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THE HOMOGENIZED BEHAVIOR OF UNIDIRECTIONAL

FIBER-REINFORCED COMPOSITE MATERIALS IN THE CASE OF

DEBONDED FIBERS

YAHYA BERREHILI AND JEAN-JACQUES MARIGO∗

Abstract. This paper is devoted to the analysis of the homogenized behavior of unidirectional
composite materials once the fibers are debonded from (but still in contact with) the matrix. This
homogenized behavior is built by an asymptotic method in the framework of the homogenization
theory. The main result is that the homogenized behavior of the debonded composite is that of a
generalized continuous medium with an enriched kinematics. Indeed, besides the usual macroscopic
displacement field, the macroscopic kinematics contain two other scalar fields. The former one
corresponds to the displacement of the matrix whereas the two latter ones correspond to the sliding
and the rotation of the debonded fibers with respect to the matrix. Accordingly, new homogenized
coefficients and new coupled equilibrium equations appear. This problem is addressed in a linear
elastic three-dimensional setting.

1. Introduction

The use of unidirectional fiber-reinforced composite materials does not cease to grow in various
domains and particularly in the domains of aerospace and aeronautics. This is due to their various
reasons and especially to their interesting mechanical behavior in terms of their specific effective
stiffness in the direction of the fibers. (Throughout the paper, the word effective is synonym of
homogenized or macroscopic.) The effective elastic behavior of such composites is now well known
and well modeled by the homogenization theory as long as the fibers are assumed to be perfectly
bonded to the matrix [17, 22, 24, 25].

However, since their mechanical performance is considered as optimal when the components
remain bonded, it remains to evaluate the loss of performance when the fibers are debonded. Of
course, if one considers that the elastic behavior is due to the matrix alone, then the specific stiffness
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drops drastically. But this type of estimate simply gives a lower bound to their stiffness and one
must define more precisely the effective behavior of completely or partially debonded unidirectional
composites. Many works have been devoted to this task, see for instance [6, 8, 12, 13, 14, 15, 16,
18, 19, 21, 23, 26]. In general, these studies consist in replacing the perfect bond of the interface
by some “cohesive law” or simply in removing the fibers when the debonding is complete. In any
case, the calculation of the new homogenized mechanical coefficients are performed by considering
the usual elementary problems set on the unit cell without reconsidering the general procedure of
homogenization. However, when following the two-scale asymptotic approach, it appears that the
argument used to obtain that the zero order displacement field does not depend on the microscopic
variable is no more valid. Therefore, in the zone where the fibers are debonded, the macroscopic
displacement field must be replaced by another “macroscopic” displacement field, corresponding
to the independent displacement of the fibers [4]. Consequently, one must also construct the
macroscopic problem which gives this additional field. It is the purpose of this paper.

Specifically, the paper is organized as follows. The next section is devoted to the setting of
the problem: one considers a composite structure Ω, constituted by a periodic distribution of
elastic unidirectional fibers whose direction is e3 and embedded in an elastic matrix. In a part
Ωc of Ω the fibers are assumed to be bonded to the matrix whereas in the complementary part
Ωd they are assumed to be debonded but still in contact without friction with the matrix. We
then formulate the elastostatic problem which contains the small parameter ε related to the size of
the microstructure and which governs the displacement field uε and the stress field σε. The third
section is devoted to the asymptotic analysis, i.e., the behavior of uε and σε when ε goes to 0.
Following a two-scale approach, we first postulate that uε and σε can be expanded in powers of ε,
the coefficients ui(x,y) and σi(x,y) of the expansion being periodic functions of the microscopic
coordinates y. We then obtain a sequence of variational equations in terms of the ui and the σi.
These equations are sequentially solved to finally obtain the effective behavior of the composite
in its bonded and debonded parts. In the fourth section, we study the properties of the effective
model and, in particular, of the properties of the effective coefficients provided by the solutions of
linear elastic problems posed either on the bonded or on the debonded cell. Then, some examples
are treated. We finally conclude giving some perspectives.

Throughout the paper we adopt the following notation. The summation convention on repeated
indices is always used. The set of real number, the set of n-dimensional vectors and the set of
symmetric second order n-dimensional tensors are respectively denoted by R, Rn and Mn

s . Vectors
and second order tensors are indicated by boldface letters, like u and σ for the displacement
field and the stress field. Their components are denoted by italic letters, like ui and σij . Fourth
order tensors as well as their components are indicated by sans serif letters, like A or Aijkl for the
stiffness tensor. Such tensors are considered as linear maps applying on second order tensors. The
application of A to ε is denoted Aε, with components Aijklεkl. The inner product between two
vectors or two tensors of the same order is indicated by a dot, like a ·b which stands for aibi or
σ ·ε for σijεij . The symbol ⊗ denotes the tensor product and ⊗s denotes its symmetric part, i.e.,
2e1 ⊗s e2 = e1 ⊗ e2 + e2 ⊗ e1.
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In our frequent use of multiple scaling techniques, we adopt the related notation. For instance,
x = (x1, x2, x3) always denotes a macroscopic coordinate while y = (y1, y2) represents a microscopic
one. Since the fibers are oriented along the direction e3, we distinguish the longitudinal coordinate
x3 from the transversal coordinates x′ = (x1, x2). Latin indices run from 1 to 3, while Greek
indices run from 1 to 2. When a spatial (scalar, vectorial or tensorial) field depends both on x
and y, the partial derivative with respect to one of the coordinates appears explicitly as an index:
for example, divxσ and εx(v) denote respectively the divergence of the stress tensor field σ and
the symmetric gradient of the vector field v with respect to x, while divyσ and εy(v) are the
corresponding derivatives with respect to y :

divxσ(x,y) =
∂σij
∂xj

(x,y)ei, divyσ(x,y) =
∂σiβ
∂yβ

(x,y)ei, (1)

εx(v)(x,y) =

(
∂vj
∂xi

(x,y) +
∂vi
∂xj

(x,y)

)
ei ⊗s ej (2)

εy(v)(x,y) =

(
∂vα
∂yβ

(x,y) +
∂vβ
∂yα

(x,y)

)
eα ⊗s eβ +

∂v3

∂yα
(x,y)eα ⊗s e3. (3)

On a surface I across which a field f is discontinuous, we denote by [[f ]] its jump discontinuity.

2. Position of the problem.

We consider a heterogeneous elastic body whose natural reference configuration is a bounded
open domain Ω of R3 with a smooth boundary ∂Ω. We denote by (e1, e2, e3) the canonical basis of
R3 and by (x1, x2, x3) the coordinates of a point x ∈ Ω. The body is made of two isotropic linearly
elastic materials, called respectively the fibers and the matrix, whose Lamé coefficients and mass
density are respectively (λf , µf , ρf ) and (λm, µm, ρm). The fibers are aligned in the direction e3 and
have a circular cross-section with radius εR. They are periodically distributed in the matrix, εa and
εb being the two vectors of the plane (e1, e2) characterizing the periodicity. The number of fibers
is large so that the dimensionless parameter ε characterizing the fineness of the microstructure (for
instance, the ratio between the spatial period and the size of the structure) is small. The domain
occupied by the fibers is Ωε

f , that occupied by the matrix is Ωε
m while the set of all interfaces

between fibers and matrix is Iε. Accordingly, one has

Ω = Ωε
f ∪ Iε ∪ Ωε

m. (4)

The fibers are perfectly bonded in a part Ωc of Ω and debonded in the complementary part Ωd, see
Fig. 1. Both parts contain a large number of fibers and will be considered as given and independent
of ε. Moreover we assume that in Ωd the fibers remain in contact with the matrix but can slip
without friction. Accordingly, denoting by

Iεc = Ωc ∩ Iε, Iεd = Ωd ∩ Iε (5)
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respectively the bonded and debonded interfaces, the interface conditions in terms of the displace-
ment and the stress fields read as{

[[u]] = 0, [[σ]]n = 0 on Iεc
[[u]]·n = 0, [[σ]]n·n = 0, σn∧n = 0 on Iεd

. (6)

In (6), n is the outer normal to the fiber at an interface and the brackets denote the jump of the
involved field across the interface. The conditions on Iεc mean that the displacement and the vector
stress are continuous, the conditions on Iεd mean that the normal displacement and the normal
stress are continuous while the shear stress vanishes.

