
HAL Id: hal-01152452
https://hal.science/hal-01152452v1

Submitted on 17 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Method Association Approach: Situational construction
and evaluation of an implementation method for

software products
Rébecca Deneckère, Charlotte Hug, Juliette Onderstal, Sjaak Brinkkemper

To cite this version:
Rébecca Deneckère, Charlotte Hug, Juliette Onderstal, Sjaak Brinkkemper. Method Association Ap-
proach: Situational construction and evaluation of an implementation method for software products.
RCIS 2015 International Conference, 2015, Athens, Greece. �hal-01152452�

https://hal.science/hal-01152452v1
https://hal.archives-ouvertes.fr

Method Association Approach: Situational
construction and evaluation of an implementation

method for software products
Rébecca Deneckère1, Charlotte Hug1, Juliette Onderstal2, Sjaak Brinkkemper3

1Centre de Recherche en

Informatique
Université Paris 1 Panthéon-

Sorbonne
Paris, France

rebecca.deneckere@univ-paris1.fr
charlotte.hug@univ-paris1.fr

2University Medical Center Utrecht
Utrecht, the Netherlands

j.onderstal@umcu.nl

3Department of Information and
Computing Sciences
Utrecht University

the Netherlands
S.Brinkkemper@uu.nl

Abstract— Software implementation is one of the important

steps in a software engineering process. It consists of integrating
software based services or components in business alignment
with the organizational view and acceptance from the users’
perspectives. However, this step is complex and not supported in
detail by the existing design and implementation methods. When
implementing a software product in a customer organization with
a specific context, the problem of the choice of the method or its
adaptation is crucial to ensure the implementation success.
Software producing organizations have difficulty with the
creation of the most suitable implementation method for their
software products. Situational Method Engineering (SME)
proposes solutions to create methods adapted to the project at
hand. We propose an approach to build an implementation
method based on the association of method fragments, offering
two advantages: it facilitates (a) the modeling of fragments by
using the Process Deliverable Diagram formalism (PDD) that has
proved its efficacy and simplicity, and (b) the selection of
fragments by using metrics to analyze them. We illustrate our
proposal with a case study to create an implementation method
for a personal health management software product.

Keywords— Software product implementation method,
situational method engineering, method association, feature,
method fragment, project situation

I. INTRODUCTION
Most software applications used by organizations in the

public as well as in the private sector are standard software
products developed by so-called software producing
organizations (SPO) [1]. These software products (e.g.
Enterprise Resource Planning (ERP), Customer Relationship
Management (CRM), Business Process Management Systems
(BPMS), and Hospital Information Systems (HIS)) require to
be implemented in a structured and careful manner by the SPO
at the customer organizations of varying size, operations, and
culture. However, SPOs are confronted with many obstacles in
arranging a smooth implementation of their products into
customer organizations [2][3]. Out of the many issues reported
in literature, we mention alignment with business strategy [4]
[5], integration with the infrastructure of other enterprise

applications [6], organizational change and disruption [7], and
diversity of maturity in ICT management [8].

The proposition of this paper is then to present a structured
approach to develop methods for the implementation of
software products. A software product implementation method
is commonly defined as a “systematically structured approach
to effectively integrate software based services or components
into the workflow of an organizational structure or an
individual end-user.”1.

According to [10], an implementation method “ensures a
consistent and repeatable delivery of the software product,
provide visibility to all the parties involved, to control costs
and deliver to commitments made in terms of quality and time
and a successful adoption of the software with the customers to
ensure they derive the benefits of implementation and also
provide a reference to other prospective customers in future.”

Although many design and implementation methods exist,
this set of possible methods decrease when focusing on very
specific business domains (like health care, manufacturing,
marketing, financial assets management). Moreover, even
when several methods are available in the literature, most of
the significant problems SPOs or customer organizations face
occur during the implementation of the software products. In
this work, we focus on the particularities of software
implementations, which include the installation of the software
and the training of the users at a customer organization. We
also incorporated the evaluation, maintenance and support once
the customer accepted the developed software.

The main research question is: how to create the most
suitable implementation method for a specific software
product?

1 This definition, taken from
http://en.wikipedia.org/wiki/Product_software_implementation_method, has
been widely reused in research papers. It is worth noting that implement is
defined as the fact “to start using a plan or system” [9], in this paper,
implementation then means deployment.

Fig. 1. Overview of the Method Association Approach.

Situational Method Engineering (SME), introduced in early
nineties [11], argues that the method to be used for the
development of an information or software system must be
aligned with the context of the project because the engineering
situation of each project is different and requires a different
methodological support.

For this purpose, SME promotes the situation-specific
method construction by reusing parts of existing methods
generally designed as autonomous components and possibly
stored in method repositories. Today, many different SME
approaches exist (e.g. assembly-based [12] [13] [14],
configuration-based [15], process tailoring [16], model driven
engineering [17] and service-oriented [18]) but their
implementation in practice appears to be difficult. Enterprises
are slow to adopt the approaches and techniques proposed by
SME researchers even though they acknowledge the
significance of the role that methods play in their engineering
activities. One of the main difficulties encountered by
practitioners is the selection of the method components to
create the situational method. As a matter of fact, the selection
may be made with several criteria and the existing techniques
are quite complicated.

We propose here a new approach (called Method
Association Approach - MAA) to help engineers to create a
suitable software implementation method adapted to their
needs. This approach has been tested on the design of
implementation methods for CMS based web applications [19]
and is generalized here for any kind of implementation method.
The generic process of the MAA is illustrated in Fig. 1.

The rest of the paper is organized as follows: section II
presents the concepts of the Method Association Approach. In

section III we introduce the formal matching analysis used to
associate features group with method fragments (step 5 in Fig.
1), section IV describes the process of the MAA, Section V
presents a case study with the evaluation of the obtained
software implementation method using MAA and section VI
concludes this paper.

