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THE HOMOGENIZED BEHAVIOR OF
UNIDIRECTIONAL FIBER-REINFORCED COMPOSITE MATERIALS

IN THE CASE OF DEBONDED FIBERS

YAHYA BERREHILI AND JEAN-JACQUES MARIGO

This paper is devoted to the analysis of the homogenized behavior of unidirec-
tional composite materials once the fibers are debonded from (but still in contact
with) the matrix. This homogenized behavior is built by an asymptotic method in
the framework of the homogenization theory. The main result is that the homog-
enized behavior of the debonded composite is that of a generalized continuous
medium with an enriched kinematics. Indeed, besides the usual macroscopic
displacement field, the macroscopic kinematics contains two other scalar fields.
The former one corresponds to the displacement of the matrix whereas the two
latter ones correspond to the sliding and the rotation of the debonded fibers with
respect to the matrix. Accordingly, new homogenized coefficients and new cou-
pled equilibrium equations appear. This problem is addressed in a linear elastic
three-dimensional setting.

1. Introduction

The use of unidirectional fiber-reinforced composite materials does not cease to
grow in various domains and particularly in the domains of aerospace and aero-
nautics. This is due to their various properties and especially to their interesting
mechanical behavior in terms of their specific effective stiffness in the direction of
the fibers. (Throughout the paper, the word effective is a synonym of homogenized
or macroscopic.) The effective elastic behavior of such composites is now well
known and well modeled by the homogenization theory as long as the fibers are
assumed to be perfectly bonded to the matrix [Léné 1984; Michel et al. 1999;
Sánchez-Palencia 1980; Suquet 1982].

However, since their mechanical performance is considered optimal when the
components remain bonded, it remains to evaluate the loss of performance when
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the fibers are debonded. Of course, if one considers that the elastic behavior is due
to the matrix alone, the specific stiffness drops drastically. But this type of estimate
simply gives a lower bound to the stiffness and one must define more precisely the
effective behavior of completely or partially debonded unidirectional composites.

Many works have been devoted to this task; see for instance [Bouchelaghem et al.
2007; Caporale et al. 2006; Gonzàlez and LLorca 2007; Greco 2009; Jendli et al.
2009; Kulkarni et al. 2009; Kushch et al. 2011; Léné and Leguillon 1982; Marigo
et al. 1987; Matouš and Geubelle 2006; Moraleda et al. 2009; Teng 2010]. In
general, these studies consist in replacing the perfect bond of the interface by some
“cohesive law” or simply in removing the fibers when the debonding is complete.
In any case, the calculation of the new homogenized mechanical coefficients is per-
formed by considering the usual elementary problems set on the unit cell without
reconsidering the general procedure of homogenization. However, when following
the two-scale asymptotic approach, it appears that the argument used to obtain that
the zero-order displacement field does not depend on the microscopic variable is no
longer valid. Therefore, in the zone where the fibers are debonded, the macroscopic
displacement field must be replaced by another “macroscopic” displacement field,
corresponding to the independent displacement of the fibers [Berrehili and Marigo
2010]. Consequently, one must also construct the macroscopic problem which
gives this additional field. That is the purpose of this paper.

Specifically, the paper is organized as follows. The next section is devoted to
the setting of the problem: one considers a composite structure �, constituted by
a periodic distribution of elastic unidirectional fibers whose direction is e3 and
embedded in an elastic matrix. In a part �c of � the fibers are assumed to be
bonded to the matrix whereas in the complementary part �d they are assumed to be
debonded but still in contact without friction with the matrix. We then formulate the
elastostatic problem which contains the small parameter ✏ related to the size of the
microstructure and which governs the displacement field u

✏ and the stress field � ✏ .
The third section is devoted to the asymptotic analysis, i.e., the behavior of u

✏

and � ✏ when ✏ goes to 0. Following a two-scale approach, we first postulate that u

✏

and � ✏ can be expanded in powers of ✏, the coefficients u

i (x, y) and � i (x, y) of
the expansion being periodic functions of the microscopic coordinates y. We then
obtain a sequence of variational equations in terms of the u

i and the � i . These
equations are sequentially solved to finally obtain the effective behavior of the
composite in its bonded and debonded parts. In the fourth section, we study the
properties of the effective model and, in particular, the properties of the effective
coefficients provided by the solutions of linear elastic problems posed either on
the bonded or on the debonded cell. Then, some examples are treated. We finally
conclude giving some perspectives.

The summation convention on repeated indices is used throughout the paper.
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The set of real numbers, the set of n-dimensional vectors and the set of symmetric
second-order n-dimensional tensors are, respectively, denoted by R, Rn and Mn

s .
Vectors and second-order tensors are indicated by boldface letters, like u and �

for the displacement field and the stress field. Their components are denoted by
italic letters, like ui and �i j . Fourth-order tensors as well as their components are
indicated by sans-serif letters, like A or Ai jkl for the stiffness tensor. Such tensors
are considered as linear maps acting on second-order tensors. The application of
A to " is denoted A", with components Ai jkl"kl . The inner product between two
vectors or two tensors of the same order is indicated by a dot, like a · b which
stands for ai bi or � · " for �i j"i j . The symbol ⌦ denotes the tensor product and
⌦s denotes its symmetric part; i.e., 2e1 ⌦s e2 = e1 ⌦ e2 + e2 ⌦ e1.

In our frequent use of multiple scaling techniques, we adopt the related nota-
tion. For instance, x = (x1, x2, x3) always denotes a macroscopic coordinate while
y = (y1, y2) represents a microscopic one. Since the fibers are oriented along
the direction e3, we distinguish the longitudinal coordinate x3 from the transversal
coordinates x

0 = (x1, x2). Latin indices run from 1 to 3, while Greek indices run
from 1 to 2. When a spatial (scalar, vectorial or tensorial) field depends both on x

and y, the partial derivative with respect to one of the coordinates appears explicitly
as an index: for example, div

x

� and "
x

(v) denote, respectively, the divergence of
the stress tensor field � and the symmetric gradient of the vector field v with respect
to x, while div

y

� and "
y

(v) are the corresponding derivatives with respect to y:

div
x

� (x, y) = @�i j

@x j
(x, y)ei , div

y

� (x, y) = @�i�

@y�
(x, y)ei , (1)

"
x

(v)(x, y) =
✓

@v j

@xi
(x, y) + @vi

@x j
(x, y)

◆
ei ⌦s e j , (2)

"
y

(v)(x, y) =
✓

@v↵

@y�
(x, y) + @v�

@y↵
(x, y)

◆
e↵ ⌦s e� + @v3

@y↵
(x, y)e↵ ⌦s e3. (3)

On a surface I across which a field f is discontinuous, we denote by [[ f ]] its jump
discontinuity.

2. Statement of the problem

We consider a heterogeneous elastic body whose natural reference configuration
is a bounded open domain � of R3 with a smooth boundary @�. We denote by
(e1, e2, e3) the canonical basis of R3 and by (x1, x2, x3) the coordinates of a point
x 2 �. The body is made of two isotropic linearly elastic materials, called the
fibers and the matrix, whose Lamé coefficients and mass density are, respectively,
(� f , µ f , ⇢ f ) and (�m, µm, ⇢m). The fibers are aligned in the direction e3 and have
a circular cross-section with radius ✏R. They are periodically distributed in the



184 YAHYA BERREHILI AND JEAN-JACQUES MARIGO

F

0c �d

g

�c
0s

y2

y1
Vf

Vm

y2

y1
I

Vf
Vm

Figure 1. The composite structure and the two periodic cells.

matrix, ✏a and ✏b being the two vectors of the plane (e1, e2) characterizing the
periodicity. The number of fibers is large so that the dimensionless parameter ✏

characterizing the fineness of the microstructure (for instance, the ratio between
the spatial period and the size of the structure) is small. The domain occupied by
the fibers is �✏

f , that occupied by the matrix is �✏
m , while the set of all interfaces

between fibers and matrix is I

✏ . Accordingly, one has

� = �✏
f [ I

✏ [ �✏
m . (4)

The fibers are perfectly bonded in a part �c of � and debonded in the complemen-
tary part �d ; see Figure 1. Both parts contain a large number of fibers and will
be considered as given and independent of ✏. Moreover we assume that in �d the
fibers remain in contact with the matrix but can slip without friction. Accordingly,
denoting by

I

✏
c = �c \ I

✏, I

✏
d = �d \ I

✏, (5)

respectively, the bonded and debonded interfaces, the interface conditions in terms
of the displacement and the stress fields read as

⇢ [[u]] = 0, [[� ]]n = 0 on I

✏
c ,

[[u]] · n = 0, [[� ]]n · n = 0, � n ^ n = 0 on I

✏
d .