Remark 1. In the above conditions on the interface between the fibers and the matrix after debond-
ing, we assume that contact always occurs without friction. That allows us to treat linear elastic
problems and then the analysis is simplified. It would be easy to follow the same procedure by as-
suming that the fibers are no more in contact with the matrix after debonding. More difficult is to
consider unilateral frictionless contact conditions where the contact conditions depend on the sign
of the normal stress. That leads to non linear (but still elastic) problems where the superposition
principle can no more be used. Much more difficult is the case where the contact occurs with fric-
tion. Then the effective behavior is no more elastic and one must introduce internal variables. All
these more elaborated cases are outside the scope of this didactic paper and will be the subject of
future works.

Ωc

Ωd
Γc

Γs

F

g

y1

y2

Vf

Vm

y1

y2

Vf

Vm

I

Figure 1. The composite structure and the two periodic cells.

The body is submitted to a specific body force density g (independent of ε). The part Γc of the
boundary ∂Ω is fixed while the complementary part Γs = ∂Ω \ Γc is submitted to a surface force
density F (independent of ε).
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We are now in a position to set the problem which governs the response of the body at equilibrium
under the given loading. For a fixed ε > 0, the problem consists in finding a displacement field uε

and a stress field σε, such that

Equilibrium :

{
divσε + ρfg = 0 in Ωε

f

divσε + ρmg = 0 in Ωε
m

(7)

Constitutive relations :

{
σε = λfdiv uε δ + 2µfε(u

ε) in Ωε
f

σε = λmdiv uε δ + 2µmε(u
ε) in Ωε

m

(8)

Compatibility : 2ε(uε) = ∇uε +∇Tuε in Ωε
f ∪ Ωε

m (9)

Boundary conditions :

{
uε = 0 on Γc

σεn = F on Γs
(10)

Interface conditions :

{
[[uε]] = 0, [[σε]]n = 0 on Iεc
[[uεn]] = 0, σεn = σεnnn, [[σεnn]] = 0 on Iεd

(11)

In (8), δ is the identity tensor with δij = 1 when i = j and δij = 0 when i 6= j. This set of equations
constitutes a linear boundary value problem which can be written in a variational form as follows.

Let Cε be the linear space of kinematically admissible displacement fields, i.e.

Cε = {v ∈ H1(Ω \ Iεd;R3) : [[v]]·n = 0 on Iεd , v = 0 on Γc}, (12)

let fε be the continuous linear form associated with the applied forces, i.e.

fε(v) =

∫
Ωεf

ρfg·vdx+

∫
Ωεm

ρmg·vdx+

∫
Γs

F·vdΓ for v ∈ Cε (13)

and let aε be the bilinear continuous form associated with the elastic energy, i.e.

aε(u,v) =

∫
Ωεf

Afε(u)·ε(v)dx+

∫
Ωεm

Amε(u)·ε(v)dx. (14)

In (14), Af and Am stand for the fourth order elasticity tensors of the fibers and the matrix
respectively, i.e.

Af,mijkl = λf,mδijδkl + µf,m(δikδjl + δilδjk). (15)

Then uε must satisfy the following variational problem

Find uε ∈ Cε such that aε(uε,v) = fε(v) ∀v ∈ Cε, (16)

and σε is the associated stress field given in terms of the strain field by (8). The existence and the
uniqueness of uε solution of (16) is guaranteed provided that the boundary Γc is such that there
does not exist any (non-zero) rigid displacement which is kinematically admissible. Specifically,
let us denote by Rε the set of displacement fields which are both kinematically admissible and
corresponding to a null strain field, i.e.

Rε = {v ∈ Cε : ε(v) = 0 in Ω \ Iεd}. (17)

By standard arguments, we have
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Proposition 1. Under the condition that Rε = {0} and that the density of forces g and F are
smooth enough, the variational problem (16) admits a unique solution uε.

The necessary and sufficient condition above for the existence and the uniqueness of the solution
depends in general both on Γc and Ωd. However, the existence of a solution is guaranteed if
Rε = {0}, that is, if no rigid displacements are allowed. We will assume henceforth that this
condition is satisfied.

3. Asymptotic analysis

This section is devoted to the behavior of uε, unique solution of (16), when ε goes to 0. For that
we use a formal double scale asymptotic method like in [1, 2, 3, 10, 20]. The goal is not to obtain
rigorous results of convergence, but simply to formally construct the “limit” problem.

3.1. The assumed asymptotic expansion of uε. By virtue of the unidirectional character of
the fibers, one can choose a two-dimensional domain V as the rescaled periodic cell characterizing
the spatial distribution of the fibers, see [6, 17, 20]. The fiber part and the matrix part of this cell
are respectively the open sets Vf and Vm of the (y1, y2) plane, while the interface is I = ∂Vf ∩∂Vm.
Accordingly, one has

V = Vf ∪ I ∪Vm. (18)

Moreover the rigidity tensor and the mass density fields can be read as

Aε(x) = A
(x′

ε

)
with A(y) =

{
Af if y ∈ Vf

Am if y ∈ Vm
, (19)

ρε(x) = ρ
(x′

ε

)
with ρ(y) =

{
ρf if y ∈ Vf

ρm if y ∈ Vm
. (20)

This allows us to write Problem (16) in the following equivalent form

Find uε ∈ Cε such that

∫
Ω\Iεd

Aεε(uε)·ε(v)dx =

∫
Ω
ρεg·vdx+

∫
Γs

F·vdΓ ∀v ∈ Cε, (21)

Following the classical two-scale procedure in homogenization theory of periodic media [2, 3], we
assume that uε can be expanded as follows:

uε(x) =
∞∑
i=0

εiui
(
x,

x′

ε

)
(22)

where the fields ui are defined in Ω× V and V-periodic (with respect to the microscopic variable
y). As far as their regularity with respect to y is concerned, one can discriminate according to
x belongs to Ωc or Ωd. Specifically, if x ∈ Ωc, then ui(x,·) must be continuous across I, while if
x ∈ Ωd, then uin(x,·) only must be continuous across I.
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Using the chain rule, the strain field admits the following expansion

ε(uε)(x) =
∞∑

i=−1

εi
(
εy(ui+1)

(
x,

x′

ε

)
+ εx(ui)

(
x,

x′

ε

))
, (23)

where εx(v) and εy(v) denote respectively the symmetrized gradient of the displacement field v
with respect to the macroscopic and microscopic coordinates, cf (2)-(3).

3.2. Equations at various orders. Let us choose a two-scale smooth displacement field vε(x) =
v(x,x′/ε), V-periodic and such that v(x,y) = 0 when x ∈ Γc, as an element of Cε and let us insert
it in (21) as the test field. After inserting the asymptotic expansion of uε into (21) and identifying
the terms at the same power of ε, one obtains a sequence of variational problems for the ui’s the
first three of which are given below. (One formally replaces simple integrals over Ω by multiple
integrals over Ω×V in the spirit of the double-scale approach [2].)