II. METHOD ASSOCIATION CONCEPTS
In this section we present the Method Association concepts

in a metamodel (see Fig. 2). We divide it in four parts to ease
its understanding and description. Note that the colors of the
classes correspond to the colors of the output in Fig. 1.

A. Project situation and characteristics
Brinkkemper [20] and van de Weerd et al. [21] showed the

importance to distinguish the situations of different projects,
called “implementation situations” or “development project
situations” [19]. Each customer software implementation
corresponds to a specific project situation (several customer
implementations may share the same characteristics, then the
same project situation). These project situations are categorized
by characteristics that are unique for a specific project. These
characteristics are also called contingency factors or project
factors [22]. Kornyshova et al. [25] proposes characteristics of
IS development projects and categories as Organizational
(Management commitment, Level of innovation…) or
Development strategy (Delivery strategy, Project
organization…) for instance. These characteristics allow
identifying the project situation, for instance, a standard project
situation will require little customization of the software
whereas complex project situation will identify specific needs
[19].

Fig. 2. Method Association concepts as a metamodel.

B. Method and Method fragment
For the selection, storage and assembling of the method

fragments, a meta-modeling technique is necessary. According
to Harmsen et al. [22], the technique should be able to include
the formalization of “constraints or rules to avoid producing
meaningless methods”. A method base is used to capture
knowledge of the candidate methods and to supply this
knowledge [22]. The method fragments of existing methods in
our approach are modeled as Process Deliverable Diagrams
(PDD) [23]. A tool as the one developed in the incremental
method engineering approach [24] could be used to
automatically convert the PDDs into logic programs in
disjunctive Datalog that generate optimal plans.

C. Feature group and Subgroup
Luinenburg et al. [19] defined feature groups as “a set of

functional design requirements”. These feature groups allow to
compare the existing methods and selected fragments that meet
the requirements of the product to be implemented. Features
can be gathered from several sources: literature, field artifacts,
expert interviews, etc. The number of features can be important
but we can group them in specific sets called feature groups. A
method fragment can be selected to meet the requirements of a
particular feature group. Finally, features have to satisfy the
characteristics that describe the constraints and situation of the
current project.

A method fragment, according to our metamodel, must
have a name, a weight, a goal, an action and may require
prerequisites. We can complete the description of a method
fragment with characteristics to describe the reuse situations.

D. Activity, Deliverable, PDD and Concept
A process-deliverable diagram is a meta-modelling

technique developed for the method engineering process [21].
PDDs can be used for “analyzing, storing, selecting and

assembling” method fragments [21]. It is represented as a
diagram that describes activities and deliverables that act as
input or output of these activities. A PDD is composed of two
parts: the process model is on one side (activities) and the
product model on the other (deliverables). We introduce the
notion of Concept that can be an activity or a deliverable. An
activity can be decomposed in sub-activities.

A Method Fragment, described as a PDD, is then composed
of concepts. A feature can require a specific concept, for
example, the “Planning” feature can require the activity
“planning” or the deliverable “Gantt diagram”. This
requirement association will then help to associate features to
method fragments. Moreover, a feature can be associated to a
concept if it fulfills the requirements, to facilitate the selection
of method fragments.

III. FORMAL MATCHING ANALYSIS
The link between the features and the method fragments is

found in different ways: (a) by identifying semantic
associations between the terms used to describe them, (b) by
studying the features requirements, (c) by studying the project
situation and (d) by using the method engineer expertise.

A. Semantic analysis
As in the work of [14] using three similarity measures

(synonymy, hyponymy and hyperonymy), we define several
similarity metrics to be able to select the right components.
First, we can compare the terms used in Feature, Feature group
and method fragment. The name of the feature or feature group
is compared to the name, goal or action of each fragment.
Several possibilities can occur as the links between the terms
can be of different nature. We defined metrics to identify these
links. All metrics are defined as logical expressions described
with a binary relation.

1) Equality
The metric EQ defines an association of equality between

two terms Ti and Tj (Ti = Tj). If a feature and a fragment use
the same terms, we identify it as an equality relation as follows:
EQ (Ti, Tj) = true where Ti is a Feature.name or a
FeatureGroup.name, Tj is a MethodFragment.name, a
MethodFragment.goal or a MethodFragment.action.

For instance, a feature Data Conversion will be related to
the fragment Data Conversion of the SDM method, as EQ
(“Data Conversion”,“Data Conversion”)=true.

2) Inclusion
The metric INC defines an inclusion association between

two terms Ti and Tj (Ti ⊂ Tj) as follows: INC (Ti, Tj)
where Ti is a MethodFragment.name, a MethodFragment
.goal or a MethodFragment.action and Tj is a Feature
.name or a FeatureGroup.name.

For instance, the feature Software Installation is related to
the fragment Software of the MOOSAD method, as INC
(“Software”,“Software Installation”)=true.

3) Synonymy
The metric SYN defines a symmetric association between

two terms Ti and Tj (Ti ≠ Tj) seen as synonyms (e.g.
SYN(“user”,“stakeholder”)=true).

4) Proximity
The metric PRO defines a semantic proximity association

between two terms Ti and Tj (Ti ≠ Tj) (e.g. PRO
(“functional analysis”,“requirement”)=true).