(6)

In (6), n is the outer normal to the fiber at an interface and the brackets denote the
jump of the involved field across the interface. The conditions on I

✏
c mean that

the displacement and the vector stress are continuous; the conditions on I

✏
d mean

that the normal displacement and the normal stress are continuous while the shear
stress vanishes.

Remark 1. In the above conditions on the interface between the fibers and the
matrix after debonding, we assume that contact always occurs without friction.
This allows us to treat linear elastic problems and then the analysis is simplified.
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It would be easy to follow the same procedure by assuming that the fibers are no
longer in contact with the matrix after debonding. It is more difficult to consider
unilateral frictionless contact conditions where the contact conditions depend on
the sign of the normal stress. That leads to nonlinear (but still elastic) problems
where the superposition principle can no longer be used. Much more difficult is the
case where the contact occurs with friction. Then the effective behavior is no longer
elastic and one must introduce internal variables. All these more elaborated cases
are outside the scope of this didactic paper and will be the subject of future works.

The body is submitted to a specific body force density g (independent of ✏). The
part 0c of the boundary @� is fixed while the complementary part 0s = @� \0c is
submitted to a surface force density F (independent of ✏).

We are now in a position to set the problem which governs the response of the
body at equilibrium under the given loading. For a fixed ✏ > 0, the problem consists
in finding a displacement field u✏ and a stress field � ✏ , such that:

Equilibrium:
⇢

div � ✏ + ⇢ f g = 0 in �✏
f ,

div � ✏ + ⇢m g = 0 in �✏
m,

(7)

Constitutive relations:
⇢
� ✏ = � f div u

✏� + 2µ f "(u

✏) in �✏
f ,

� ✏ = �m div u

✏� + 2µm"(u

✏) in �✏
m,

(8)

Compatibility: 2"(u

✏) = ru

✏ + rT
u

✏ in �✏
f [ �✏

m, (9)

Boundary conditions:
⇢

u

✏ = 0 on 0c,

� ✏
n = F on 0s,

(10)

Interface conditions:
⇢ [[u✏]] = 0, [[� ✏]]n = 0 on I

✏
c ,

[[u✏
n]] = 0, � ✏

n = � ✏
nnn, [[� ✏

nn]] = 0 on I

✏
d .

(11)

In (8), � is the identity tensor with �i j = 1 when i = j and �i j = 0 when i 6= j . This
set of equations constitutes a linear boundary value problem which can be written
in a variational form as follows.

Let #✏ be the linear space of kinematically admissible displacement fields; i.e.,

#✏ =
�
v 2 H 1(� \ I

✏
d ; R3) : [[v]] · n = 0 on I

✏
d , v = 0 on 0c

 
, (12)

let f✏ be the continuous linear form associated with the applied forces; i.e.,

f✏(v) =
Z

�✏
f

⇢ f g · v dx +
Z

�✏
m

⇢m g · v dx +
Z

0s

F · v d0 for v 2 #✏, (13)

and let a✏ be the bilinear continuous form associated with the elastic energy; i.e.,

a✏(u, v) =
Z

�✏
f

A f "(u) · "(v) dx +
Z

�✏
m

Am"(u) · "(v) dx . (14)
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In (14), A f and Am stand for the fourth-order elasticity tensors of the fibers and
the matrix, respectively; i.e.,

A
f,m
i jkl = � f,m�i j�kl + µ f,m(�ik� jl + �il� jk). (15)

Then u

✏ must satisfy the variational problem

find u

✏ 2 #✏ such that a✏(u

✏, v) = f✏(v) for all v 2 #✏, (16)

and � ✏ is the associated stress field given in terms of the strain field by (8). The
existence and the uniqueness of the solution u

✏ of (16) is guaranteed provided that
the boundary 0c is such that there does not exist any (nonzero) rigid displacement
which is kinematically admissible. Specifically, let us denote by 5✏ the set of
displacement fields which are both kinematically admissible and corresponding to
a null strain field; i.e.,

5✏ = {v 2 #✏ : "(v) = 0 in � \ I

✏
d }. (17)

By standard arguments, we have:

Proposition 1. Under the condition that 5✏ = {0} and that the density of forces
g and F are smooth enough, the variational problem (16) admits a unique solu-
tion u

✏ .

The necessary and sufficient condition above for the existence and the unique-
ness of the solution depends in general both on 0c and �d . However, the existence
of a solution is guaranteed if 5✏ = {0}, that is, if no rigid displacements are allowed.
We will assume henceforth that this condition is satisfied.

3. Asymptotic analysis

This section is devoted to the behavior of u

✏ , the unique solution of (16), when ✏

goes to 0. For that we use a formal double-scale asymptotic method like in [Abdel-
moula and Marigo 2000; Allaire 1992; Bensoussan et al. 1978; David et al. 2012;
Marigo and Pideri 2011]. The goal is not to obtain rigorous results of convergence,
but simply to formally construct the “limit” problem.

3.1. The assumed asymptotic expansion of u

✏
. By virtue of the unidirectional

character of the fibers, one can choose a two-dimensional domain V as the rescaled
periodic cell characterizing the spatial distribution of the fibers; see [Bouchelaghem
et al. 2007; Léné 1984; Marigo and Pideri 2011]. The fiber part and the matrix part
of this cell are, respectively, the open sets Vf and Vm of the (y1, y2) plane, while
the interface is I = @Vf \ @Vm . Accordingly, one has

V = Vf [ I [ Vm . (18)
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Moreover, the rigidity tensor and the mass density fields can be read as

A✏(x) = A

✓
x

0

✏

◆
with A( y) =

⇢
A f if y 2 Vf ,

Am if y 2 Vm,
(19)

⇢✏(x) = ⇢

✓
x

0

✏

◆
with ⇢( y) =

⇢
⇢ f if y 2 Vf ,

⇢m if y 2 Vm .
(20)

This allows us to write problem (16) in the equivalent form

find u

✏ 2#✏ such that
Z

�\I

✏
d

A✏"(u

✏)·"(v) dx =
Z

�

⇢✏
g·v dx+

Z

0s

F·v d0

for all v 2 #✏ . (21)

Following the classical two-scale procedure in homogenization theory of periodic
media [Allaire 1992; Bensoussan et al. 1978], we assume that u

✏ can be expanded
as follows:

u

✏(x) =
1X

i=0

✏i
u

i
✓

x,
x

0

✏

◆
, (22)

where the fields u

i are defined in � ⇥ V and V -periodic (with respect to the mi-
croscopic variable y). As far as their regularity with respect to y is concerned,
one can discriminate according to whether x belongs to �c or �d . Specifically, if
x 2 �c, then u

i (x, · ) must be continuous across I , while if x 2 �d , then ui
n(x, · )

only must be continuous across I .
Using the chain rule, the strain field admits the expansion

"(u

✏)(x) =
1X

i=�1

✏i
✓

"
y

(u

i+1)

✓
x,

x

0

✏

◆
+ "

x

(u

i )

✓
x,

x

0

✏

◆◆
, (23)

where "
x

(v) and "
y

(v) denote, respectively, the symmetrized gradient of the dis-
placement field v with respect to the macroscopic and microscopic coordinates;
see (2)–(3).