(1) At order ε−2 :

0 =

∫
Ωc

∫
V
Aεy(u0)·εy(v)dydx+

∫
Ωd

∫
V\I

Aεy(u0)·εy(v)dydx. (24)

(2) At order ε−1 :

0 =

∫
Ωc

∫
V
Aεy(u0)·εx(v)dydx+

∫
Ωd

∫
V\I

Aεy(u0)·εx(v)dydx

+

∫
Ωc

∫
V
A
(
εy(u1) + εx(u0)

)
·εy(v)dydx+

∫
Ωd

∫
V\I

A
(
εy(u1) + εx(u0)

)
·εy(v)dydx. (25)

(3) At order ε0:∫
Ωc

∫
V
A
(
εy(u2) + εx(u1)

)
·εy(v)dydx+

∫
Ωd

∫
V\I

A
(
εy(u2) + εx(u1)

)
·εy(v)dydx

+

∫
Ωc

∫
V
A
(
εy(u1) + εx(u0)

)
·εx(v)dydx+

∫
Ωd

∫
V\I

A
(
εy(u1) + εx(u0)

)
·εx(v)dydx

=

∫
Ω

∫
V
ρg·vdydx+

∫
Γs

∫
V

F·vdydΓ. (26)

In (24)–(26), A and ρ stand for the V-periodic functions of y introduced in (19) and (20). Moreover,
these variational equalities must hold for any smooth v(x,y) which vanishes when x ∈ Γc as a
function of x, which is V-periodic in y, continuous across I when x ∈ Ωc and whose normal
component vn is continuous across I when x ∈ Ωd.

3.3. The form of u0. By choosing v = u0 in (24) (which is licit) and owing to the positivity of
the elasticity tensors Af and Am, one deduces that

εy(u0) = 0 in Ωc×V and in Ωd×(V \ I).
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Let us discriminate the case when x ∈ Ωc and that when x ∈ Ωd.

(1) When x ∈ Ωc, since ε(u0)(x,y) = 0 for all y ∈ V , u0 must be a rigid displacement with
respect to y. Recalling that u0(x,y) ∈ R3 and that y = (y1, y2), using (3) leads to

u0(x,y) = u(x) + ω(x)e3∧y, ∀y ∈ V,

where u(x) ∈ R3 and ω(x) ∈ R. (Note that the rotations of axis e1 and e2 are automatically
eliminated because u0 is independent of y3.) But since u0 must be V-periodic, one gets
also ω(x) = 0. Finally, we have obtained that

For x ∈ Ωc : u0(x,y) = u(x), ∀y ∈ V. (27)

This result is the classical property of the homogenization theory which stands that the
leading term of the asymptotic displacement field expansion does not depend on the mi-
croscopic coordinates. However, this property holds true only because the fiber is perfectly
bonded to the matrix as we will see hereafter.

(2) When x ∈ Ωd, one has separately εy(u0)(x,·) = 0 in Vf and in Vm. Therefore, u0(x,y)
must be a rigid displacement field with respect to y in the matrix part Vm and a priori
another rigid displacement field in the fiber part Vf of the cell V. Accordingly, u0(x,y)
must read as

u0(x,y) =

{
um(x) + ωm(x)e3∧y, ∀y ∈ Vm

uf (x) + ωf (x)e3∧y, ∀y ∈ Vf
,

where um(x) and uf (x) are in R3, ωm(x) and ωf (x) are in R. Since u0 must be V-periodic,
one still gets ωm(x) = 0. Let us write now the continuity of u0

n across I. We can take the
center of the (circular) fiber cross-section as the origin of the (y1, y2) plane without loss of
generality. Accordingly, n = y/R = cos θe1 + sin θe2 for y ∈ I. Therefore, [[u0]]·n = 0 on I
reads as

cos θ(um(x)− uf (x))·e1 + sin θ(um(x)− uf (x))·e2 = 0, ∀θ ∈ [0, 2π]

from which one immediately deduces that uf (x) = um(x) + δ(x)e3. Finally, we have
obtained that

For x ∈ Ωd : u0(x,y) =

{
u(x), ∀y ∈ Vm,

u(x) + δ(x)e3 + ω(x)e3∧y, ∀y ∈ Vf
. (28)

For future reference, let us denote by Rd the set of the V-periodic displacement fields w
such that εy(w) = 0 in V \ I and [[wn]] = 0 on I, i.e.

Rd =

{
w : w(y) =

{
a for y ∈ Vm

a + δe3 + ωe3∧y for y ∈ Vf
,a ∈ R3, δ ∈ R, ω ∈ R

}
. (29)

Thus u0(x,·) ∈ Rd when x ∈ Ωd. This result differs from the usual property of the homoge-
nization theory. Indeed, because of the debonding of the fiber from the matrix, the leading
term of the asymptotic displacement field expansion depends here on the microscopic coor-
dinates. Moreover two new macroscopic scalar fields appear in the effective kinematics of
the composite. Specifically, the vector field u represents the macroscopic displacement of
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the matrix while the scalar fields δ and ω represent the longitudinal sliding and the relative
rotation of the fibers with respect to the matrix. We have obtained a generalized continuous
medium.

Let us summarize all results obtained in this subsection by the following

Proposition 2. The first order displacement u0(x,y) takes two different forms according to x is
in Ωc or in Ωd. Specifically,

For x ∈ Ωc : u0(x,y) = u(x), ∀y ∈ V,

For x ∈ Ωd : u0(x,y) =

{
u(x), ∀y ∈ Vm,

u(x) + δ(x)e3 + ω(x)e3∧y, ∀y ∈ Vf
.

Therefore, the effective kinematic behavior in the debonded part of the composite body is that of a
generalized continuous medium where appear the sliding and the rotation of the fibers with respect
to the matrix.

Remark 2. The macroscopic displacement fields u, δ and ω can be defined in the whole domain Ω
but δ and ω must vanish in Ωc. Moreover, those fields have to be sufficiently smooth in order that
the effective elastic energy be finite. Their smoothness will be specified once the effective behavior
will be obtained. In the same way, the boundary conditions that u, δ and ω have to satisfy on Γc
will be specified later.

3.4. The elementary cell problems. Inserting (27) and (28) into (25) leads to

0 =

∫
Ωc

∫
V
A
(
εy(u1) + ε(u)

)
·εy(v)dydx

+

∫
Ωd

∫
V\I

A
(
εy(u1) + ε(u) + ε(δe3) + εx(ωe3∧y)

)
·εy(v)dydx. (30)

Assuming at this stage that the fields u, δ and ω are known, (30) will allow us to determine u1 in
terms of the gradient of u, δ and ω. For that, we have still to discriminate between the domains
Ωc and Ωd.

(1) Let us first choose v such that v(x,y) = ϕ(x)w(y) with ϕ ∈ D(Ωc) (the set of indefinitely
differentiable functions with compact support in Ωc) and w ∈ Hc, where Hc denotes the
Hilbert space of vector fields which are V-periodic and whose components are in H1(V)),
i.e.

Hc = {w ∈ H1(V;R3) : w is V − periodic}.
Then (30) becomes: at almost all x ∈ Ωc and for all w ∈ Hc,∫

V
A(y)εy(u1)(x,y)·ε(w)(y)dy + ε(u)(x)·

∫
V
A(y)ε(w)(y)dy = 0.

Hence, by linearity, u1 can read as

For x ∈ Ωc : u1
k(x,y) = ε(u)ij(x)χijk (y) + ūk(x), ∀y ∈ V, (31)
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where, for i, j ∈ {1, 2, 3}, the vector fields χij are the elements of Hc solutions of the
so-called cell problems∫

V
Apqrsε(χ

ij)pqε(w)rsdy +

∫
V
Aijrsε(w)rsdy = 0, ∀w ∈ Hc. (32)

In (31), ū(x) remains undetermined at this stage.
(2) Let us now choose v such that v(x,y) = ϕ(x)w(y) with ϕ ∈ D(Ωd) and w ∈ Hd, where

Hd = {w ∈ H1(V\I;R3) : w is V − periodic, [[wn]] = 0 on I}.
Then (30) becomes: at almost all x ∈ Ωd and for all w ∈ Hd,

0 =

∫
V\I

A(y)εy(u1)(x,y)·ε(w)(y)dy

+ ε(u)(x)·
∫
V\I

A(y)ε(w)(y)dy + ε(δe3)(x)·
∫
Vf

Afε(w)(y)dy

+ ε(ωe2)(x)·
∫
Vf

y1A
fε(w)(y)dy − ε(ωe1)(x)·

∫
Vf

y2A
fε(w)(y)dy.