The first two metrics (Equality and Inclusion) can be easily
used as they consist of the comparison of the written form of
the terms. Synonymy and Proximity comprise a more
important semantic analysis. This analysis may be automatized
with the use of ontologies. We choose to use ConceptNet [26]
that includes the term relationships of WordNet and Cyc; it
then offers richer semantic links. This ontology includes
definitions, lexical relationships and common sense
associations that ordinary people make among concepts [27]. It
defines all kind of association between terms, going from sheer
equivalence to translation or composition. This proposal will
use several of these associations to find links between the terms
used in the features and those of the fragments. The metric
SYN will use the Synonym and the DefinedAs relations of
ConceptNet as <Engineer DefinedAs Application of Science>,
<Process Synonym Task>. The metric PRO will use several
kinds of ConceptNet relations as follows: (i) Hyponymy and
Hypernymy defined by the IsA relation allow to manage the
inheritance links between terms: <Task IsA Work activity>,
and the InstanceOf relation allows to instantiate a concept
<Microsoft InstanceOf Business> (ii) Meronymy and
Holonymy: PartOf relation allows to handle the composition
link between two terms as < goal PartOf Plan of action> (iii)
Closeness: the RelatedTo, DerivedFrom and Hasproperty
relations allow to find terms in close relation with another term
as <Plan RelatedTo schedule>, <Requirement Analysis
DerivedFrom Requirement>, <Test HasProperty Evaluation
Method>.

More examples are shown in the case study section V.D.

B. Requirement feature analysis
As shown in Fig. 2, a feature may require concepts. For

instance, the feature ‘Planning’ requires the concept of
‘Schedule and Define tasks’. The method engineer can then
define the links between the features and the method concepts
by analyzing their nature. The link ‘UsedFor’ of ConceptNet
can be useful in this specific case to help the method engineer
to identify some of these associations. The metric REQ defines
a requirement link between a feature F and a method fragment
M as follows: REQ (F,M)=true.

C. Project situation analysis
The situation itself can require the use of a specific method

fragment. For instance, if the software implementation has to
be customized for a specific customer organization, a design
phase is then needed and the corresponding fragments have to
be selected. The method engineer may then analyze the project
situations and their characteristics to narrow the set of suitable
fragments.

D. Heuristic analysis
Experts are needed to validate the links between fragments,

feature groups and characteristics and find new ones. As a
matter of fact, although the use of ontology allows to obtain
many links between terms, they are not all meaningful for the
project at hand. Experts are able to understand the links and to
select a coherent sub-set. In a quite different way, ConceptNet
does not contain all the possible links between terms and
experts are needed to identify the missing ones. For instance,
although the testing phase concept should be related to the
concept of project management or project schedule, this term in
ConceptNet is not related at all to these concepts but essentially
to the terms of exam, school or examination. This link has to be
identified by an expert of the domain to be taken into account
into the formal matching analysis.

IV. METHOD ASSOCIATION PROCESS
We specify here the proposed approach as a PDD (see Fig.

3), formally describing the overview given in Fig. 1. The
method comprises six activities: Identify project situation (step
1 in Fig. 1), Feature grouping (step 2), Associate feature groups
to concept (step 5), Select method fragment (step 6), Validate
situational implementation method (step 7)and Create method
fragment (steps 3 and 4)which is independent of the other
activities.

A. Identify project situations
The first step is to identify the situations of the potential

projects concerned by the software implementation. The
stakeholders specify the characteristics of the project. Several
project situations may exist for the same software
implementation and each project will follow its own route
within the method.

B. Features grouping
A domain expert defines the features required for the

method to be built for the project under study. Luinenburg et al.
[19] propose to use association criteria to be able to select the
method fragments required for the situational method. These
criteria are inspired by the Key Feature Groups of the software

product domain. To identify the feature groups, we propose to
conduct interviews with experts, to study the literature and to
analyze documents. The features are then categorized in groups
following their occurrence in the obtained list.

C. Associate feature groups to concept
The features might require specific concepts (activity or
deliverable). Then, the method engineer is able to associate the
features to the most adequate concepts using the defined
characteristics. There are two perspectives to associate feature
groups to concepts. In their study, Luinenburg et al. [19]
focused on the functionalities or deliverables that the method
should contain because their goal was to develop a design
method. This focus is called the “product perspective” [20].
The method fragments and features are then defined with a
product perspective as deliverables. The “process perspective”
[20] focus on the activities and on how the artifacts are

produced. In their approach, Luinenburg et al. [19] introduced
the association table for the comparison and the selection of the
candidate method fragments (see example in TABLE III.). In
this step, the feature groups are associated with the relevant
method fragments of the method base. The rows of the
association table represent the feature groups and their features
and the column list the methods and their relevant concepts.
Luinenburg et al. [19] presents two strategies for the qualitative
analysis of the association results. The first one is the ‘feature
group strategy ‘where the method fragments for the design or
accomplishment of a feature group can be identified. The
second strategy is the ‘web modeling strategy’: if a concept
represents several feature groups this fragment might be
relevant for the method under construction. On the contrary,
when the concepts do not represent a feature group they might
not be relevant for the method.

Fig. 3. PDD of the proposed approach.

D. Select method fragments
This step allows the method engineer to associate a feature

group to the best-fitted method fragment, based on the
associations between the features (or feature groups) and the
concepts previously defined (the selected association between
Feature or Feature group and Method fragment is then
instantiated). The association table shows which fragments are

most relevant, as they cover the feature groups. These
fragments will be used to create the situational method.

E. Validate situational implementation method
The last step consists in evaluating the produced method

based on surveys, interviews of experts or case studies. The
internal quality of the developed method is evaluated through a
matrix that gives an overview of the changes needed to

complete the method (see Table I). The left side of the matrix
states the three possibilities of change: an existing activity (or
sub-activity) might be removed or changed, or a new activity
(or sub-activity) might be inserted. For each change, the matrix
shows the impacted activities and indicates if the change is
defined for the complete activity or part of it. The matrix also
indicates if the change is permanent or only applicable in
certain situations. The last row presents the motivation for the
change and when it is not applicable.