3.2. Equations at various orders. Let us choose a two-scale smooth displacement
field v✏(x) = v(x, x

0/✏), V -periodic and such that v(x, y) = 0 when x 2 0c, as
an element of #✏ and let us insert it into (21) as the test field. After inserting the
asymptotic expansion of u

✏ into (21) and identifying the terms at the same power
of ✏, one obtains a sequence of variational problems for the u

i , the first three of
which are given below. (One formally replaces simple integrals over � by multiple
integrals over � ⇥ V in the spirit of the double-scale approach [Allaire 1992].)

(1) At order ✏�2:

0 =
Z

�c

Z

V

A"
y

(u

0) · "
y

(v) dydx +
Z

�d

Z

V\I

A"
y

(u

0) · "
y

(v) dydx . (24)
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(2) At order ✏�1:

0 =
Z

�c

Z

V

A"
y

(u

0) · "
x

(v) dydx +
Z

�d

Z

V\I

A"
y

(u

0) · "
x

(v) dydx

+
Z

�c

Z

V

A
�
"

y

(u

1) + "
x

(u

0)
�
· "

y

(v) dydx

+
Z

�d

Z

V\I

A
�
"

y

(u

1) + "
x

(u

0)
�
· "

y

(v) dydx . (25)

(3) At order ✏0:
Z

�c

Z

V

A
�
"

y

(u

2)+"
x

(u

1)
�
·"

y

(v) dydx+
Z

�d

Z

V\I

A
�
"

y

(u

2)+"
x

(u

1)
�
·"

y

(v) dydx

+
Z

�c

Z

V

A
�
"

y

(u

1)+"
x

(u

0)
�
·"

x

(v) dydx+
Z

�d

Z

V\I

A
�
"

y

(u

1)+"
x

(u

0)
�
·"

x

(v) dydx

=
Z

�

Z

V

⇢g·v dydx+
Z

0s

Z

V
F·v dyd0. (26)

In (24)–(26), A and ⇢ stand for the V -periodic functions of y introduced in
(19) and (20). Moreover, these variational equalities must hold for any smooth
v(x, y) which vanishes when x 2 0c as a function of x, which is V -periodic in y,
continuous across I when x 2 �c and whose normal component vn is continuous
across I when x 2 �d .

3.3. The form of u

0
. By choosing v = u

0 in (24) (which is licit) and owing to the
positivity of the elasticity tensors A f and Am , one deduces that

"
y

(u

0) = 0 in �c ⇥ V and in �d ⇥ (V \ I).

Let us discriminate the case when x 2 �c and that when x 2 �d .

(1) When x 2 �c, since "(u

0)(x, y) = 0 for all y 2 V , u

0 must be a rigid displace-
ment with respect to y. Recalling that u

0(x, y) 2 R3 and that y = (y1, y2), using
(3) leads to

u

0(x, y) = u(x) + !(x)e3 ^ y for all y 2 V ,

where u(x) 2 R3 and !(x) 2 R. (Note that the rotations of axes e1 and e2 are
automatically eliminated because u

0 is independent of y3.) But since u

0 must be
V -periodic, one gets also !(x) = 0. Finally, we have obtained that

for x 2 �c : u

0(x, y) = u(x) for all y 2 V . (27)

This result is the classical property of the homogenization theory which states that
the leading term of the asymptotic displacement field expansion does not depend
on the microscopic coordinates. However, this property holds true only because
the fiber is perfectly bonded to the matrix, as we will see hereafter.
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(2) When x 2 �d , one has separately "
y

(u

0)(x, · ) = 0 in Vf and in Vm . Therefore,
u

0(x, y) must be a rigid displacement field with respect to y in the matrix part Vm

and a priori another rigid displacement field in the fiber part Vf of the cell V .
Accordingly, u

0(x, y) must read as

u

0(x, y) =
⇢

um(x) + !m(x)e3 ^ y for all y 2 Vm,

u f (x) + ! f (x)e3 ^ y for all y 2 Vf ,

where um(x) and u f (x) are in R3, !m(x) and ! f (x) are in R. Since u

0 must be
V -periodic, one still gets !m(x) = 0. Let us write now the continuity of u0

n across
I . We can take the center of the (circular) fiber cross-section as the origin of the
(y1, y2) plane without loss of generality. Accordingly, n = y/R = cos ✓e1 +sin ✓e2
for y 2 I . Therefore, [[u0]] · n = 0 on I reads as

cos ✓(um(x) � u f (x)) · e1 + sin ✓(um(x) � u f (x)) · e2 = 0 for all ✓ 2 [0, 2⇡ ],
from which one immediately deduces that u f (x) = um(x) + �(x)e3. Finally, we
have obtained that

for x 2 �d : u

0(x, y) =
⇢

u(x) for all y 2 Vm,

u(x) + �(x)e3 + !(x)e3 ^ y for all y 2 Vf .
(28)

For future reference, let us denote by 5d the set of the V -periodic displacement
fields w such that "

y

(w) = 0 in V \ I and [[wn]] = 0 on I ; i.e.,

5d =
⇢
w : w( y) =

⇢
a for y 2 Vm,

a + �e3 + !e3 ^ y for y 2 Vf ,
a 2 R3, � 2 R, ! 2 R

�
. (29)

Thus u

0(x, · ) 2 5d when x 2 �d . This result differs from the usual property of
the homogenization theory. Indeed, because of the debonding of the fiber from the
matrix, the leading term of the asymptotic displacement field expansion depends
here on the microscopic coordinates. Moreover, two new macroscopic scalar fields
appear in the effective kinematics of the composite. Specifically, the vector field
u represents the macroscopic displacement of the matrix while the scalar fields �

and ! represent the longitudinal sliding and the relative rotation of the fibers with
respect to the matrix. We have obtained a generalized continuous medium.

Let us summarize all results obtained in this subsection:

Proposition 2. The first-order displacement u

0(x, y) takes two different forms ac-
cording to whether x is in �c or in �d . Specifically,

for x 2 �c : u

0(x, y) = u(x) for all y 2 V ,

for x 2 �d : u

0(x, y) =
⇢

u(x) for all y 2 Vm,

u(x) + �(x)e3 + !(x)e3 ^ y for all y 2 Vf .

Therefore, the effective kinematic behavior in the debonded part of the composite
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body is that of a generalized continuous medium where appear the sliding and the
rotation of the fibers with respect to the matrix.

Remark 2. The macroscopic displacement fields u, � and ! can be defined in the
whole domain � but � and ! must vanish in �c. Moreover, those fields have to be
sufficiently smooth in order that the effective elastic energy be finite. Their smooth-
ness will be specified once the effective behavior is obtained. In the same way, the
boundary conditions that u, � and ! have to satisfy on 0c will be specified later.

3.4. The elementary cell problems. Inserting (27) and (28) into (25) leads to

0 =
Z

�c

Z

V

A
�
"

y

(u

1) + "(u)
�
· "

y

(v) dydx

+
Z

�d

Z

V\I

A
�
"

y

(u

1) + "(u) + "(�e3) + "
x

(!e3 ^ y)
�
· "

y

(v) dydx . (30)

Assuming at this stage that the fields u, � and ! are known, (30) will allow us
to determine u

1 in terms of the gradient of u, � and !. For that, we have still to
discriminate between the domains �c and �d .

(1) Let us first choose v such that v(x, y) = '(x)w( y) with ' 2 $(�c) (the set
of indefinitely differentiable functions with compact support in �c) and w 2 *c,
where *c denotes the Hilbert space of vector fields which are V -periodic and whose
components are in H 1(V ); i.e.,

*c = {w 2 H 1(V ; R3) : w is V -periodic}.

Then (30) becomes: at almost all x 2 �c and for all w 2 *c,
Z

V
A( y)"

y

(u

1)(x, y) · "(w)( y) dy + "(u)(x) ·
Z

V
A( y)"(w)( y) dy = 0.