Hence, by linearity, u1 can read as

For x ∈ Ωd : u1(x,y) = ε(u)ij(x)ξij(y)+
∂δ

∂xi
(x)Di(y)+

∂ω

∂xi
(x)Wi(y)+ū(x,y), ∀y ∈ V\I, (33)

where, for i, j ∈ {1, 2, 3}, the vector fields ξij , Di and Wi are the elements of Hd solutions
of the following new cell problems:∫

V\I
Apqrsε(ξ

ij)pqε(w)rsdy +

∫
V\I

Aijrsε(w)rsdy = 0, ∀w ∈ Hd, (34)∫
V\I

Apqrsε(D
i)pqε(w)rsdy +

∫
Vf

Af3irsε(w)rsdy = 0, ∀w ∈ Hd, (35)∫
V\I

Apqrsε(W
i)pqε(w)rsdy +

∫
Vf

(e3∧y)·eq Afiqrsε(w)rsdy = 0, ∀w ∈ Hd. (36)

In (33), ū(x,·) is an element of Rd which remains undetermined at this stage.

Let us study each of these cell problems.

• Each χij is uniquely determined up to a translation which can be fixed by imposing that∫
V χ

ijdy = 0. It corresponds to the microscopic response of the representative volume

element submitted to the macroscopic strain tensor ei ⊗s ej . In other words, the χij are
given by the classical microscopic problems appearing in the homogenization theory [2, 3].
By virtue of the symmetries of the rigidity tensors Af and Am, one has χij = χji and hence
there exists exactly six independent cell problems. Since the periodicity is two-dimensional
and since the fibers and the matrix are isotropic, all the χij enjoy some general properties.
For instance,

χαβ3 = χ33
3 = χα3

β = 0, ∀α, β ∈ {1, 2}.
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Additional symmetry properties appear when the cell itself enjoys additional symmetries
[17]. The practical determination of the χij requires some numerical computation.
• All preceding comments on the χij remain true for the ξij (except that ξij is uniquely

determined up to an element of Rd). Note however that ξij differs (in general) from χij

because of the possibility of a tangential discontinuity of ξij on I. A consequence of this
additional degree of freedom is that the shear stress associated with ξij necessarily vanish
on I while it is not in general the case for χij .
• The fields D1 and D2 can be obtained in a closed form. Specifically, one gets

For α ∈ {1, 2} : Dα(y) =

{
0 ∀y ∈ Vm

−yαe3 ∀y ∈ Vf
+ an arbitrary element of Rd. (37)

The verification is straightforward and left to the reader. On the other hand, D3 cannot
be obtained in a closed form (except if λf = 0) but can be simplified. Indeed, like for the

ξij , by virtue of the isotropy of the fibers and the matrix, one gets that D3
3 = 0 and finally

the problem for D3 can read as∫
V\I

λε(D3)ααε(w)ββ + 2µε(D3)αβε(w)αβdy +

∫
Vf

λfε(w)ββdy = 0, ∀w ∈ Hd. (38)

It corresponds to the response of the cell when the fiber is submitted to a macroscopic
longitudinal stretching e3⊗e3 while the matrix is macroscopically unstrained. That response
is not trivial because of the contact between the fiber and the matrix. This contact implies
the existence of a normal stress σnn at the interface I which induces a deformation of the
matrix.
• All the fields Wi can be obtained in a closed form. Let us first show that

W3 ∈ Rd. (39)

Indeed, the integral over Vf in (36) for i = 3 vanishes as it is proved below:∫
Vf

(e3∧y)·eβAf3βklε(w)kldy =

∫
Vf

µf (e3∧y)·eβ
∂w3

∂yβ
dy

= −
∫
Vf

µf (e3∧eβ)·eβw3dy +

∫
I
µf (e3∧y)·nw3ds

= 0.

The last equality above is due to the fact that n = y/R on I. Inserting this property and
taking w = W3 in (36) for i = 3 lead to∫

V\I
Aε(W3)·ε(W3)dy = 0.

Therefore ε(W3) = 0 which is the desired result. Since the undetermined element of Rd
does not play any role, one can consider that W3 = 0. Note that this property holds true
because the fiber has a circular section and is isotropic.
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Let us now verify that W1 and W2 are given by

For α ∈ {1, 2} : Wα(y) =

{
0 ∀y ∈ Vm

−yαe3∧y ∀y ∈ Vf
+ an arbitrary element of Rd. (40)

Let us first remark that [[Wα]]·n = 0 on I because (e3∧y)·n = 0. Hence Wα ∈ Hd. Let us
now calculate the strain field ε(Wα) for α ∈ {1, 2}:

2ε(Wα)pq = −(e3∧y)·epδαq − (e3∧y)·eqδαp, ∀p, q ∈ {1, 2, 3}.

Therefore, one gets

Afpqrsε(W
α)pq = −(e3∧y)·eqAfαqrs

from which one easily deduces that (36) is satisfied for i = α.

3.5. The form of σ0. The form of the leading term σ0 of the stress field is obtained via the
constitutive relations (8) and the strain expansion (23). Specifically, one gets

σ0(x,y) = A(y)
(
εx(u0)(x,y) + εy(u1)(x,y)

)
. (41)

Let us discriminate once more between the domains Ωc and Ωd to obtain the stress field σ0 in
terms of the generalized strain fields ε(u), ∇δ, ∇ω and of the microscopic strain fields associated
with the solutions of the cell problems.

(1) For x ∈ Ωc. By virtue of (27) and (31), one gets

σ0(x,y) = A(y)
(
ε(u)(x) + ε(u)ij(x)ε(χij)(y)

)
(42)

which is the usual expression of the stress distribution given by the homogenization theory.
Of course, all cell problems give a contribution to that stress distribution.

(2) For x ∈ Ωd. By virtue of (28) and (33), one gets for all y ∈ V \ I

σ0(x,y) = A(y)
(
ε(u)(x) + ε(u)ij(x)ε(ξij)(y)

)
+

∂δ

∂xi
(x)Si(y) +

∂ω

∂xi
(x)Ti(y) (43)

with

Sirs(y) =

{
Ampqrs ε(D

i)pq(y) if y ∈ Vm

Afpqrs ε(Di)pq(y) + Af3irs if y ∈ Vf
(44)

and

T irs(y) =

{
Ampqrs ε(W

i)pq(y) if y ∈ Vm

Afpqrs ε(Wi)pq(y) + Afiqrs (e3∧y)·eq if y ∈ Vf
. (45)

Moreover, (37) gives Sα = 0 and (40) gives Tα = 0 for α ∈ {1, 2}. In other words the
cell problems associated with ∂δ/∂xα or with ∂ω/∂xα induce no stress. Since W3 = 0, T3

reads as

T3(y) =

{
0 if y ∈ Vm

2µf (−y2e3 ⊗s e1 + y1e3 ⊗s e2) if y ∈ Vf
. (46)
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Note that this stress distribution corresponds to that given by a torsion of a cylinder with
a circular cross-section. The only non-zero component is the orthoradial one σ3θ which is
proportional to r, the distance to the axis. Moreover there is no interaction with the matrix.

On the other hand, S3 cannot be obtained in a closed form, but can be simplified by
using (38):

S3
αβ(y) =

{
λmεγγ(D3)(y)δαβ + 2µmεαβ(D3)(y) if y ∈ Vm

λf

(
1 + εγγ(D3)(y)

)
δαβ + 2µfεαβ(D3)(y) if y ∈ Vf

, (47)

S3
33(y) =

{
λmεγγ(D3)(y) if y ∈ Vm

λf

(
1 + εγγ(D3)(y)

)
+ 2µf if y ∈ Vf

, (48)

and S3
α3 = 0 in Vf ∪Vm. As it was already noted, there is an interaction between the fiber

and the matrix because of the contact assumption.
Finally, σ0(x,·) can read in V \ I as

σ0(x,y) = A(y)
(
ε(u)(x) + ε(u)ij(x)ε(ξij)(y)

)
+

∂δ

∂x3
(x)S3(y) +

∂ω

∂x3
(x)T3(y) (49)

where appears the contribution of the longitudinal stretching and the torsion of the fibers.

