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INTERFACES ENDOWED WITH
NONCONSTANT SURFACE ENERGIES REVISITED
WITH THE D’ALEMBERT–LAGRANGE PRINCIPLE

HENRI GOUIN

The equation of motion and the conditions on surfaces and edges between fluids
and solids in the presence of nonconstant surface energies, as in the case of
surfactants attached to fluid particles at the interfaces, are revisited under the
principle of virtual work. We point out that adequate behaviors of surface con-
centrations may drastically modify the surface tension which naturally appears
in the Laplace and the Young–Dupré equations. Thus, the principle of virtual
work points out a strong difference between the two revisited concepts of surface
energy and surface tension.

1. Introduction

This paper develops the principle of virtual work due to d’Alembert–Lagrange
[Serrin 1959]1 when different phases of fluids are in contact through singular sur-
faces or interfaces. The study is first presented without a constitutive assumption
for the surface energies, but the displacement fields are considered for a simple
material corresponding to the first-gradient theory. The d’Alembert–Lagrange
principle allows us to obtain the equation of motion and boundary conditions of
mechanical nature and is able to be extended to more complex materials with mi-
crostructures [Daher and Maugin 1986] or to multigradient theories [Gouin 2007].
Here, we aim to emphasize the formulation of the principle of virtual work when
the interfaces are endowed with nonconstant surface energies: the surfaces have
their own material properties independent of the bulks and are embedded in the
physical space, which is a three-dimensional metric space. The surface energy
density is taken into account and naturally comes into the boundary conditions as
the Laplace and the Young–Dupré equations by using variations associated with
the virtual displacement fields. To do so, it is necessary to propose a constitutive
equation of the surface energy; defining this is a main purpose of the paper. Such a

PACS2010: 02.30.Xx, 45.20.dg, 68.03.Cd, 68.35.Gy.
Keywords: variational methods, capillarity, surface energy, surface tension.

1The principle of virtual work is also referred to in the literature as the principle of virtual power
while virtual displacements are called virtual velocities [Germain 1973a; 1973b].
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presentation is similar that of deformational and configurational mechanics [Stein-
mann 2008]; the method is analogous with the one employed in [Germain 1973a;
1973b; Daher and Maugin 1986] but with powerful differential geometry tools as
in [Fosdick and Tang 2009]. However, the mathematical tools are adapted to the
linear functional of virtual displacement fields and not to the integral balance laws
over nonmaterial interfaces separating fluid phases as in [Cermelli et al. 2005].

Consequently, the main result of this paper is to propose a general form of the
linear functional with interfaces in first-gradient theory which points out the sig-
nificance of constitutive behaviors for the surface energies and highlights the clear
difference between the notions of surface energy and surface tension. Fischer et al.
[2008] emphasized a thermodynamical definition of surface energy, surface tension,
and surface stress for which surface tension and surface stress are identical for flu-
ids. Our presentation is not the same: without any thermodynamical assumptions,
the difference between surface energy and surface tension is a natural consequence
of the virtual work functional and the d’Alembert–Lagrange principle. The surface
energy allows us to obtain the total energy of the interfaces and the surface tension
is directly generated from the boundary conditions of the continuous medium.

In the simplest cases the two notions of surface energy and surface tension are
mingled, but this is not generally the case when the surface energy is nonconstant
along the interfaces. To prove this property, we first focus on the simplest case of
Laplace’s capillarity and obtain the well-known equations on interfaces and contact
lines.

Surfaces endowed with surface matter, as in the case of surfactants, are a more
complex case. Recent decades have seen the extension of surfactant applications
in many fields including biology and medicine [Rosen 2004]; surfactants can also
be expected to play a major mechanical role in the fluid and solid domains. The
versatility of a surfactant mainly depends on its concentration at interfaces. It ex-
perimentally appears that a surfactant or surface-active agent is a substance present
in liquids at a very low concentration rate and, when surface mass concentration is
below the critical micelle concentration, it is mainly absorbed onto interfaces and
alters only the interfacial free energies [de Gennes et al. 2004]. The interfacial free
energy per unit area (generally called the surface energy) is the minimum amount
of work required to create an interface at a given temperature [Edwards et al. 1991;
Slattery et al. 2007]. The fact that surfactants can affect the mechanical behaviors
of interfaces must be modelized in order to predict and control the properties of
complete systems.

In fact, our aim is not to study the general case of surfactants proposed in the
literature but to focus on the virtual work method to prove that simple behaviors
of the surface energy depending on the mass concentration can drastically change
the capillary effects. So, the concept of surface tension naturally appears in the
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equations on surfaces and on lines. In this paper, we call a surfactant the matter
distributed only on the interfaces: we consider the special case when surfactant
molecules are insoluble in the liquid bulk (the surface mass concentration is below
the critical micelle concentration [Rosen 2004]) and are attached to fluid particles
along the interfaces (without surface diffusion as in [McBride et al. 2011]).

The manuscript is organized as follows: Section 2 briefly reminds us of some
results formally presenting the principle of virtual work in its more general form by
using the kinematics of a continuous medium and the notion of virtual displacement.
The simplest example of the Laplace model of capillarity concludes the section.