Hence, by linearity, u

1 can read as

for x 2 �c : u1
k(x, y) = "(u)i j (x)�

i j
k ( y) + ūk(x) for all y 2 V , (31)

where, for i, j 2 {1, 2, 3}, the vector fields � i j are the elements of *c solving the
so-called cell problems

Z

V
Apqrs"(�

i j )pq"(w)rs dy +
Z

V
Ai jrs"(w)rs dy = 0 for all w 2 *c. (32)

In (31), ū(x) remains undetermined at this stage.

(2) Let us now choose v such that v(x, y)='(x)w( y) with ' 2 $(�d) and w 2 *d ,
where

*d =
�
w 2 H 1(V \ I; R3) : w is V -periodic, [[wn]] = 0 on I

 
.
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Then (30) becomes: at almost all x 2 �d and for all w 2 *d ,

0 =
Z

V\I

A( y)"
y

(u

1)(x, y) · "(w)( y) dy

+ "(u)(x) ·
Z

V\I

A( y)"(w)( y) dy + "(�e3)(x) ·
Z

Vf

A f "(w)( y) dy

+ "(!e2)(x) ·
Z

Vf

y1A
f "(w)( y) dy � "(!e1)(x) ·

Z

Vf

y2A
f "(w)( y) dy.

Hence, by linearity, u

1 can read as

for x 2�d : u

1(x, y)="(u)i j (x)⇠ i j ( y)+ @�

@xi
(x)D

i ( y)+ @!

@xi
(x)W

i ( y)+ū(x, y)

for all y 2 V \ I, (33)

where ū(x, · ) is an element of 5d that remains undetermined at this stage, and the
vector fields ⇠ i j , D

i and W

i , for i, j 2 {1, 2, 3}, are the elements of *d solving the
following new cell problems:

Z

V\I

Apqrs"(⇠
i j )pq"(w)rs dy+

Z

V\I

Ai jrs"(w)rs dy =0, (34)
Z

V\I

Apqrs"(D

i )pq"(w)rs dy+
Z

Vf

A
f
3irs"(w)rs dy =0, (35)

Z

V\I

Apqrs"(W

i )pq"(w)rs dy+
Z

Vf

(e3^ y)·eqA
f
iqrs"(w)rs dy =0. (36)

In (34)–(36) equality holds for all w2*d .

Let us study each of these cell problems.
• Each � i j is uniquely determined up to a translation which can be fixed by
imposing that

R
V

� i j dy =0. It corresponds to the microscopic response of the
representative volume element submitted to the macroscopic strain tensor ei ⌦s e j .
In other words, the � i j are given by the classical microscopic problems appearing
in the homogenization theory [Allaire 1992; Bensoussan et al. 1978]. By virtue
of the symmetries of the rigidity tensors A f and Am , one has � i j =� j i and hence
there exist exactly six independent cell problems. Since the periodicity is two-
dimensional and since the fibers and the matrix are isotropic, all the � i j enjoy
some general properties. For instance,

�
↵�
3 =�33

3 =�↵3
� =0 for all ↵, � 2{1, 2}.

Additional symmetry properties appear when the cell itself enjoys additional sym-
metries [Léné 1984]. The practical determination of the � i j requires some numer-
ical computation.
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• All preceding comments on the � i j remain true for the ⇠ i j (except that ⇠ i j is
uniquely determined up to an element of 5d ). Note however that ⇠ i j differs (in gen-
eral) from � i j because of the possibility of a tangential discontinuity of ⇠ i j on I . A
consequence of this additional degree of freedom is that the shear stress associated
with ⇠ i j necessarily vanishes on I while this is not in general the case for � i j .
• The fields D

1 and D

2 can be obtained in a closed form. Specifically, one gets

for ↵2{1, 2} : D

↵(y)=
⇢

0, y2 Vm,

�y↵e3, y2 Vf ,
+ an arbitrary element of 5d . (37)

The verification is straightforward and left to the reader. On the other hand, D

3

cannot be obtained in a closed form (except if � f =0) but can be simplified. Indeed,
as for the ⇠ i j , by virtue of the isotropy of the fibers and the matrix, one gets that
D3

3 =0 and finally the problem for D

3 can read as
Z

V\I

�"(D

3)↵↵"(w)�� +2µ"(D

3)↵�"(w)↵� dy+
Z

V f

� f "(w)�� dy =0

for all w2*d . (38)

It corresponds to the response of the cell when the fiber is submitted to a macro-
scopic longitudinal stretching e3⌦e3 while the matrix is macroscopically unstrained.
That response is not trivial because of the contact between the fiber and the matrix.
This contact implies the existence of a normal stress �nn at the interface I which
induces a deformation of the matrix.
• All the fields W

i can be obtained in a closed form. Let us first show that

W

3 25d . (39)

Indeed, the integral over Vf in (36) for i =3 vanishes as proved below:
Z

Vf

(e3^ y)·e�A
f
3�kl"(w)kl dy =

Z

Vf

µ f (e3^ y)·e�
@w3

@y�
dy

=�
Z

Vf

µ f (e3^e�)·e�w3 dy+
Z

I

µ f (e3^ y)·nw3 ds

=0.

The last equality above is due to the fact that n= y/R on I . Inserting this property
and taking w=W

3 in (36) for i =3 leads to
Z

V\I

A"(W

3)·"(W

3) dy =0.

Therefore "(W

3)=0 which is the desired result. Since the undetermined element
of 5d does not play any role, one can consider that W

3 =0. Note that this property
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holds true because the fiber has a circular section and is isotropic.
Let us now verify that W

1 and W

2 are given by

for ↵2{1, 2} : W

↵(y)=
⇢

0, y2 Vm,

�y↵e3^ y, y2 Vf ,
+ an arbitrary element of 5d . (40)

Let us first remark that [[W↵]]·n=0 on I because (e3^ y)·n=0. Hence W

↵ 2*d .
Let us now calculate the strain field "(W

↵) for ↵2{1, 2}:
2"(W

↵)pq =�(e3^ y)·ep�↵q �(e3^ y)·eq�↵p for all p, q 2{1, 2, 3}.

Therefore, one gets A
f
pqrs"(W

↵)pq =�(e3^ y)·eqA
f
↵qrs , from which one easily de-

duces that (36) is satisfied for i =↵.

3.5. The form of � 0
. The form of the leading term � 0 of the stress field is obtained

via the constitutive relations (8) and the strain expansion (23). Specifically, one gets

� 0(x, y)=A( y)
�
"x(u

0)(x, y)+"
y

(u

1)(x, y)
�
. (41)

Let us discriminate once more between the domains �c and �d to obtain the stress
field � 0 in terms of the generalized strain fields "(u), r�, r! and of the micro-
scopic strain fields associated with the solutions of the cell problems.

(1) For x 2�c. By virtue of (27) and (31), one gets

� 0(x, y)=A( y)
�
"(u)(x)+"(u)i j (x)"(� i j )( y)

�
, (42)

which is the usual expression of the stress distribution given by the homogenization
theory. Of course, all cell problems give a contribution to that stress distribution.

(2) For x 2�d . By virtue of (28) and (33), one gets, for all y2 V \ I ,

� 0(x, y)=A( y)
�
"(u)(x)+"(u)i j (x)"(⇠ i j )( y)

�
+ @�

@xi
(x)S

i( y)+ @!

@xi
(x)T

i( y), (43)

with

Si
rs( y)=

(
Am

pqrs"(D

i )pq( y) if y2 Vm,

A
f
pqrs"(D

i )pq( y)+A
f
3irs if y2 Vf

(44)

T i
rs( y)=

(
Am

pqrs"(W

i )pq( y) if y2 Vm,

A
f
pqrs"(W

i )pq( y)+A
f
iqrs(e3^ y)·eq if y2 Vf .