3.6. The macroscopic problem. To obtain the problem which gives the macroscopic fields u, δ
and ω, we choose a displacement field v in (26) of the same type as u0, i.e.such that εy(v) = 0.
Specifically, one sets

v∗(x,y) =

{
u∗(x) in (Ωc × V ) ∪ (Ωd ×Vm)

u∗(x) + δ∗(x)e3 + ω∗(x)e3∧y in Ωd ×Vf
(50)

and inserts such a v∗ in (26). Then the terms in εy(u2) + εx(u1) disappear because εy(v) = 0. By
virtue of (41), (26) becomes:∫

Ω

∫
V
σ0(x,y)·ε(u∗)(x)dydx+

∫
Ωd

∫
Vf

σ0(x,y)·
(
ε(δ∗e3)(x) + ε(ω∗e3∧eα)(x)yα

)
dydx

=

∫
Ω

∫
V
ρ(y)g(x)·u∗(x)dydx+

∫
Ωd

∫
Vf

ρf
(
g3(x)δ∗(x) + (e3∧y)·g(x)ω∗(x)

)
dydx

+

∫
Γs

∫
V

F(x)·u∗(x)dydΓ +

∫
Γs

∫
Vf

(
F3(x)δ∗(x) + (e3∧y)·F(x)ω∗(x)

)
dydΓ. (51)

Let us denote by 〈ϕ〉 the mean value of ϕ over the cell V, i.e.

〈ϕ〉 =
1

|V|

∫
V
ϕ(y)dy, 〈ϕ〉 (x) =

1

|V|

∫
V
ϕ(x,y)dy, (52)

and by 〈ϕ〉f (resp. 〈ϕ〉m) the mean value over the whole cell V of the field ϕ only defined in or

restricted to Vf (resp. Vm), i.e.

〈ϕ〉f,m =
1

|V|

∫
Vf,m

ϕ(y)dy, 〈ϕ〉f,m (x) =
1

|V|

∫
Vf,m

ϕ(x,y)dy. (53)
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Recalling that the center of the fiber is taken as the origin of the y-coordinates, one has
∫
Vf

ydy = 0.

Accordingly, after easy calculations, (51) can read as∫
Ωc

〈
σ0
〉
·ε(u∗)dx+

∫
Ωd

(〈
σ0
〉
·ε(u∗) +

〈
σ0
〉
f

e3 ·∇δ∗ +
〈
yασ

0
〉
f
·ε(ω∗e3∧eα)

)
dx

=

∫
Ωc

〈ρ〉g·u∗dx+

∫
Ωd

(
〈ρ〉g·u∗ + ρfVf g3δ

∗
)
dx+

∫
Γs

(
F·u∗ + VfF3δ

∗)dΓ, (54)

where Vf denotes the volume fraction of the fibers, i.e.

Vf =
|Vf |
|V|

, Vm = 1− Vf .

Remark 3. Let us note that ω∗ does not appear in the right hand side of (54). This is due to
the assumption made on the applied forces, specifically that both the specific bulk forces g and the
surface forces F do not depend on y, and on the choice of the center of the fiber as the origin of
the y coordinates.

Let us examine each term of the left hand side of (54).

• For x ∈ Ωc, by virtue of (42),
〈
σ0
〉

(x) reads as〈
σ0
〉

(x) = Acε(u)(x), (55)

where Ac denotes the (classical) homogenized stiffness tensor of the (perfectly bonded)
composite, i.e.

Acijkl =
〈
Aijkl + Aijpqε(χ

kl)pq

〉
=
〈
Aijkl − Aε(χij)·ε(χkl)

〉
. (56)

The last equality above is obtained by using (32) with w = χkl. It allows us to check that
Ac has the major symmetry, Acijkl = Acklij .

• For x ∈ Ωd, by virtue of (49),
〈
σ0
〉

(x) reads as〈
σ0
〉

(x) = Adε(u)(x) +
〈
S3
〉 ∂δ
∂x3

(x) +
〈
T3
〉 ∂ω
∂x3

(x), (57)

where Ad denotes the homogenized stiffness tensor of the debonded composite, i.e.

Adijkl =
〈
Aijkl + Aijpqε(ξ

kl)pq

〉
=
〈
Aijkl − Aε(ξij)·ε(ξkl)

〉
. (58)

The last equality above is obtained by using (34) with w = ξkl and implies that Adijkl = Adklij
for all i, j, k, l. The tensor Ad will be compared to the tensor Ac in the next section. Then,
using (46) and the fact that 〈y〉f = 0, one gets

〈
T3
〉

= 0 and finally〈
σ0
〉

(x) = Adε(u)(x) +
〈
S3
〉 ∂δ
∂x3

(x). (59)
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• For x ∈ Ωd, using (49), the component i of
〈
σ0
〉
f

e3(x) reads as〈
σ0

3i

〉
f

(x) =
〈
Af3ikl + Af3irsε(ξ

kl)rs

〉
f
ε(u)kl(x) +

〈
S3

3i

〉
f

∂δ

∂x3
(x) +

〈
T 3

3i

〉
f

∂ω

∂x3
(x).

Let us first show that 〈
Af3ikl + Af3irsε(ξ

kl)rs

〉
f

=
〈
S3
kl

〉
δi3. (60)

Considering (35) with w = ξkl gives〈
Aε(Di)·ε(ξkl)

〉
+
〈
Af3irsε(ξ

kl)rs

〉
f

= 0.

Considering (34) with kl instead of ij and setting w = Di give〈
Aε(Di)·ε(ξkl)

〉
+
〈
Aklrsε(D

i)rs
〉

= 0.

Therefore
〈
Af3irsε(ξ

kl)rs

〉
f

=
〈
Aklrsε(D

i)rs
〉

and hence〈
Af3ikl + Af3irsε(ξ

kl)rs

〉
f

=
〈
Aklrsε(D

i)rs
〉

+
〈
Af3ikl

〉
f

=
〈
Sikl
〉
,

where the last equality is a direct consequence of the definition (44) of Si. Since Sα = 0,
one gets (60).

Recalling now that S3
3α = 0 and

〈
T3
〉
f

=
〈
T3
〉

= 0, one finally obtains〈
σ0
〉
f

e3(x) =
〈
S3
〉
·ε(u)(x)e3 +

〈
S3

33

〉
f

∂δ

∂x3
(x)e3. (61)

• The last term in the left hand side of (54) can also read as〈
yασ

0
〉
f

(x)·ε(ω∗e3∧eα)(x) =
〈
(e3∧y)·eqσ0

qi

〉
f

(x)
∂ω∗

∂xi
(x).

Using (49), one gets〈
(e3∧y)·eqσ0

qi

〉
f

(x) =
〈

(e3∧y)·eq
(
Afqikl + Afqirsε(ξ

kl)rs

)〉
f
ε(u)kl(x)

+
〈
(e3∧y)·eqS3

qi

〉
f

∂δ

∂x3
(x) +

〈
(e3∧y)·eqT 3

qi

〉
f

∂ω

∂x3
(x).

Let us calculate the three effective coefficients appearing in the right hand side above.

(1) Let us show that
〈

(e3∧y)·eq
(
Afqikl + Afqirsε(ξ

kl)rs

)〉
f

= 0. First,〈
(e3∧y)·eqAfqikl

〉
f

=
(
e3∧ 〈y〉f

)
·eqAfqikl = 0.