Section 3 deals with the case when the interfaces are endowed with nonconstant
surface energy, whereby we essentially focus on liquid in contact with solid and gas.
The special case of surfactants as interface matter attached to the fluid particles is
considered. The surface energy depends on the surface matter concentration. Such
a property drastically changes the boundary conditions on the interface by using
surface tension instead of surface energy.

Section 4 deals with an explicit comparison between surface energy and surface
tension only within deformational mechanics. And Section 5 is the conclusion in
which some general extension can be forecast.

The main mathematics tools are collected in the large Appendix so that the
presentation of the text is not cluttered with tedious calculations. The main math-
ematical tool is (15), which can be extended to more complex media.

2. Virtual work for a continuous medium

In continuum mechanics, motions can be equivalently studied with either the New-
tonian model of a system of forces or the Lagrangian model of the work of forces
[Germain 1973a; 1973b]. The Lagrangian model does not derive from a variational
approach but, at equilibrium, the minimization of the energy coincides with the zero
value of a linear functional. Generally, the linear functional expressing the work of
forces is related to the theory of distributions; a decomposition theorem associated
with displacements (as C1-test functions whose supports are compact manifolds)
uniquely determines a canonical zero order form (a separated form) with respect
to both the test functions and the transverse derivatives of the contact test functions
[Schwartz 1966]. In the same way that the Newtonian principle is useless when
we do not have any constitutive equation for the system of forces, the d’Alembert–
Lagrange principle is useless when we do not have any constitutive assumption for
the virtual work functional.

The equation of motion and boundary conditions of a continuous medium derive
from the d’Alembert–Lagrange principle of virtual work, which is an extension of
the same principle in the mechanics of systems with a finite number of degrees of
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freedom: For any virtual displacement, the motion is such that the virtual work of
forces is equal to the virtual work of mass accelerations [Gouin 2007].

2.1. The background of the principle of virtual work. The motion of a continuous
medium is classically represented by a continuous transformation ' of a three-
dimensional space into the physical set. In order to describe the transformation
analytically, the variables X = (X1, X2, X3) which single out individual parti-
cles correspond to material or Lagrange variables; the variables x = (x1, x2, x3)

correspond to Euler variables. The transformation representing the motion of a
continuous medium is of the form

x = '(X, t) or xi = 'i (X1, X2, X3, t), i 2 {1, 2, 3}, (1)

where t denotes the time. At a fixed time the transformation possesses an inverse
and continuous derivatives up to the second order except on singular surfaces,
curves, or points. Then, the diffeomorphism ' from the set D0 of the particle
references into the physical set D is an element of a functional space } of the posi-
tions of the continuous medium considered as a manifold with an infinite number
of dimensions.

To formulate the d’Alembert–Lagrange principle of virtual work in continuum
mechanics, we recall the notion of virtual displacements. This notion is obtained
by letting the displacements arise from variations in the paths of particles. Let
a one-parameter family of varied paths or virtual motions denoted by {'⌘}, and
possessing continuous partial derivatives up to the second order, be analytically
expressed by the transformation

x =8(X, t; ⌘), (2)

with ⌘ 2 O , where O is an open real set containing 0, and such that 8(X, t; 0) =
'(X, t) (the real motion of the continuous medium is obtained when ⌘ = 0). The
derivative with respect to ⌘ at ⌘ = 0 is denoted by �. In the literature, the derivative
� is named the variation and the virtual displacement is the variation of the position
of the medium [Serrin 1959]. The virtual displacement is a tangent vector to },
the functional space of positions, at ' (�' 2 T'(})). In the physical space, the
virtual displacement �' is determined by the variation of each particle: the virtual
displacement ⇣ of the particle x is such that ⇣ = �x when at ⌘ = 0, {�X = 0, �t = 0,
�⌘ = 1}, and we associate the field of tangent vectors to D:

x 2 D ! ⇣ =  (x) ⌘ @8
@⌘

�

�

�

⌘=0
2 T

x

(D),

where T
x

(D) is the tangent vector bundle to D at x.
The virtual work concept, the dual of Newton’s method, can be written in the

following form:
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Figure 1. The boundary S of D is represented by a thick curve
and its variation by a thin curve. The variation �' of the family
{'⌘} of varied paths belongs to T'(}), tangent space of } at '.

The virtual work �⌧ is a linear functional value of the virtual displacement,

�⌧ = h=, �'i, (3)

where h · , · i denotes the inner product of = and �', with = belonging to the cotan-
gent space T ⇤

' (}) of } at '.

In (3), the medium in position ' is submitted to covector = denoting all the
“stresses” in mechanics. In the case of motion, we must add the inertial forces,
corresponding to the accelerations of masses, to the volume forces.

The d’Alembert–Lagrange principle of virtual work is expressed as follows:

For all virtual displacements, the virtual work is null.

This principle leads to the analytic representation

8 �' 2 T'(}), �⌧ = 0.

Theorem. If (3) is a distribution expressed in separated form (see [Schwartz 1966]),
the d’Alembert–Lagrange principle yields the equation of motion and boundary
conditions in the form = = 0.