(45)

Moreover, (37) gives S

↵ =0 and (40) gives T

↵ =0 for ↵2{1, 2}. In other words
the cell problems associated with @�/@x↵ or with @!/@x↵ induce no stress. Since
W

3 vanishes, T

3 reads as

T

3( y)=
⇢

0 if y2 Vm,

2µ f (�y2e3⌦s e1+y1e3⌦s e2) if y2 Vf .
(46)
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Note that this stress distribution corresponds to that given by a torsion of a cylinder
with a circular cross-section. The only nonzero component is the orthoradial one
�3✓ which is proportional to r , the distance to the axis. Moreover, there is no
interaction with the matrix.

On the other hand, S

3 cannot be obtained in a closed form, but can be simplified
by using (38):

S3
↵�( y)=

⇢
�m"� � (D

3)( y)�↵� +2µm"↵�(D

3)( y) if y2 Vm,

� f
�
1+"� � (D

3)( y)
�
�↵� +2µ f "↵�(D

3)( y) if y2 Vf ,
(47)

S3
33( y)=

⇢
�m"� � (D

3)( y) if y2 Vm,

� f
�
1+"� � (D

3)( y)
�
+2µ f if y2 Vf ,

(48)

and S3
↵3 =0 in Vf [Vm . As it was already noted, there is an interaction between

the fiber and the matrix because of the contact assumption.
Finally, � 0(x, · ) can read in V \ I as

� 0(x, y)=A( y)
�
"(u)(x)+"(u)i j (x)"(⇠ i j )( y)

�
+ @�

@x3
(x)S

3( y)+ @!

@x3
(x)T

3( y), (49)

which includes the contribution of the longitudinal stretching and the torsion of the
fibers.

3.6. The macroscopic problem. To obtain the problem which gives the macro-
scopic fields u, � and !, we choose a displacement field v in (26) of the same type
as u

0, i.e., such that "
y

(v)=0. Specifically, one sets

v⇤(x, y)=
⇢

u

⇤(x) in (�c⇥V )[(�d ⇥Vm),

u

⇤(x)+�⇤(x)e3+!⇤(x)e3^ y in �d ⇥Vf
(50)

and inserts such a v⇤ into (26). Then the terms in "
y

(u

2)+"
x

(u

1) disappear be-
cause "

y

(v)=0. By virtue of (41), (26) becomes
Z

�

Z

V

� 0(x, y)·"(u

⇤)(x)dydx

+
Z

�d

Z

Vf

� 0(x, y)·
�
"(�⇤

e3)(x)+"(!⇤
e3^e↵)(x)y↵

�
dydx

=
Z

�

Z

V

⇢( y)g(x)·u⇤(x)dydx+
Z

�d

Z

Vf

⇢ f
�
g3(x)�⇤(x)+(e3^ y)·g(x)!⇤(x)

�
dydx

+
Z

0s

Z

V

F(x)·u⇤(x)dyd0+
Z

0s

Z

Vf

�
F3(x)�⇤(x)+(e3^ y)·F(x)!⇤(x)

�
dyd0. (51)

Let us denote by h'i the mean value of ' over the cell V :

h'i= 1
|V |

Z

V

'( y) dy, h'i(x)= 1
|V |

Z

V

'(x, y) dy, (52)
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and by h'if (respectively, h'im) the mean value over the whole cell V of the field '

only defined in or restricted to V f (respectively, Vm); i.e.,

h'i f,m = 1
|V |

Z

V f,m

'( y) dy, h'i f,m(x)= 1
|V |

Z

V f,m

'(x, y) dy. (53)

Recalling that the center of the fiber is taken as the origin of the y-coordinates, one
has

R
Vf

y dy =0. Accordingly, after easy calculations, (51) can read as
Z

�c

h� 0i·"(u

⇤) dx+
Z

�d

�
h� 0i·"(u

⇤)+h� 0if e3 ·r�⇤+hy↵� 0if ·"(!⇤
e3^e↵)

�
dx

=
Z

�c

h⇢ig ·u⇤ dx+
Z

�d

�
h⇢ig ·u⇤+⇢ f V f g3�

⇤� dx+
Z

0s

(F ·u⇤+V f F3�
⇤) d0, (54)

where V f denotes the volume fraction of the fibers; i.e.,

V f = |Vf |
|V | , Vm =1�V f .

Remark 3. Let us note that !⇤ does not appear in the right-hand side of (54). This
is due to the assumption made on the applied forces, specifically that both the
specific bulk forces g and the surface forces F do not depend on y, and on the
choice of the center of the fiber as the origin of the y coordinates.

Let us examine each term of the left-hand side of (54).
• For x 2�c, by virtue of (42), h� 0i(x) reads as

h� 0i(x)=Ac"(u)(x), (55)

where Ac denotes the (classical) homogenized stiffness tensor of the (perfectly
bonded) composite; i.e.,

Ac
i jkl = hAi jkl +Ai j pq"(� kl)pqi= hAi jkl �A"(� i j )·"(� kl)i. (56)

The last equality above is obtained by using (32) with w=� kl . It allows us to
check that Ac has the major symmetry Ac

i jkl =Ac
kli j .

• For x 2�d , by virtue of (49), h� 0i(x) reads as

h� 0i(x)=Ad"(u)(x)+hS

3i @�

@x3
(x)+hT

3i @!

@x3
(x), (57)

where Ad denotes the homogenized stiffness tensor of the debonded composite;
i.e.,

Ad
i jkl = hAi jkl +Ai j pq"(⇠ kl)pqi= hAi jkl �A"(⇠ i j )·"(⇠ kl)i. (58)

The last equality above is obtained by using (34) with w=⇠ kl and implies that
Ad

i jkl =Ad
kli j for all i, j, k, l. The tensor Ad will be compared to the tensor Ac in
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the next section. Then, using (46) and the fact that h yif =0, one gets hT

3i=0 and
finally

h� 0i(x)=Ad"(u)(x)+hS

3i @�

@x3
(x). (59)

• For x 2�d , using (49), the component i of h� 0if e3(x) reads as

h� 0
3i if (x)=

⌦
A

f
3ikl +A

f
3irs"(⇠

kl)rs
↵
f "(u)kl(x)+hS3

3i if
@�

@x3
(x)+hT 3

3i if
@!

@x3
(x).

Let us first show that
⌦
A

f
3ikl +A

f
3irs"(⇠

kl)rs
↵
f = hS3

kli�i3. (60)

Considering (35) with w=⇠ kl gives

hA"(D

i )·"(⇠ kl)i+
⌦
A

f
3irs"(⇠

kl)rs
↵
f =0.

Considering (34) with kl instead of i j and setting w= D

i give

hA"(D

i )·"(⇠ kl)i+hAklrs"(D

i )rsi=0.

Therefore hA f
3irs"(⇠

kl)rsif = hAklrs"(D

i )rsi and hence
⌦
A

f
3ikl +A

f
3irs"(⇠

kl)rs
↵
f = hAklrs"(D

i )rsi+
⌦
A

f
3ikl

↵
f = hSi

kli,
where the last equality is a direct consequence of the definition (44) of S

i . Since
S

↵ =0, one gets (60).
Recalling now that S3

3↵ =0 and hT

3if = hT

3i=0, one finally obtains

h� 0if e3(x)= hS

3i·"(u)(x)e3+hS3
33if

@�

@x3
(x)e3. (61)

• The last term in the left-hand side of (54) can also read as

hy↵� 0if (x)·"(!⇤
e3^e↵)(x)=

⌦
(e3^ y)·eq� 0

qi
↵
f (x)

@!⇤

@xi
(x).

Using (49), one gets
⌦
(e3^ y)·eq� 0

qi
↵
f (x)=

⌦
(e3^ y)·eq

�
A

f
qikl +A

f
qirs"(⇠

kl)rs
�↵

f "(u)kl(x)

+
⌦
(e3^ y)·eq S3

qi
↵
f

@�

@x3
(x)+

⌦
(e3^ y)·eq T 3

qi
↵
f
@!