Then, recalling that W3 = 0 and using (36) with i = 3 and w = ξkl give〈
(e3∧y)·eqAfqirsε(ξ

kl)rs

〉
f

= 0

and hence the desired result.
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(2) Let us show that
〈

(e3∧y)·eqS3
qi

〉
f

= 0. By virtue of (44), one has

〈
(e3∧y)·eqS3

qi

〉
f

=
〈

(e3∧y)·eq
(
Afqi33 + Afqirs ε(D

3)rs

)〉
f
.

Therefore, one can follow the same procedure as for the first coefficient. First,〈
(e3∧y)·eqAfqi33

〉
f

= 0.

Then, using (36) with i = 3 and w = D3 give〈
(e3∧y)·eqAfqirsε(D

3)rs

〉
f

= 0

and hence the desired result.
(3) Using (46), a direct calculation gives

〈
(e3∧y)·eqT 3

qi

〉
f

= π
2µfR

4δi3.

Therefore, one finally obtains

〈
(e3∧y)·eqσ0

qi

〉
f

(x) =
πR4µf
2|V|

∂ω

∂x3
(x)δi3. (62)

Inserting (55), (59), (61) and (62) into (54), the variational equation (54) finally reads as∫
Ωc

Acε(u)·ε(u∗)dx+

∫
Ωd

πR4µf
2|V|

∂ω

∂x3

∂ω∗

∂x3
dx

+

∫
Ωd

(
Adε(u)·ε(u∗) +

〈
S3
〉
·
(
ε(u)

∂δ∗

∂x3
+

∂δ

∂x3
ε(u∗)

)
+
〈
S3

33

〉
f

∂δ

∂x3

∂δ∗

∂x3

)
dx

=

∫
Ω
〈ρ〉g·u∗dx+

∫
Ωd

ρfVf g3δ
∗dx+

∫
Γs

(
F·u∗ + VfF3δ

∗)dΓ. (63)

The equality (63) must hold for all (u∗, δ∗, ω∗) such that the associated displacement field v∗ given
by (50) be admissible. These admissibility conditions will be specified in the next subsection.

We can conclude this section by the following

Proposition 3. The macroscopic displacement fields (u, δ, ω) are a stationary point of the following
potential energy P0:

P0(u∗, δ∗, ω∗) =

∫
Ωc

1

2
Acε(u∗)·ε(u∗)dx+

∫
Ωd

T

2

∂ω∗

∂x3

∂ω∗

∂x3
dx

+

∫
Ωd

(
1

2
Adε(u∗)·ε(u∗) + Σ·ε(u∗)∂δ

∗

∂x3
+
K

2

∂δ∗

∂x3

∂δ∗

∂x3

)
dx

−
∫

Ω
〈ρ〉g·u∗dx−

∫
Ωd

ρfVf g3δ
∗dx−

∫
Γs

(
F·u∗ + VfF3δ

∗)dΓ, (64)
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where the effective stiffness tensors Ac and Ad, the effective stress tensor Σ and the effective rigidity
coefficients K and T are obtained by solving the different cell problems. Specifically, Ac is given by

(56), Ad by (58), Σ =
〈
S3
〉

and K =
〈
S3

33

〉
f

where S3 is given by (47)-(48) and T =
πR4µf
2|V|

.

Proof. It suffices to remark that (63) is equivalent to

d

dh
P0(u + hu∗, δ + hδ∗, ω + hω∗)

∣∣
h=0

= 0.

Hence, P0 can be seen as the effective potential energy of the composite body. �

4. Discussion and examples

4.1. Properties of the effective coefficients. The general properties of the effective coefficients
are given by the following

Proposition 4. The effective rigidity tensor Ac of the perfectly bonded composite satisfies the
following minimization problem:

For ε∗ ∈M3
s, Acε∗ ·ε∗ = min

w∈Hc
Ec(w), (65)

where

Ec(w) =
〈
A
(
ε∗ + ε(w)

)
·
(
ε∗ + ε(w)

)〉
.

The effective rigidity tensor Ad, the effective tensor Σ and the effective rigidity coefficient K of the
debonded composite satisfy the following minimization problem:

For ε∗ ∈M3
s and d∗ ∈ R, Adε∗ ·ε∗ + 2d∗Σ·ε∗ +Kd∗2 = min

w∈Hd
Ed(w) (66)

where

Ed(w) =
〈
Am
(
ε∗ + ε(w)

)
·
(
ε∗ + ε(w)

)〉
m

+
〈
Af
(
ε∗ + d∗e3⊗e3 + ε(w)

)
·
(
ε∗ + d∗e3⊗e3 + ε(w)

)〉
f
.

Therefore, there exist two positive constants αc > 0 and αd > 0 such that for all ε∗ ∈ M3
s and all

d∗ ∈ R:

Acε∗ ·ε∗ ≥ αcε∗ ·ε∗, Adε∗ ·ε∗ + 2d∗Σ·ε∗ +Kd∗2 ≥ αd(ε∗ ·ε∗ + d∗2). (67)

Moreover Ac and Ad are well ordered in the sense that

Acε∗ ·ε∗ ≥ Adε∗ ·ε∗, ∀ε∗ ∈M3
s.

Proof. Let us prove the property of minimization for the debonded composite, the proof being
similar for the perfectly bonded composite. Let w∗ be a minimizer of Ed over Hd, w∗ is unique up
to an element of Rd and satisfies the following variational equation:〈

Am
(
ε∗ + ε(w∗)

)
·ε(w)

〉
m

+
〈
Af
(
ε∗ + d∗e3⊗e3 + ε(w∗)

)
·ε(w)

〉
f

= 0, ∀w ∈ Hd. (68)
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By linearity and using (34)-(35), one deduces that w∗(y) = ε∗ijξ
ij(y) + d∗D3(y). Moreover, using

(68) with w = w∗ yields

Ed(w∗) = 〈Amε∗ ·ε∗ − Amε(w∗)·ε(w∗)〉m
+

〈
Af
(
ε∗ + d∗e3⊗e3

)
·
(
ε∗ + d∗e3⊗e3

)
− Afε(w∗)·ε(w∗)

〉
f

= 〈Aε∗ ·ε∗ − Aε(w∗)·ε(w∗)〉+ 2VfA
f
33ijε

∗
ijd
∗ + VfA

f
3333d

∗2

=
〈
Aijkl − Aε(ξij)·ε(ξkl)

〉
ε∗ijε

∗
kl + 2

(
VfA

f
33ij −

〈
Aε(ξij)·ε(D3)

〉)
ε∗ijd

∗

+
(
VfA

f
3333 −

〈
Aε(D3)·ε(D3)

〉 )
d∗2.

Using (34) with w = D3, (35) with Di = w = D3 and (58), one gets

Ed(w∗) = Adε∗ ·ε∗ + 2
(
VfA

f
33ij +

〈
Aijklε(D

3)kl
〉)
ε∗ijd

∗ +
〈
Af3333 + Af33klε(D

3)kl

〉
f
d∗2.

Then it suffices to use (44) with i = 3 to obtain VfA
f
33ij +

〈
Aijklε(D

3)kl
〉

=
〈
S3
ij

〉
= Σij and〈

Af3333 + Af33klε(D
3)kl

〉
f

=
〈
S3

33

〉
f

= K. We have obtained (66).

Let us prove now the positivity of Ed(w∗). By definition and by virtue of the positivity of Am

and Af , Ed(w∗) ≥ 0. Let us show that the equality holds if and only if ε∗ = 0 and d∗ = 0. By the
expression of Ed(w∗), the equality holds if and only if

ε(w∗)(y) =

{
−ε∗ ∀y ∈ Vm

−ε∗ − d∗e3⊗e3 ∀y ∈ Vf
.

But since ε(w∗)33 = 0, one gets ε∗33 = d∗ = 0. Accordingly, ε(w∗)(y) = −ε∗ for all y ∈ V\I. But,
since w∗ is V-periodic, one finally gets ε∗ = 0. Therefore the quadratic form Adε∗·ε∗+2d∗Σ·ε∗+Kd∗2
is definite positive on M3

s × R.

