a processor. However, we have made
computational tests with up to ����� pairs and have noted a
constant ������ seconds read time and write time.

Numerical experiments have been carried out with up to
32 processors. Numerical results are displayed on Table 1
for the multi-method and parallel dynamic programming
algorithms using dynamic and implicit load balancing,
respectively, which are denoted by M, DLB and ILB,
respectively. Average running time in seconds for twenty
instances are reported for sequential algorithms (they are
denoted by ��). Experimental results are given for 4,

8, 16 and 32 processors. Average efficiency of parallel
algorithms is also shown. We note from Table 1 that the
efficiency of a parallel algorithm is function of several
parameters such as the size of the problem or the number
of processors. We note also that the efficiency of a parallel
algorithm tends generally to decrease when the number of
processors increases. Basically, the granularity, i.e. the
ratio computation time over communication time, tends to
decrease when � increases, since communications play a
major part in this case.

Parallel algorithms with dynamic or implicit load
balancing strategies present in general a good efficiency
for a coarse granularity. The performance of methods
with implicit load balancing and dynamic load balancing
are quite similar, although the sophisticated dynamic load
balancing strategy seems a little bit more performant
than implicit load balancing for large problems and large
number of processors. We note also that the performance
of the multi-method is in general better than the one of
parallel dynamic programming algorithms using dynamic
or implicit load balancing for large problems. This shows
the interest of our approach. We note also that in some
cases, efficiency may be greater than one. Experiments
were carried out on a non uniform memory architecture.
Thus, several processors can use more efficiently their fast
local memory, where local data are stored, then a single
processor which needs to access sometimes remote part of
the memory in order to use all data of the problem.

q 1 4 8 16 32
Size Met. �� e e e e
200 M 0.116 0.52 0.31 0.12 0.04

DLB 0.45 0.3 0.12 0.03
ILB 0.49 0.35 0.21 0.09

400 M 0.775 0.69 0.54 0.32 0.13
DLB 0.60 0.48 0.32 0.11
ILB 0.60 0.52 0.4 0.22

1000 M 7.935 0.77 0.66 0.54 0.36
DLB 0.63 0.59 0.51 0.33
ILB 0.64 0.59 0.52 0.39

5000 M 463.48 1.12 0.91 0.86 0.82
DLB 0.82 0.85 0.86 0.79
ILB 0.89 0.86 0.83 0.77

Table 1. Computing time and efficiency
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dos, Actes du Colloque RenPar’10 (1998).

[5] J. Casti and M. Richardson and R. Larson, Dy-
namic programming and Parallel Computers, Journal
of Optimization Theory and Applications 12, 423-438
(1973).

[6] H. K. C. Chang and J. J. R. Chen and S. J. Shyu, A
parallel algorithm for the knapsack problem using a
generation and searching technique, Parallel Comput-
ing, 20 233-243 (1994).

[7] G. H. Chen and M. S. Chern and J. H. Jang, Pipeline
Architectures for Dynamic Programming Algorithms,
Parallel Computing 13, 111-117 (1990).

[8] M. Cosnard and A. G. Ferreira and H. Herbelin, The
two lists algorithm for the knapsack problem, Parallel
Computing 9, 385-388 (1989).

[9] G. Cybenko, Dynamic load balancing for distributed-
memory multiprocessors Journal of Parallel an Dis-
tributed Computing 7, 279-301 (1989).

[10] M. Elkihel, Programmation dynamique et rotation de
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