TABLE I. VALIDATION MATRIX

Method change Total Removed Changed Inserted
Total changes

Complete
Partial

Situational
Permanent
Motivation

F. Create method fragment
This step is completely independent of the rest of the

process, as it can be done well before the construction of the
implementation method. The existing methods are gathered
from literature and from the project domain (for example, we
can use the methods already used in the organization). To
narrow the number of candidate methods down, some selection
criteria are necessary, which can be, for instance, the
acceptation by the community, the level of tool support, etc.
[19]. Modeling a candidate method consists in representing one
or more fragments extracted from the method using the PDD
formalism. Fragments must also comprise a name, weight,
goal, action and may require prerequisites as describe in Fig. 2.

V. VITALHEALTH CASE STUDY
We used the proposed approach to develop and assemble a

method for VitalHealth Software B.V, a Dutch company that
develops and sells health care management (HCM) software.
This HCM-organization was looking for an improved method
for the delivery, testing and implementation of its software.

A. Identify project situations
Based on interviews and artifact study, we discovered three

different project situations based on different characteristics
(type of hosting, upgrading). We then divided the project of the
HCM-organization in three kinds of implementations: Standard
software implementation, Customized software implementation
and Platform implementation. Each implementation will define
its own route to follow within the method.

B. Features grouping
We identified the relevant features for the implementation

of the HCM software product and categorized them in feature
groups based on their appearance and relevance. We gathered
the features from literature, field artifacts and expert
interviews. The literature contains a lot of information about
the features a health care or disease management system or
application must have, but less about which features the
implementation method should include. We choose three main
works in the literature [28] [29] [30] but also used the
documents and artifacts of the HCM-organization and the
expert interviews to identify the features

A number of 126 features were identified for the
implementation of health care software. We categorized these
features in 18 groups and after informal interviews with two
experts we combined several feature groups, resulting in 10
feature groups presented in Table II.

TABLE II. FEATURE GROUPS.

Features groups
1 Project

management
The planning of all the activities performed by the different project members is important to stay within the predefined time and
budget. Reporting the process and the results to the management and to the customer should be included in the method.

2 Infrastructure
arrangements

[7] indicated that, in the health care management domain, several infrastructure arrangements are important: the system needs a
connection with internet and intranet, and the hosting arrangement should be taken care of.

3 HCM software
security

Security is always an important part of a software implementation process but, in the health care domain, the security must be optimal
for the patient’s privacy. The access to patient data should be restricted to specific employees. The software itself should be secured as
well by the use of certificates, passwords, etc.

4 HCM software
installation

The installation of the software should be performed on a very precise and well planned way. In HC most of the institutes are open
day and night so the installation should be fast. Additional software is often necessary and should be installed

5 HCM system
integration

The integration of the health care software with other systems and software already installed is necessary; this is called the internal
integration. The integration with systems outside the institutes is called the external integration [7]. [5] mentioned that for a good
integration between systems a standardized terminology is important to prevent communication mistakes.

6 Clinical data
conversion

When a new system or new software is implemented, old data should be taken up in the new system as well. Data conversion is
necessary in this case.

7 Health care
professional
and patient

authorization

Snyder et al. [8] indicated that the person identification is an important part of the system and that during the implementation of the
software the right persons should get access to the right information. The patients might get access to their own data but not to all data
and information.

8 HCM system
introduction

To let the users within the health care organization work with the new software, proper training and documentation is important. Good
communication with the customer and end users will ensure that the system will be properly used and that the users will better accept
the new system.

9 Project
evaluation

A good evaluation of the health care management software or system and the process of the project is “a must” in a complete
implementation method.

10 Support/
Maintenance

To make sure the system will continue to work properly support has to be provided to the users and the system should be maintained.
The health care software should be updated if necessary and all the versions that are modeled should be stored, if a new version is not
working correctly

TABLE III. ASSOCIATION TABLE REPRESENTING THE FEATURE GROUPS AND THE CANDIDATE FRAGMENTS (EXCERPT)

C. Create method fragments
As this step is independent from the others and as we

needed method fragment to build the implementation software
method for the case study, we decided to carry out this activity
at this time of the study. The selected methods are the Unified
Process [21], MOOSAD [22], SSA OnePoint Implementation
Methodology (OPIM) - recently renamed Infor® Deployment
Method , SDM [23] and GSDLC [24] as they include the
notion of software implementation. We also included the
already existing VitalHealth method in the HCM organization.
We selected the methods in literature based on their level of
detail, as we were looking for methods with clear and detailed
steps and deliverables.

Another selection criterion was that the methods must
describe the phases of the implementation process starting from
the point that the software is delivered to the customer. Many
methods found in literature only describe the analysis and
development phases and not the next ones. The five selected
methods meet these selection criteria. These methods were the
only ones that we could find in the literature that describe the
activities needed for the implementation of the software and
not only its design.

All the main steps of the implementation of a system that
are described in the methods were modeled in PDDs to get a
quick overview of the activities and their related deliverables.
These PDDs were stored in the method base to be used for the
development of the situational method for the implementation

of the software at the HCM organization. We finally defined 55
method fragments.

D. Associate feature groups to concept
In this project, we focused on the activities rather than on

the deliverables because we wanted to develop a method for
the implementation of the already designed and modeled
software. The focus is not on the products and deliverables but
on how the product is implemented at the customer. We are
then in a “process perspective”. After several interviews with
consultants it became clear that the necessary improvements in
the implementation process were not on what was produced but
rather on how and when it was performed.

We then mapped the feature groups with the activity
concept of the previously defined method fragments in an
association table, using all the analysis metrics. Table III
presents the previously defined method fragments, their
concepts and the desired feature groups.