@x3
(x).

Let us calculate the three effective coefficients appearing in the right side.
We first show that

⌦
(e3^ y)·eq

�
A

f
qikl +A

f
qirs"(⇠

kl)rs
�↵

f =0. First,
⌦
(e3^ y)·eqA

f
qikl

↵
f =(e3^h yif )·eqA

f
qikl =0.

Then, recalling that W

3 =0 and using (36) with i =3 and w=⇠ kl give
⌦
(e3^ y)·eqA

f
qirs"(⇠

kl)rs
↵
f =0
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and hence the desired result.
Next we show that h(e3^ y)·eq S3

qi if =0. By virtue of (44), one has
⌦
(e3^ y)·eq S3

qi
↵
f =

⌦
(e3^ y)·eq

�
A

f
qi33+A

f
qirs"(D

3)rs
�↵

f .

Therefore, one can follow the same procedure as for the first coefficient. First,
⌦
(e3^ y)·eqA

f
qi33

↵
f =0.

Then, using (36) with i =3 and w= D

3 give
⌦
(e3^ y)·eqA

f
qirs"(D

3)rs
↵
f =0

and hence the desired result.
For the third effective coefficient, a direct calculation using (46) gives h(e3^ y)·

eq T 3
qi if =(⇡/2)µ f R4�i3.

Therefore, one finally obtains

⌦
(e3^ y)·eq� 0

qi
↵
f (x)= ⇡ R4µ f

2|V |
@!

@x3
(x)�i3. (62)

Inserting (55), (59), (61) and (62) into (54), the variational equation (54) finally
reads as
Z

�c

Ac"(u)·"(u

⇤) dx+
Z

�d

⇡ R4µ f

2|V |
@!

@x3

@!⇤

@x3
dx

+
Z

�d

✓
Ad"(u)·"(u

⇤)+hS

3i·
✓

"(u)
@�⇤

@x3
+ @�

@x3
"(u

⇤)
◆

+hS3
33if

@�

@x3

@�⇤

@x3

◆
dx

=
Z

�

h⇢ig ·u⇤ dx+
Z

�d

⇢ f V f g3�
⇤ dx+

Z

0s

(F ·u⇤+V f F3�
⇤) d0. (63)

The equality (63) must hold for all (u

⇤, �⇤, !⇤) such that the associated displace-
ment field v⇤ given by (50) is admissible. These admissibility conditions will be
specified in the next subsection.

Proposition 3. The macroscopic displacement fields (u, �,!) are a stationary
point of the following potential energy 30:

30(u

⇤, �⇤, !⇤)

=
Z

�c

1
2
Ac"(u

⇤)·"(u

⇤) dx+
Z

�d

T
2

@!⇤

@x3

@!⇤

@x3
dx

+
Z

�d

✓
1
2
Ad"(u

⇤)·"(u

⇤)+6 ·"(u

⇤)
@�⇤

@x3
+ K

2
@�⇤

@x3

@�⇤

@x3

◆
dx

�
Z

�

h⇢ig ·u⇤ dx�
Z

�d

⇢ f V f g3�
⇤ dx�

Z

0s

(F ·u⇤+V f F3�
⇤) d0, (64)
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where the effective stiffness tensors Ac and Ad , the effective stress tensor 6 and
the effective rigidity coefficients K and T are obtained by solving the different cell
problems. Specifically, Ac is given by (56), Ad by (58), 6= hS

3i and K = hS3
33if ,

where S

3 is given by (47)–(48) and T =⇡ R4µ f /(2|V |).
Proof. It suffices to remark that (63) is equivalent to

d
dh

30(u+hu

⇤, �+h�⇤, !+h!⇤)
��
h=0 =0.

Hence, 30 can be seen as the effective potential energy of the composite body. ⇤

4. Discussion and examples

4.1. Properties of the effective coefficients.

Proposition 4. The effective rigidity tensor Ac of the perfectly bonded composite
satisfies the minimization problem

for "⇤ 2M3
s , Ac"⇤ ·"⇤ = min

w2*c
%c(w), (65)

where

%c(w)=
⌦
A
�
"⇤+"(w)

�
·
�
"⇤+"(w)

�↵
.

The effective rigidity tensor Ad , the effective tensor 6 and the effective rigidity
coefficient K of the debonded composite satisfy the minimization problem

for "⇤ 2M3
s and d⇤ 2R, Ad"⇤ ·"⇤+2d⇤6 ·"⇤+K d⇤2 = min

w2*d
%d(w), (66)

where

%d(w)=
⌦
Am�"⇤+"(w)

�
·
�
"⇤+"(w)

�↵
m

+
⌦
A f �"⇤+d⇤

e3⌦e3+"(w)
�
·
�
"⇤+d⇤

e3⌦e3+"(w)
�↵

f .

Therefore, there exist two positive constants ↵c >0 and ↵d >0 such that, for all
"⇤ 2M3

s and all d⇤ 2R,

Ac"⇤ ·"⇤ �↵c"
⇤ ·"⇤, Ad"⇤ ·"⇤+2d⇤6 ·"⇤+K d⇤2 �↵d("⇤ ·"⇤+d⇤2). (67)

Moreover, Ac and Ad are well ordered in the sense that

Ac"⇤ ·"⇤ �Ad"⇤ ·"⇤ for all "⇤ 2M3
s .

Proof. Let us prove the property of minimization for the debonded composite, the
proof being similar for the perfectly bonded composite. Let w⇤ be a minimizer
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of %d over *d ; w⇤ is unique up to an element of 5d and satisfies the variational
equation
⌦
Am�"⇤+"(w⇤)

�
·"(w)

↵
m +

⌦
A f�"⇤+d⇤

e3⌦e3+"(w⇤)
�
·"(w)

↵
f =0

for all w2*d . (68)

By linearity and using (34)–(35), one deduces that w⇤( y)="⇤
i j⇠

i j ( y)+d⇤
D

3( y).
Moreover, using (68) with w=w⇤ yields

%d(w⇤)= hAm"⇤ ·"⇤�Am"(w⇤)·"(w⇤)im

+
⌦
A f ("⇤+d⇤

e3⌦e3)·("⇤+d⇤
e3⌦e3)�A f "(w⇤)·"(w⇤)

↵
f

= hA"⇤ ·"⇤�A"(w⇤)·"(w⇤)i+2V f A
f
33i j"

⇤
i j d

⇤+V f A
f
3333d⇤2

= hAi jkl �A"(⇠ i j )·"(⇠ kl)i"⇤
i j"

⇤
kl +2

�
V f A

f
33i j �hA"(⇠ i j )·"(D

3)i
�
"⇤

i j d
⇤

+
�
V f A

f
3333�hA"(D

3)·"(D

3)i
�
d⇤2.

Using (34) with w= D

3, (35) with D

i =w= D

3 and (58), one gets

%d(w⇤)=Ad"⇤·"⇤+2
�
V f A

f
33i j +hAi jkl"(D

3)kli
�
"⇤

i j d
⇤+

⌦
A

f
3333+A

f
33kl"(D

3)kl
↵
f d⇤2.

Then it suffices to use (44) with i =3 to obtain that V f A
f
33i j +hAi jkl"(D

3)kli=
hS3

i j i=6i j and hA f
3333+A

f
33kl"(D

3)klif = hS3
33if = K . This yields (66).

We now prove the positivity of %d(w⇤). First, %d(w⇤)�0 by definition and by
the positivity of Am and A f . We show that equality holds if and only if "⇤ =0 and
d⇤ =0. By the expression of %d(w⇤), equality holds if and only if

"(w⇤)( y)=
⇢ �"⇤ for all y2 Vm,

�"⇤�d⇤
e3⌦e3 for all y2 Vf .