To prove that Ac and Ad are well-ordered, let us take d∗ = 0. Then, by virtue of the minimization
properties, one gets

Acε∗ ·ε∗ = min
w∈Hc

〈
A
(
ε∗ + ε(w)

)
·
(
ε∗ + ε(w)

)〉
, Adε∗ ·ε∗ = min

w∈Hd

〈
A
(
ε∗ + ε(w)

)
·
(
ε∗ + ε(w)

)〉
.

Since Hc ⊂ Hd, one obtains the desired inequality Acε∗ ·ε∗ ≥ Adε∗ ·ε∗ for all ε∗ ∈M3
s. �

4.2. The relevant functional framework of the effective model. Let us discuss here what
is the relevant functional spaces so that the effective problem coming from the asymptotic analysis
is well posed. The natural framework is the set of all functions with finite energy P0. Specifically,
u∗ must belong to H1(Ω,R3) while δ∗ and ω∗ must belong to H1

L(Ωd), where

H1
L(Ωd) =

{
ϕ : ϕ = 0 in Ωc, ϕ ∈ L2(Ωd),

∂ϕ

∂x3
∈ L2(Ωd)

}
.
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Accordingly, one can define as usually the trace of u∗ on the boundary of Ω (and more generally
on any sufficiently smooth surface included in Ω̄). Therefore, the Dirichlet boundary condition
u∗ = 0 on Γc has a sense. But it is not the case for the elements of H1

L(Ωd). Indeed, since one
only controls their first derivative with respect to x3, one can define the trace of such an element ϕ
on surfaces of the type x3 = constant but not necessarily on surfaces with arbitrary orientations.
Accordingly, the definition of the boundary conditions on Γc and the continuity conditions at the
interface between Ωc and Ωd need more developed arguments which are outside the scope of the
present paper. As far as the linear part of the potential energy is concerned, the work done by the
external forces is finite provided that the density g and F are sufficiently smooth. For the work of
the specific forces, it suffices that g be in L2(Ω;R3) in order that both integrals over Ω and Ωd be
finite. The question is more delicate for F. It is sufficient that F be in L2(Γs;R3) in order that∫

Γs
F·u∗dΓ < +∞. But, the term

∫
Γs∩∂Ωd

F3δ
∗dΓ makes sense only on the part of the boundary

where either F3 = 0 or δ∗ is defined. Accordingly, we will assume that the following hypothesis
holds:

Hypothesis 1. The given density of forces are such that g ∈ L2(Ω;R3) and F ∈ L2(Γs;R3).
Moreover, on the part of Γs ∩ ∂Ωd, F3 = 0.

Finally, introducing the set of all kinematically admissible displacement fields

C0 = {(u∗, δ∗, ω∗) ∈ H1(Ω;R3)×H1
L(Ωd)

2 : u∗ = 0 on Γc}, (69)

the effective problem can be formulated as follows:

Find (u, δ, ω) ∈ C0 which minimizes P0 over C0. (70)

We are now in the position to establish the final result.

Proposition 5. Let R0 be the subset of C0 made of all displacement fields with null elastic energy,

R0 =

{
(u∗, δ∗, ω∗) ∈ C0 : ε(u∗) = 0 in Ω,

∂δ∗

∂x3
=
∂ω∗

∂x3
= 0 in Ωd

}
.

Then, if R0 = {(0, 0, 0)} and if the given forces g and F satisfy the Hypothesis 1, problem (70)
admits a unique solution.

Proof. The uniqueness is guaranteed by virtue on the assumption on R0 and on the positivity of
the elastic energy. The existence is due to the smoothness assumption on the loading and to the
positivity property (67) which ensures the coercivity. �

Remark 4. The relative rotation of the fiber ω∗ is not coupled with the macroscopic displacement
field u∗ and the sliding of the fiber δ∗ in the elastic energy. Since ω∗ does not appear in the work
of the given external forces, one immediately obtain that the solution is such that ∂ω/∂x3 = 0 in
Ωd and hence there does not exist a fiber torsional energy. But this property will no more hold true
if one changes some assumptions on the composite behavior or on the loading.
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The solution (u, δ) of the effective problem satisfies the following set of local equilibrium equations
in Ωd: 

div
(
Adε(u) +

∂δ

∂x3
Σ
)

+ 〈ρ〉g = 0

∂

∂x3

(
K
∂δ

∂x3
+ Σ·ε(u)

)
+ Vfρfg3 = 0

. (71)

These equations must be understood in the sense of distributions when the loading is not sufficiently
smooth. The first one is a vectorial equation while the second one is scalar. Both are second order
partial differential equation and they are coupled by the term which involves the effective internal
stress tensor Σ.

4.3. Case of a regular hexagonal cell. Let L be a characteristic length of the body, ` =
3−1/4

√
2L, a = `e1, b = `(e1 +

√
3e2)/2 and Vf be the disk of center 0 and radius R < `/2. Thus

V is a regular hexagon centered at 0 with area L2, see Figure 2. Since the material is isotropic, we

a

b

Vf

Vm

Vf

Vm

I
y1

y2

Figure 2. The case when the cell is a regular hexagon (left: bonded, right : debonded)

can use the results of [17] to obtain that Ac and Ad are positive transversely isotropic fourth order
tensors with axis e3. Therefore, Ac and Ad are such that: for all ε ∈M3

s,

Acε·ε = AcLε
2
33 + λcLε33εαα + λcT ε

2
αα + 2µcT εαβεαβ + 2µcLε3αε3α, (72)

Adε·ε = AdLε
2
33 + λdLε33εαα + λdT ε

2
αα + 2µdT εαβεαβ + 2µdLε3αε3α (73)

where the ten moduli satisfy the following inequalities:

AcL ≥ AdL > 0, µcT ≥ µdT > 0, µcL ≥ µdL > 0 ,

AcL(λcT + µcT ) > λcL
2, AdL(λdT + µdT ) > λdL

2
.

In the same manner, Σ is transversely isotropic and hence can read

Σ = σT (e1 ⊗ e1 + e2 ⊗ e2) + σLe3 ⊗ e3. (74)
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Let us compare the longitudinal shear moduli µcL and µdL. They are given respectively by the two
antiplane minimization cell problems

µcL = min
ϕ∈H1

#(V)
〈µ(∇ϕ+ e1)·(∇ϕ+ e1)〉 , µdL = min

ϕ∈H1
#(V\I)

〈µ(∇ϕ+ e1)·(∇ϕ+ e1)〉 . (75)

The minimizers are the non-zero components χ13
3 and ξ13

3 of χ13 and ξ13. They satisfy

0 =
〈
µ(∇χ13

3 + e1)·∇ϕ
〉
, ∀ϕ ∈ H1

#(V), 0 =
〈
µ(∇ξ13

3 + e1)·∇ϕ
〉
, ∀ϕ ∈ H1

#(V\I), (76)

where # stands for periodic. It is easy to check that ξ13
3 (y) = −y1 (+ an arbitrary constant) in

Vf . Therefore

µdL =
〈
µm(∇ξ13

3 + e1)·(∇ξ13
3 + e1)

〉
m

= min
ϕ∈H1

#(Vm)
〈µm(∇ϕ+ e1)·(∇ϕ+ e1)〉m .

In other words, the longitudinal shear modulus of the debonded composite is as if there were a hole
instead of a fiber. Accordingly, µcL and µdL satisfy the following bounds:

0 < µdL < Vmµm <
1

Vm
µm

+
Vf
µf

< µcL < Vmµm + Vfµf ,

the last two inequalities corresponding to the classical Voigt and Reuss bounds.

In the particular case where the Poisson ratio of the fibers and the matrix equal 0, then λf =
λm = 0. Moreover µf = Ef and µm = Em, Ef and Em denoting the Young modulus of the fibers
and the matrix. In such a case, one easily deduces from (32), (34) and (35) that

χ33 = ξ33 = D3 = 0.