Crosses in Table III indicate the representation of the
desired feature group in a method fragment. It means that there
is an association link between the feature and the concept -
Association(Feature, MethodFragment) = true. Below are
shown some examples of metrics we used to build the
association table. In these examples, Feature 1 is named F1,
Feature 2 is named F2… Feature N is named FN and
MethodFragment 1 is named MF1, Method Fragment 2 is
named MF2… MethodFragment N is named MFN.

• F1.name= “Planning” and MF1.name= “Planning” then
EQ (F1.name, MF1.name)=true and Association(F1,
MF1)= true.

• F11.name= “Software installation” and MF12.name=
“Software” then INC (MF12.name, F11.name)=true and
Association(F11, MF12)= true.

• F13.name= “Installation manuals”, MF9.name=
“Developing system and user documentation” and
ConceptNet tells us that a “Manual” IsA “Document
type”, then we can infer a proximity link between these
two terms: PRO (F13.name, MF9.name)=true so
Association(F13, MF9)= true.

• F13.name= “Installation manuals”. The Feature 13 can
be reached with a set of different process parts. There
is a requirement feature link between this element and
the method fragments MF2, MF3 and MF4 (MF2.name=
“Getting beta release out”, MF3.name= “Installing beta
release” and MF4.name= “Data conversion and
migration”). As REQ (F13, MF2)=true, REQ
(F13,MF3)=true and REQ (F13, MF4)=true then
Association(F13, MF2)= true, Association(F13, MF3)=
true and Association(F13, MF4)= true.

• F2.name= “Communication”, MF29.name= “Give
information and training”. ConceptNet shows a
UsedFor link between “Express information” and
“Communication”. This leads to the definition of the
link REQ (F2, MF29)=true and Association(F2, MF29)=
true.

The results showed that all the feature groups are associated
to at least one method fragment, which means that the
implementation method can be entirely created with the
selected fragments.

For the qualitative analysis of the association results we
used the “feature group strategy” [19]. We indicated for each
required feature (or feature group) the corresponding activity of
the method (when possible). For instance, the Unified Process
and MOOSAD methods include an activity to produce
installation manuals but they do not propose any activity for
data security (no corresponding concept for the data security
feature).

For the web modeling strategy, we indicated which
activities of the candidate methods were relevant for the
implementation method for the HCM-organization and which
were not. For example, the Deployment preparation of the SSA
OnePoint methodology is relevant for several features of the
implementation method for Health care systems.

E. Select method fragment
The association table highlighted the correspondence be-

tween the fragments and the feature and feature groups. When
several fragments could realize a feature group, we choose the
fragment that included the higher number of features.

We used different tools to support the use of the developed
software implementation method in the VitalHealth (VH-SIM)
case study:

• MS Project was used for the planning of the
implementation process from selling the software to
the maintenance and support, presenting the phases and
the main activities of the method, their duration, the
start and end dates, and the deliverable.

• MS Excel was used to create a detailed planning of the
implementation method. A project manager can easily
create a detailed planning - with a start and end date
per activity - can check this planning and change the
status of their tasks.

• MS Word was used to make several templates for the
deliverables of the created implementation method: the
Project Proposal (which includes the project design
and the financials); the Project Plan (which includes
the scope of the project, the planning, the roles, the
responsibilities and risk management); and the
Implementation Plan (which includes an overview of
all the steps that must be taken for the implementation
comprising a training plan, a detailed installation plan,
and the activities that the customer should perform
before and during the implementation of the
VitalHealth software)

• We also implemented a detailed planning in the
VitalHealth Support System - a system developed by
VitalHealth. It allows planning, hours accounting
project administration and reports generation. The
detailed planning comprises all the activities and sub-
activities of the VH-SIM. It should be used in
combination with the high-level planning in MS
Project to keep the overview of the whole project.

• We described the VH-SIM in the VitalHealth Wiki as
text, pictures and models. It can be used as background
information when implementing the software of
VitalHealth. With this wiki the employees within the
organization can share their experiences and make
comments when they found a change in the method.

F. Validate situational implementation method
We used three techniques to evaluate VH-SIM:

• Expert interviews to make sure all needed steps were
added in the method;

• A practice-oriented case study to check whether the
method was usable and whether all the steps necessary
for the implementation were included in the method;

• A survey addressed to the employees of the HCM
organization to present the method and validate the
usability of the support and whether all steps were
included.

Each technique is described further in details. To better
evaluate the created software implementation method, we used
a matrix presented in TABLE I.

1) Expert interviews
We interviewed five experts employees of VitalHealth:

three are consultants for the implementation of the health care
software and are responsible for the planning of the project and

the communication with the customer; one is a technical
consultant responsible for the installation and configuration of
the necessary servers and software; and the last one is a senior
solution architect, having the same duties as the consultants but
with more expertise of the technical aspects and the modeling
of the software.

We showed the PDDs of the created method to the experts
and asked them to review if all the necessary steps were present
in the method, if the order of the steps and the named used in
the method were right, if all the deliverables were present and
what they think of the presentation of the method as PDDs.

We also asked them to give their opinion about the created
method in MS Project and to look at the template of the Project
Plan that we developed in MS Word.

We filled in the validation matrix after each interview. We
then synthesized all the figures in one overview table.

A total of 37 changes were identified and processed in the
new method (see Table IV). Three sub-activities were removed
because they were not necessary (in the project situation) or
were not correct. 22 sub-activities were changed (13 activities
were misplaced in the process and names were adjusted for 9
activities). Experts indicated that 2 of the activities that were in
the wrong place were performed according to the situation: one
for an existing customer, the other for a new software version.
12 sub-activities were inserted (4 were inserted in specific
situations: for custom made software, for a new software
version or on customer request).