But since "(w⇤)33 =0, one gets "⇤
33 =d⇤ =0. Accordingly, "(w⇤)( y)=�"⇤ for

all y2 V \ I . But, since w⇤ is V -periodic, one finally gets "⇤ =0. Therefore the
quadratic form Ad"⇤ ·"⇤+2d⇤6 ·"⇤+K d⇤2 is definite positive on M3

s ⇥R.
To prove that Ac and Ad are well ordered, let us take d⇤ =0. Then, by virtue of

the minimization properties, one gets

Ac"⇤ ·"⇤ = min
w2*c

⌦
A
�
"⇤+"(w)

�
·
�
"⇤+"(w)

�↵
,

Ad"⇤ ·"⇤ = min
w2*d

⌦
A
�
"⇤+"(w)

�
·
�
"⇤+"(w)

�↵
.

Since *c ⇢*d , one obtains the desired inequality Ac"⇤ ·"⇤ �Ad"⇤ ·"⇤ for all "⇤

in M3
s . ⇤

4.2. The relevant functional framework of the effective model. Let us discuss
here what are the relevant functional spaces so that the effective problem coming
from the asymptotic analysis is well posed. The natural framework is the set of
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all functions with finite energy 30. Specifically, u

⇤ must belong to H 1(�, R3)

while �⇤ and !⇤ must belong to H 1
L(�d), where

H 1
L(�d)=

⇢
' :'=0 in �c, '2 L2(�d),

@'

@x3
2 L2(�d)

�
.

Accordingly, one can define as usual the trace of u

⇤ on the boundary of � (and
more generally on any sufficiently smooth surface included in �̄). Therefore, the
Dirichlet boundary condition u

⇤ =0 on 0c has a sense. But this is not the case
for the elements of H 1

L(�d). Indeed, since one only controls its first derivative
with respect to x3, one can define the trace of such an element ' on surfaces of
the type x3 =constant but not necessarily on surfaces with arbitrary orientations.
Accordingly, the definition of the boundary conditions on 0c and the continuity
conditions at the interface between �c and �d need more developed arguments
which are outside the scope of the present paper. As far as the linear part of the po-
tential energy is concerned, the work done by the external forces is finite provided
that the density g and F are sufficiently smooth. For the work of the specific forces,
it suffices that g be in L2(�; R3) in order that both integrals over � and �d be
finite. The question is more delicate for F. It is sufficient that F be in L2(0s; R3)

in order that
R
0s

F ·u⇤ d0<+1. But, the term
R
0s\@�d

F3�
⇤ d0 makes sense only

on the part of the boundary where either F3 =0 or �⇤ is defined. Accordingly, we
will assume that the following hypothesis holds:

Hypothesis 1. The given density of forces is such that g 2 L2(�; R3) and F 2
L2(0s; R3). Moreover, on the part 0s \@�d , F3 =0.

Finally, introducing the set of all kinematically admissible displacement fields

#0 =
�
(u

⇤, �⇤, !⇤)2 H 1(�; R3)⇥H 1
L(�d)2 :u

⇤ =0 on 0c
 
, (69)

the effective problem can be formulated as follows:

find (u, �,!)2#0 which minimizes 30 over #0. (70)

We are now in the position to establish the final result.

Proposition 5. Let 50 be the subset of #0 made of all displacement fields with
null elastic energy:

50 =
⇢
(u

⇤, �⇤, !⇤)2#0 :"(u

⇤)=0 in �,
@�⇤

@x3
= @!⇤

@x3
=0 in �d

�
.

Then, if 50 ={(0, 0, 0)} and if the given forces g and F satisfy Hypothesis 1, prob-
lem (70) admits a unique solution.



HOMOGENIZED BEHAVIOR OF DEBONDED COMPOSITE 201

Proof. Uniqueness is guaranteed by virtue of the assumption on 50 and of the
positivity of the elastic energy. The existence is due to the smoothness assumption
on the loading and to the positivity property (67) which ensures the coercivity. ⇤
Remark 4. The relative rotation of the fiber !⇤ is not coupled with the macroscopic
displacement field u

⇤ and the sliding of the fiber �⇤ in the elastic energy. Since !⇤

does not appear in the work of the given external forces, one immediately obtains
that the solution is such that @!/@x3 =0 in �d and hence there does not exist a
fiber torsional energy. But this property will no longer hold true if one changes
some assumptions on the composite behavior or on the loading.

The solution (u, �) of the effective problem satisfies the following set of local
equilibrium equations in �d :

8
>><

>>:

div
✓
Ad"(u)+ @�

@x3
6

◆
+h⇢ig =0,

@

@x3

✓
K

@�

@x3
+6 ·"(u)

◆
+V f ⇢ f g3 =0.

(71)

These equations must be understood in the sense of distributions when the loading
is not sufficiently smooth. The first one is a vectorial equation while the second one
is scalar. Both are second-order partial differential equations and they are coupled
by the term which involves the effective internal stress tensor 6.

4.3. Case of a regular hexagonal cell. Let L be a characteristic length of the
body, `=3�1/4

p
2L , a=`e1, b=`(e1+

p
3e2)/2 and Vf be the disk of center 0

and radius R <`/2. Thus V is a regular hexagon centered at 0 with area L2; see
Figure 2. Since the material is isotropic, we can use the results of [Léné 1984] to
obtain that Ac and Ad are positive transversely isotropic fourth-order tensors with
axis e3. Therefore, Ac and Ad are such that, for all "2M3

s ,

Ac" ·"= Ac
L"2

33+�c
L"33"↵↵+�c

T "2
↵↵+2µc

T "↵�"↵� +2µc
L"3↵"3↵, (72)

Ad" ·"= Ad
L"2

33+�d
L"33"↵↵+�d

T "2
↵↵+2µd

T "↵�"↵� +2µd
L"3↵"3↵, (73)

Vm

Vf

b

a

y2

I

Vf

Vm

y1

Figure 2. The case when the cell is a regular hexagon (left:
bonded; right: debonded).
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where the ten moduli satisfy the following inequalities:

Ac
L � Ad

L >0, µc
T �µd

T >0, µc
L �µd

L >0,

Ac
L(�c

T +µc
T )>�c

L
2, Ad

L(�d
T +µd

T )>�d
L

2
.

In the same manner, 6 is transversely isotropic and hence can read

6=�T (e1⌦e1+e2⌦e2)+�L e3⌦e3. (74)

Let us compare the longitudinal shear moduli µc
L and µd

L . They are given, respec-
tively, by the two antiplane minimization cell problems

µc
L = min

'2H1
# (V )

hµ(r'+e1)·(r'+e1)i,

µd
L = min

'2H1
# (V\I)

hµ(r'+e1)·(r'+e1)i. (75)

The minimizers are the nonzero components �13
3 and ⇠ 13

3 of �13 and ⇠ 13. They
satisfy

0= hµ(r�13
3 +e1)·r'i for all '2 H 1

# (V ),

0= hµ(r⇠ 13
3 +e1)·r'i for all '2 H 1

# (V \ I), (76)

where # stands for periodic. It is easy to check that ⇠ 13
3 ( y)=�y1 (plus an arbitrary

constant) in Vf . Therefore

µd
L = hµm(r⇠ 13

3 +e1)·(r⇠ 13
3 +e1)im = min

'2H1
# (Vm)

hµm(r'+e1)·(r'+e1)im .

In other words, the longitudinal shear modulus of the debonded composite is as if
there were a hole instead of a fiber. Accordingly, µc

L and µd
L satisfy the following

bounds:
0<µd

L <Vmµm <
1

Vm
µm

+ V f
µ f

<µc
L <Vmµm +V f µ f ,

the last two inequalities corresponding to the classical Voigt and Reuss bounds.
In the particular case where the Poisson ratios of the fibers and the matrix equal 0,

then � f =�m =0. Moreover µ f = E f and µm = Em , E f and Em denoting the
Young moduli of the fibers and the matrix. In this case, one easily deduces from
(32), (34) and (35) that

�33 =⇠ 33 = D

3 =0.