Therefore, one gets

AcL = AdL = VmEm + VfEf , λcL = λdL = 0, σT = 0, σL = K = VfEf .

Let us remark that Ac and Ad are not strictly well ordered because AcL = AdL.

4.4. Example. Let us finish this section by an example of application. We consider a cylinder
Ω = S × (0, L) whose cross-section S is an open connected bounded subset of R2 and whose axis
e3 corresponds to the vertical. This cylinder, submitted to the uniform gravity g = −ge3, is fixed
on its section S × {L} and free on all other boundaries S × {0} and ∂S × (0, L). It is made of
a unidirectional composite the fibers of which are periodically distributed according to a regular
hexagonal lattice with axis e3. The Poisson ratio of the fibers and the matrix are equal to 0.
Accordingly, we are in the situation described at the end of the previous subsection, i.e.

Acε·ε = 〈E〉 ε2
33 + λcT ε

2
αα + 2µcT εαβεαβ + 2µcLε3αε3α

Adε·ε = 〈E〉 ε2
33 + λdT ε

2
αα + 2µdT εαβεαβ + 2µdLε3αε3α, Σ = EfVfe3 ⊗ e3, K = EfVf .

Moreover, we assume that the fibers are debonded in the part Ωd = S × (0, `) and still bonded in
the complementary part Ωc = S × (`, L) where 0 < ` < L. Accordingly, the work of the gravity
reads as

f0(u∗, δ∗) = −
∫
S×(0,L)

〈ρ〉 gu∗3dx−
∫
S×(0,`)

ρfVfgδ
∗dx
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and the conditions of admissibility for the displacement fields are

u∗ ∈ H1(S × (0, L);R3), (δ∗, ω∗) ∈ H1
L(S × (0, `))2,

u∗ = 0 on S × {L}, δ∗ = ω∗ = 0 on S × {`}.

Therefore R0 = (0, 0, 0), we are in the situation of Proposition 5 and the effective problem admits
a unique solution. Let us search the solution under the following form

u(x) = u(x3)e3, δ(x) = δ(x3), ω(x) = 0 with u(L) = 0, δ(`) = 0.

Then, the effective stress reads as

Acε(u)(x) = Adε(u)(x) = 〈E〉u′(x3)e3 ⊗ e3,

where the prime denotes the derivative with respect to x3. Inserting this form into (63), the
variational effective problem becomes

0 =

∫
S×(0,`)

((
〈E〉u′ + EfVfδ

′
)∂u∗3
∂x3

+ 〈ρ〉 gu∗3 + EfVf
(
δ′ + u′

)∂δ∗
∂x3

+ ρfVfgδ
∗
)
dx

+

∫
S×(`,L)

(
〈E〉u′∂u

∗
3

∂x3
+ 〈ρ〉 gu∗3

)
dx (77)

and the equality must hold for all admissible (u∗, δ∗). Taking first (u∗, δ∗) of the same form as the
expected solution, i.e.u∗(x) = v(x3)e3 and δ∗(x) = ϕ(x3), we obtain the following one-dimensional
variational problem for (u, δ):

0 =

∫ `

0

(
(〈E〉u′+EfVfδ

′)v′+ 〈ρ〉 gv+EfVf (δ′+u′)ϕ′+ ρfVfgϕ
)
dx3 +

∫ L

`

(
〈E〉u′v′+ 〈ρ〉 gv

)
dx3,

where the equality must hold for all v ∈ H1(0, L) such that v(L) = 0 and all ϕ ∈ H1(0, `) such that
ϕ(`) = 0. By standard arguments of Calculus of Variations, we find that u and δ are the unique
solution of the following boundary value problem

In (0, `) :

{
〈E〉u′′ + EfVfδ

′′ = 〈ρ〉 g
Ef (δ′′ + u′′) = ρfg

; In (`, L) : 〈E〉u′′ = 〈ρ〉 g; (78)

u′(0) = δ′(0) = 0; δ(`) = 0, [[u]](`) = 0, 〈E〉 [[u′]](`) = EfVfδ
′(`−); u(L) = 0. (79)

After some calculations, we eventually find

u′(x3) =


ρm
Em

gx3 if 0 < x3 < `

〈ρ〉
〈E〉

gx3 if ` < x3 < L

, u(L) = 0, δ(x3) =

(
ρf
Ef
− ρm
Em

)
g

2
(x2

3 − `2). (80)

Conversely, the reader could verify that (77) is satisfied for any admissible (u∗, δ∗) with (u, δ) given
by (80). Therefore, we have found the unique solution of the effective problem. Using (42) and (49),
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we can see the influence of the debonding on the repartition of the stresses inside the composite:

In S × (0, `) : σ0(x,y) =


Ef
〈E〉
〈ρ〉 gx3e3 ⊗ e3 in Vf

Em
〈E〉
〈ρ〉 gx3e3 ⊗ e3 in Vm

, (81)

In S × (`, L) : σ0(x,y) =

{
ρfgx3e3 ⊗ e3 in Vf

ρmgx3e3 ⊗ e3 in Vm
. (82)

5. Conclusion and Perspectives

We have shown that the effective behavior of a unidirectional composite material in the case
where the fibers are debonded but still in contact with the matrix is formally similar to a generalized
continuous medium whose kinematics contain not only the usual macroscopic displacement fields
but also two scalar fields of internal variables describing the sliding and the rotation of the fibers.
The two-scale procedure based on asymptotic expansions allowed us to formulate the effective
problem giving the response of a composite body submitted to a mechanical loading. This problem
can be formulated as the minimization of the effective potential energy of the composite body. This
effective potential energy, difference of the effective elastic energy and the effective work of the
applied forces, contains effective stiffness coefficients which are obtained by solving 12 elementary
cell problems. Five of them can be solved in a closed form, the remaining seven requiring in general
numerical computations. All problems are not standard problems of the homogenization theory.
Finally, the effective global problem leads to a system of coupled partial differential equations of
second order which involve the kinematical fields.

The procedure was developed here in the particular case where the fibers and the matrix are
linearly elastic isotropic materials with the assumption that the fibers remain in contact without
friction with the matrix. We claim that it is possible to extend this work by removing some
assumptions and enlarging the setting. For example, a first extension should be to consider pre-
stresses in the composite and hence to develop the procedure in the case of an affine stress-strain
relation. Another natural extension could be to consider more general and more realistic contact
conditions between matrix and fibers: unilateral contact without friction or cohesive forces [9],
for instance. The difficulty would be to solve non linear cell problems, and in such cases the
effective behavior would no longer be described by a finite number of coefficients. An interesting
mathematical challenge is to give a rigorous proof, by Γ-convergence for instance, that the effective
behavior is really the one proposed here. It is a real issue because, as we have shown, the additional
kinematical fields are less regular than the classical one. The consequences are that convergence
could probably be proved only if the external forces satisfy certain smoothness conditions, and that
the additional field should not satisfy arbitrary boundary conditions.
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But the most interesting challenge is to introduce a law for the debonding evolution. Indeed,
we have considered here that the domain where the fibers are debonded is given. But of course
the real question is to find how this domain evolves with the loading. If we consider a Griffith-
like assumption and suppose that debonding corresponds to an increase of the surface energy
proportional to the new surface created [7], then the problem of debonding evolution will consist
in finding when and how the potential energy is transformed into surface energy [5]. If one adopts
the global minimization principle proposed in [11], then major mathematical difficulties will occur.
Indeed, in the simplest case where the behavior of the material is described by two stiffness tensors,
the damaged and the undamaged ones, it was shown in [11] that the minimization energy problem
does not admit classical solutions but must be relaxed to consider fine mixtures of damaged and
undamaged material. In the present case the same phenomenon should probably also occur, but
because of the additional kinematical fields, its mathematical treatment should be much more
difficult.
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