TABLE IV. RESULTS OF EXPERT INTERVIEWS.

Method change Total Removed Changed Inserted
Total changes 37 3 22 12

Complete 9 1 4 4
Partial 28 2 18 8

Situational 4 0 0 4
Permanent 22 3 22 8

Motivation Not
necessary

Changed
order (13),
changed
name (9)

To
complete

the method

Overall, the experts were pleased with the method and

indicated it was a good guideline for the implementation of the
software of the HCM-organization. No major structural
changes were necessary. We observed that the changes
identified by the experts were scattered over the method and
the changed activities were reduced. In total, 40% of the 92
activities and sub-activities were removed, changed or added.

The planning in MS Project was too much detailed, so most
of the experts indicated that a planning on a higher level would
be more usable. Apart from some small changes, the project
plan was usable, clear and structured. A few experts indicated
that they would like to use the method in MS Excel for the
planning of a project.

2) Case study
In this section, we first present the case study and its

results, then the threats to validity.

a) VH-SIM in the HCM-organization
The objective of the case study was to validate VH-SIM.

For the case study, we followed a project in a large Dutch
rehabilitation clinic2 employing more than 550 people. This
project included three parts:

• The first one was the integration of the care weight of a
patient in the existing system that is the cost of care.
The budgets of health care clinics in the Netherlands
depend, since January 2009, on the amount of care
needed by their patients. In other words, the
‘healthcare weight’ of the patient determines the
budget of the clinic.

• The second part was an amelioration of an earlier
project finished in 2007 for the treatment and
monitoring of patients with a specific disease.

• The last part of this project was the replacement of the
server.

All parts of the project are designed, modeled and
performed by the HCM-organization. Because this project
involves customized software based on the VitalHealth
platforms, the route within the method is the custom software
implementation route with conversion from the database
included. First a testing/implementation planning was made by
a consultant based on the VH-SIM. We evaluated this planning
and interviewed the project members.

When the project was almost finished, we identified the
changes that were made in VH-SIM to adapt it to the situation
of the organization (see Table V). A total of 10 changes were
made: 5 unnecessary sub-activities were removed, 5 activities
were changed because they were performed by the customer
(training and documentation development), 1 sub-activity was
inserted (“install certificates”).

TABLE V. METHOD CHANGES CASE STUDY.

Method
change Total Removed Changed Inserted

Total
changes 10 5 4 1

Complete 3 2 1 0
Partial 7 3 3 1

Situational 9 5 4 0
Permanent 1 0 0 1

Motivation Not necessary,
lack of time

Activity
performed by
the customer

To complete
the method

The method was a good guideline for the planning of the
Testing phase and the Implementation phase and most of the
activities were performed according to the VH-SIM. But
because the development of the software was an iterative
process (the customer wanted more functionalities to be
included) and sometimes the customer was late in the delivery
of necessary inputs, it was hard to plan the implementation
over time.

2For confidentiality reasons some information is not disclosed.

The most striking aspect in this case study was that the
customer performed some training activities himself. The
training planning was not entirely shared with VitalHealth.
Because the customer wanted to perform parts of the
implementation himself, most of the changes in the method
were situational. Usually, in most projects, these activities are
all performed by VitalHealth.

b) Threats to validity
Speer and Havasi [26] state that case studies investigators

must maximize four aspects of validity: the construct validity,
the internal validity, the external validity and the reliability.
The internal validity doesn’t apply here as the case study isn’t
an explanatory or causal study.

• Construct validity

To ensure the construct validity of the case study, we had to
establish correct operational measures for the concepts being
studied. We used input of several sources: interviews with the
project members at VitalHealth at the end of the project, some
informal talks with the project members during the project and
the study of the documents that were delivered during the
implementation.

• External validity

External validity is about the generalization of the method.
In this work VH-SIM is situational, so it is specific for a very
particular situation and for a certain domain. The external
validity would be ensured if we generalize VH-SIM in the
whole healthcare domain. In this case, more case studies
should be performed for several projects in this domain.

• Reliability

The reliability is ensured if the operations of the case study
can be performed again with other projects. We used a
structured protocol that can be easily used again in other cases.
The results of the case study are stored in the validation matrix
and this matrix can be used in other case studies if needed.

3) Survey
To collect more data for the validation of the VH-SIM, we

performed a paper survey with the employees of the HCM-
organization after the presentation of the method and tools. 22
employees attended the presentation and we emailed the survey
and the presentation to all the employees of the HCM-
organization in the Netherlands (30 in total). We collected 15
filled-in surveys. Two surveys were deleted because they were
not usable, as the respondent did not filled more than 4
answers. In total we used 13 surveys for the validation of VH-
SIM, which represents 43 % of the employees. The distribution
of these respondents over the department is a good
representation for the HCM-organization: 4 consultants, 4
members of the modeling team, 4 members of the platform
development team and 1 member of the management team.

The survey consisted of a list with the activities of the
Delivery, Testing and Implementation phases. We asked each
respondent to indicate whether the activity was correct or not
and if that activity was always performed (permanent) or only
in certain situations (situational), for instance in the specific
situation of a project within a large organization. We also asked

the respondents to give their opinion about the four tools used
for the support of the method.

9 respondents did find the activities correct. 4 respondents
indicated that 18 sub-activities were not correct, mostly
because of their names. For the indication of the situation
(partial or situational) of the sub-activities, the respondents’
opinions were divided most of the time. They all agreed that
the “Data conversion and entry” sub-activity was situational.

We asked the respondents to give their opinion about the
tools proposed for the support of the VH-SIM. 14 employees
responded to this part of the survey. 6 respondents were
positive about the high level planning in MS Project, the rest
did not have an opinion. The planning in MS Excel was usable
and clear for 5 respondents but 2 respondents were very
negative about it because it was confusing.