Therefore, one gets

Ac
L = Ad

L =Vm Em +V f E f , �c
L =�d

L =0, �T =0, �L = K =V f E f .

Let us remark that Ac and Ad are not strictly well ordered because Ac
L = Ad

L .



HOMOGENIZED BEHAVIOR OF DEBONDED COMPOSITE 203

4.4. Example. Let us finish this section by an example of application. We consider
a cylinder �= S⇥(0, L) whose cross-section S is an open connected bounded sub-
set of R2 and whose axis e3 corresponds to the vertical. This cylinder, submitted to
the uniform gravity g =�ge3, is fixed on its section S⇥{L} and free on all other
boundaries S⇥{0} and @S⇥(0, L). It is made of a unidirectional composite, the
fibers of which are periodically distributed according to a regular hexagonal lattice
with axis e3. The Poisson ratios of the fibers and the matrix are equal to 0. Accord-
ingly, we are in the situation described at the end of the previous subsection; i.e.,

Ac" ·"= hEi"2
33+�c

T "2
↵↵+2µc

T "↵�"↵� +2µc
L"3↵"3↵,

Ad" ·"= hEi"2
33+�d

T "2
↵↵+2µd

T "↵�"↵� +2µd
L"3↵"3↵,

6= E f V f e3⌦e3, K = E f V f .

Moreover, we assume that the fibers are debonded in the part �d = S⇥(0, `) and
still bonded in the complementary part �c = S⇥(`, L) where 0<`< L . Accord-
ingly, the work of the gravity reads as

f0(u

⇤, �⇤)=�
Z

S⇥(0,L)

h⇢igu⇤
3 dx�

Z

S⇥(0,`)

⇢ f V f g�⇤ dx,

and the conditions of admissibility for the displacement fields are

u

⇤ 2 H 1(S⇥(0, L); R3), (�⇤, !⇤)2 H 1
L(S⇥(0, `))2,

u

⇤ =0 on S⇥{L}, �⇤ =!⇤ =0 on S⇥{`}.

Therefore 50 =(0, 0, 0), we are in the situation of Proposition 5 and the effective
problem admits a unique solution. Let us search for the solution under the form

u(x)=u(x3)e3, �(x)=�(x3), !(x)=0 with u(L)=0, �(`)=0.

Then, the effective stress reads as

Ac"(u)(x)=Ad"(u)(x)= hEiu0(x3)e3⌦e3,

where the prime denotes the derivative with respect to x3. Inserting this form
into (63), the variational effective problem becomes

0=
Z

S⇥(0,`)

✓✓
hEiu0+E f V f �

0
◆

@u⇤
3

@x3
+h⇢igu⇤

3+E f V f (�
0+u0)

@�⇤

@x3
+⇢ f V f g�⇤

◆
dx

+
Z

S⇥(`,L)

✓
hEiu0 @u⇤

3
@x3

+h⇢igu⇤
3

◆
dx, (77)

and the equality must hold for all admissible (u

⇤, �⇤). Taking first (u

⇤, �⇤) of the
same form as the expected solution, i.e., u

⇤(x)=v(x3)e3 and �⇤(x)='(x3), we
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obtain the following one-dimensional variational problem for (u, �):

0=
Z `

0

�
(hEiu0+E f V f �

0)v0+h⇢igv+E f V f (�
0+u0)'0+⇢ f V f g'

�
dx3

+
Z L

`

�
hEiu0v0+h⇢igv

�
dx3,

where the equality must hold for all v2 H 1(0, L) such that v(L)=0 and all '2
H 1(0, `) such that '(`)=0. By standard arguments of calculus of variations, we
find that u and � are the unique solution of the following boundary value problem:

in (0, `) :
⇢hEiu00+E f V f �

00 = h⇢ig,

E f (�
00+u00)=⇢ f g; in (`, L) : hEiu00 = h⇢ig; (78)

u0(0)=�0(0)=0; �(`)=0, [[u]](`)=0,

hEi[[u0]](`)= E f V f �
0(`�); u(L)=0.

(79)

After some calculations, we eventually find

u0(x3)=

8
><

>:

⇢m

Em
gx3, 0<x3<`,

h⇢i
hEigx3, `<x3<L ,

u(L)=0, �(x3)=
✓

⇢ f

E f
� ⇢m

Em

◆
g
2
(x2

3�`2). (80)

Conversely, the reader could verify that (77) is satisfied for any admissible (u

⇤, �⇤)
with (u, �) given by (80). Therefore, we have found the unique solution of the
effective problem. Using (42) and (49), we can see the influence of the debonding
on the repartition of the stresses inside the composite:

in S⇥(0, `) : � 0(x, y)=

8
>><

>>:

E f

hEih⇢igx3e3⌦e3 in Vf ,

Em

hEih⇢igx3e3⌦e3 in Vm,

(81)

in S⇥(`, L) : � 0(x, y)=
⇢
⇢ f gx3e3⌦e3 in Vf ,

⇢m gx3e3⌦e3 in Vm .
(82)

5. Conclusion and perspectives

We have shown that the effective behavior of a unidirectional composite material
in the case where the fibers are debonded but still in contact with the matrix is
formally similar to a generalized continuous medium whose kinematics contain not
only the usual macroscopic displacement fields but also two scalar fields of internal
variables describing the sliding and the rotation of the fibers. The two-scale proce-
dure based on asymptotic expansions allowed us to formulate the effective problem
giving the response of a composite body submitted to a mechanical loading. This
problem can be formulated as the minimization of the effective potential energy of
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the composite body. This effective potential energy, difference of the effective elas-
tic energy and the effective work of the applied forces, contains effective stiffness
coefficients which are obtained by solving 12 elementary cell problems. Five of
them can be solved in a closed form, the remaining seven requiring in general nu-
merical computations. None of the problems are standard problems of the homog-
enization theory. Finally, the effective global problem leads to a system of coupled
partial differential equations of second order which involve the kinematical fields.

The procedure was developed here in the particular case where the fibers and the
matrix are linearly elastic isotropic materials with the assumption that the fibers
remain in contact without friction with the matrix. We claim that it is possible to
extend this work by removing some assumptions and enlarging the setting. For
example, a first extension should be to consider prestresses in the composite and
hence to develop the procedure in the case of an affine stress-strain relation. An-
other natural extension could be to consider more general and more realistic contact
conditions between matrix and fibers: unilateral contact without friction or cohe-
sive forces [Charlotte et al. 2006], for instance. The difficulty would be to solve
nonlinear cell problems, and in such cases the effective behavior would no longer
be described by a finite number of coefficients. An interesting mathematical chal-
lenge is to give a rigorous proof, by 0-convergence for instance, that the effective
behavior is really the one proposed here. It is a real issue because, as we have
shown, the additional kinematical fields are less regular than the classical one. The
consequences are that convergence could probably be proved only if the external
forces satisfy certain smoothness conditions, and that the additional field should
not satisfy arbitrary boundary conditions.

But the most interesting challenge is to introduce a law for the debonding evo-
lution. Indeed, we have considered here that the domain where the fibers are
debonded is given. But of course the real question is to find how this domain
evolves with the loading. If we consider a Griffith-like assumption and suppose
that debonding corresponds to an increase of the surface energy proportional to the
new surface created [Bourdin et al. 2008], then the problem of debonding evolu-
tion will consist in finding when and how the potential energy is transformed into
surface energy [Bilteryst and Marigo 2003]. If one adopts the global minimization
principle proposed in [Francfort and Marigo 1993], then major mathematical diffi-
culties will occur. Indeed, in the simplest case where the behavior of the material
is described by two stiffness tensors, the damaged and the undamaged ones, it
was shown in [Francfort and Marigo 1993] that the minimization energy problem
does not admit classical solutions but must be relaxed to consider fine mixtures
of damaged and undamaged material. In the present case the same phenomenon
should probably also occur, but, because of the additional kinematical fields, its
mathematical treatment should be much more difficult.
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