The respondents were divided about the VitalHealth Wiki:
5 were positive and 4 were negative. The negative reactions
were mostly about the navigation through the different parts of
the wiki. One respondent indicated that it was too easy to
change the data and information within the wiki.

6 respondents were negative about the VitalHealth Support
System, 3 were positive. The respondents motivated their
opinion by saying that the support system is not user friendly; it
includes too much detail and is confusing.

From the results of the survey we can conclude that
(besides some discussion about the naming and terms used in
the method) the activities and sub-activities were correct. One
respondent indicated that in the case of the delivery of the
platform to partners, the installation that will be performed by
VitalHealth is not the most important aspect. For this route
more research will be then needed.

Concerning the situation in which the activities are
performed or not, the survey is not so clear. More research is
necessary to indicate the situational factors within this method.

The respondents were divided about the support tools. The
high level planning in MS Project is well received but the other
tools need more attention before they can be used properly.

4) Internal validity of VH-SIM
To check whether the internal validity of VH-SIM was

correct we used a static test introduced by [35]. In this test five
issues are addressed: Completeness, Consistency, Efficiency,
Reliability and Applicability.

a) Completeness
We checked the completeness of VH-SIM in the expert

interviews, case study and survey. In the expert interviews 12
sub-activities were added, but overall the method was
considered complete. The added sub-activities ‘Make software
set-up documentation’ and ‘Deliver software set-up
documentation’ are some examples. In the case study only one
sub-activity was inserted, ‘Install certificates’. According to the
respondents of the survey no activities were missing. So overall
we can conclude that the method after the insertion of the extra
activities is complete.

b) Consistency
The name and terms used in VH-SIM have to be consistent

and clear. After the expert interviews 8 activity names were
changed, mostly to fit to the already used names at VitalHealth.
Four respondents of the survey (all Platform team) also
suggested some changes in names or terms, but overall the
method is considered consistent and clear for the users.

c) Efficiency
The VH-SIM was only used in one case study. In this

context, the method was efficient in the way that the planning
was easier to specify. To check the efficiency (time and costs)
the method should be performed in more projects. The projects
in which the method will be used should then be compared
with similar projects in the same field in which the method was
not used.

d) Reliability
It is important that VH-SIM is semantically correct.

According to the experts and the respondents of the survey, the
activities and sub-activities are strongly interrelated and the
activities are all meaningful.

e) Applicability
The applicability of a method means it has to be usable and

feasible. In the case study, the VH-SIM was considered usable
for the planning of a project. Unfortunately, lack of time made
it sometimes difficult to perform all the activities. The experts
indicated that the VH-SIM is usable in a project. For example,
one expert indicated that the use of this method as a checklist
was useful, as no important steps (like the installation of the
certificates, etc.) could be forgotten.

VI. CONCLUSION
We proposed in this work a new SME approach to create

implementation methods for software products, named the
Method Association Approach. We detailed the concepts and
the steps of the approach theoretically. MAA uses analysis
metrics to select the fragments matching the situation at hand.
We illustrated MAA enactment on a real case, VitalHealth
Software providing an evaluation of the produced software
implementation method, VH-SIM.

The evaluation of VH-SIM gave positive results, so the
Method Association Approach used to build VH-SIM is
indirectly validated as its product (VH-SIM) has been
validated. However, we must conduct a validation of each step
of MAA to evaluate its process part. This validation requires
the participation of method engineers.

One of the already identified difficult tasks is the
identification of the feature and feature groups as it is quite
long and complex. One of our perspectives is to work further
on the ConceptNet ontology in order to develop the relations
needed by the domain of software implementation method.
This specific ontology will greatly improve the semantic
analysis and facilitate the work of the experts and method
engineers.

REFERENCES
[1] S. Jansen, S. Brinkkemper and J. Souer, Lutzen Luinenburg. “Shades of

gray: Opening up a software producing organization with the open

software enterprise model”. Journal of Systems and Software 85(7):
1495-1510, 2012

[2] D. Robey, J.W. Ross and M.C. Boudreau, “Learning to implement
enterprise systems: An exploratory study of the dialectics of
change”. Journal of Management Information Systems, 19(1), 2002, pp.
17-46

[3] F. Fui-Hoon Nah, J. Lee-Shang Lau and J. Kuang, “Critical factors for
successful implementation of enterprise systems”. Business process
management journal, 7(3), 2001, pp. 285-296

[4] M.L. Markus, C. Tanis and P.C. Van Fenema, “Enterprise resource
planning: multisite ERP implementations”. Communications of the
ACM, 43(4), 2000, pp 42-46

[5] D. Maditinos, D. Chatzoudes and C. Tsairidis, “Factors affecting ERP
system implementation effectiveness”. Journal of Enterprise Information
Management 25(1), 60-78, 2011

[6] T.H. Nguyen, J.S. Sherif and M. Newby “Strategies for successful CRM
implementation”. Information Management & Computer Security, 15(2),
2007, pp. 102-115

[7] D. J. Finnegan and W. L. Currie, “A multi-layered approach to CRM
implementation: An integration perspective”, European Management
Journal, Volume 28, Issue 2, 2010, pp. 153-167,

[8] M. Rohloff, “Advances in business process management implementation
based on a maturity assessment and best practice exchange”.Information
Systems and e-Business Management, 9(3), 2011, pp. 383-403

[9] http://dictionary.cambridge.org, consulted in November 2014.
[10] M. Varadaraj, and N. Goud, “Successful Software Adoption - A study of

Software Implementation Methodologies”. International Journal of
Computer Applications, vol. 41(16), 2012, pp. 42-47.

[11] K. Kumar, and R.J. Welke, “Methodology EngineeringR: A Proposal for
Situation Specific Methodology Construction”. In: Challenges and
Strategies for Research in Systems Development, Cotterman, W. and J.
Senn (eds.), J. Wiley, Chichester, UK, 1992, pp. 257-266.

[12] S. Brinkkemper, M. Saeki, and F. Harmsen, “Assembly Techniques for
Method Engineering”. In: Proceedings of CAiSE 1998, LNCS 1413,
Springer Verlag 1998, pp. 381-400.

[13] Firesmith, D.G., Henderson-Sellers, B.: The OPEN Process Framework:
An Introduction. Addison-Wesley, London, UK, 330pp 2002.

[14] J. Ralyté, and C. Rolland, “An Assembly Process Model for Method
Engineering”. In: Proceedings of CAISE 2001, LNCS 2068, Springer,
Berlin, 2001, pp. 267-283.

[15] F. Karlsson, and P.J. Ågerfalk , “Method Configuration: Adapting to
Situational Characteristics While Creating Reusable Assets”. Inf. and
Soft. Technology, vol. 46(9), 2004, pp. 619–633.

[16] M. Rossi, B. Ramesh, K. Lyytinen, and J.-P. Tolvanen, “Managing
evolutionary method engineering by method rationale”. Journal of the
AIS, vol. 5(9), 2004, pp. 356-391.

[17] M. Cervera, M. Albert , V. Torres , and V. Pelechano, “A Model-Driven
Approach for the Design and Implementation of Software Development
Methods”. International Journal of Information System Modeling and
Design (IJISMD), vol. 3(4), 2012, pp. 86-103.

[18] G. Guzélian, and C. Cauvet, “SO2M: Towards a Service-Oriented
Approach for Method Engineering”. In: Proceedings of IKE'07, Las
Vegas, Nevada, USA 2007.

[19] L. Luinenburg, S. Jansen, J. Souer, S. Brinkkemper, and I. van de
Weerd, I., “An Approach to Creating Design Methods for the
Implementation of Product Software: The Case of Web Information
Systems”. Advances in Conceptual Modeling – Challenges and
Opportunities, Lecture Notes in Computer Science, vol. 5232, 2008, pp
426-436.

[20] S. Brinkkemper, “Method engineering: engineering of information
systems development methods and tools, Information and Software
Technology”, vol. 38, 1996, pp. 275-280.

[21] I. van de Weerd, S. Brinkkemper, J. Souer and, J.A. Versendaal,
“Situational Implementation Method for Web-based Content
Management System-applications: Method Engineering and Validation
in Practice”. Software Process Improvement and Practice, vol. 11, 2006,
pp. 521-538.

[22] A.F. Harmsen, S. Brinkkemper, and J.L.H Oei, “Situational method
engineering for infor-mation systems project approaches”. In
proceedings of the international IFIP WG8. 1 Con-ference in CRIS
series: "Methods and associated Tools for the Information Systems Life
Cycle" (A-55), North Holland 1994.

[23] I. van de Weerd and S. Brinkkemper, “Meta-modeling for situational
analysis and design methods”. In M.R. Syed and S.N. Syed (Eds.),
Handbook of Research on Modern Systems Analysis and Design
Technologies and Applications, Hershey: Idea Group Publishing, 2008,
pp. 38-58

[24] K. Vlaanderen, F. Dalpiaz and S. Brinkkemper,” Finding Optimal Plans
for Incremental Method Engineering”. CAiSE 2014, pp. 640-655

[25] E. Kornyshova, R. Deneckère, and C. Salinesi, “Method Chunks
Selection by Multicriteria Techniques: an Extension of the Assembly-
based Approach”. Situational Method Engineering, 2007, pp. 64-78.

[26] R. Speer, and C. Havasi, “ Representing General Relational Knowledge
in ConceptNet 5”. LREC, 2012, pp. 3679–3686.

[27] C. Junpeng,and L. .Juan, “Combining ConceptNet and WordNet for
Word Sense Disambiguation”, Proceedings of the 5th International Joint
Conference on Natural Language Pro-cessing, Chiang Mai, Thailand
2011.

[28] I. Iakovidis, “Towards personal health record: current situation,
obstacles and trends in implementation of electronic health care record

in Europe”, International Journal of Medical Informatics, vol.52, 1998,
pp.105–115.

[29] W. Raghupathi, and J. Tan, “Strategic IT Applications in Health Care”.
Communication of the ACM, vol. 45(12), 2002, pp. 56-61.

[30] K.D. Snyder, and P. Paulson, “Health care Information Systems:
Analysis of Health care Software”. Hospital topics: Research a
Perspectives on Health care, vol. 80 (4), 2002, pp. 5-12.

[31] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software
Development Process. Mas-sachusetts: Addison-Wesley 1999.

[32] A. Dennis, B. Wixom, and, E. Tegarden, Systems Analysis and Design
with UML Verson 2.0 An Object-Oriented Approach. Hoboken, NJ:
Wiley 2005.

[33] W.S. Turner, R.P. Langerhorst, G.F Hice, H.B. Eilers and, A.A.
Uijttenbroek, SDM, System Development Methodology, Rijswijk: Cap
Gemini Publishing 1990.

[34] P.O. Flaatten, D.J. McCubbrey, and P.D. O’Riordan, and K. Burgess,
Foundations of Business Systems, Orlando: The Dryden Press 1992.

[35] R.K. Yin, Case Study Research- Design and Methods. SAGE
Publications, Inc, London, United Kingdom, 2009.

[36] S. Brinkkemper, M.Saeki, and F. Harmsen, “Meta-Modelling Based
Assembly Techniques for Situational Method Engineering”. Information
Systems, vol. 24(3), 1999, pp 209-228.