The virtual displacement is submitted to constraints coming from the consti-
tutive equations and geometrical assumptions such as mass conservation. Conse-
quently, the constraints are not expressed by Lagrange multipliers but are directly
taken into account by the variations of the constitutive equations. The equation of
motion and boundary conditions result from the explicit expression of �⌧ associated
with the considered physical problem. As a first example, the simplest case of the
theory of capillarity at equilibrium is considered.
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2.2. The classical Laplace theory of capillarity. Liquid-vapor and two-phase in-
terfaces are represented by material surfaces endowed with an energy related to
the Laplace free energy of capillarity. When working far from critical conditions,
the capillary layer has a thickness equivalent to a few molecular beams [Ono and
Kondo 1960; Domb 1996] and the interface appears as a geometrical surface sep-
arating the two media, with its own characteristic behavior and energy properties
[Levitch 1962]. The domain D of a compressible fluid (liquid) is immersed in a
three Euclidean space. The boundary of the domain D is a surface S shared in N
parts Sp of class C2, p = 1, . . . , N (Figure 2). We denote by (Rm)�1 the mean
curvature of S; the union of the limit edges 0pq between surfaces Sp and Sq is
assumed to be of class C2 and tp is the tangent vector to 0p = S

0pq , q = 1, . . . , N
with q 6= p, oriented by the unit external vector to D denoted np; n

0
p = tp ⇥ np is

the unit external normal vector to 0p in the tangent plane to Sp; the edge 0 of S is
the union of the edges 0p of Sp.

To first verify the well-foundedness of the model, we consider the explicit ex-
pression of the functional �⌧ for compressible fluids with capillarity in the nondis-
sipative case. The variation of the total energy E of such a fluid results from the
variation of the sum of the local density of energy integrated on the domain D and
the variation of the local density of surface energy integrated on its boundary S; to
these variations, we must add the work of volume force ⇢ f in D, surface force T

on S, and line force L on 0. Such an amount represents, for the domain D, the
virtual work of forces of the compressible fluid with capillarity.

The Laplace theory of capillarity introduces the notion of surface energy (or
superficial energy) on surfaces such that, for a compressible liquid with capillary
effects on the wall boundaries, the total energy of the fluid writes in the form

E =
ZZZ

D
⇢↵(⇢) dv +

ZZ

S
� ds, with

ZZ

S
� ds ⌘

N
X

p=1

ZZ

Sp

�p ds,

S

D

p pq

SpSq

Am

np

np

tp

Ƚ

pqȽ

Figure 2. The set D has a surface boundary S divided into several
parts. The edge of S is denoted by 0 which is also divided into
several parts with endpoints Am .
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where ⇢ is the matter density, ↵(⇢) is the fluid-specific energy (⇢↵(⇢) is the volume
energy), and the coefficients �p are the surface energy densities on each surface
Sp represented — for the sake of simplicity — by � on S.2 Surface integrations
are associated with the metric space. As proved in the Appendix, the variation of
the deformation gradient tensor F = @x/@ X (with components {@xi/@ X j }) of the
mapping ' combined with the mass conservation and the variation of � allow us
to obtain the variation ��E (see (A.3)); then the independent variables come from
the position x of the continuous medium.

The virtual work of the volume forces defined on D is generally in the form
ZZZ

D
⇢ f

T ⇣ dv, with f = � grad U,

where U (x) is a potential per unit mass and superscript T denotes transposition.
The virtual work of surface and line forces defined on S and 0 are, respectively,

ZZ

S
T

T ⇣ ds and
Z

0

L

T ⇣ dl.

Consequently, the total virtual work of forces �⌧ is

�⌧ = ��E +
ZZZ

D
⇢ f

T ⇣ dv +
ZZ

S
T

T ⇣ ds +
Z

0

L

T ⇣ dl.

From (A.3) and (A.6), we obtain

�⌧ ⌘
ZZZ

D
(� gradT p + ⇢ f

T )⇣ dv +
Z

0

(L

T � � n

0T )⇣ dl

+
ZZ

S

h

��� +
n⇣

p + 2�
Rm

⌘

n

T + gradT � (1 � nn

T ) + T

T
o

⇣
i

ds, (4)

where p ⌘ ⇢2↵0(⇢) is the pressure of the liquid [Rocard 1952], �� denotes the
variation of the surface energy � , and 1 denotes the identity tensor. When � is
constant we get �� = 0; then,

�⌧ ⌘
ZZZ

D
(� gradT p + ⇢ f

T )⇣ dv

+
ZZ

S

n⇣

p + 2�
Rm

⌘

n

T + T

T
o

⇣ ds +
Z

0

(L

T � � n

0T )⇣ dl,

and the d’Alembert–Lagrange principle yields the equation of equilibrium on D,

�p,i + ⇢ fi = 0 or � grad p + ⇢ f = 0. (5)

2Our aim is not to consider the thermodynamics of interfaces. Consequently, ↵ and � are not
considered as functions of thermodynamical variables such as temperature or entropy.
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The condition on boundary surface S is
⇣

p + 2�
Rm

⌘

ni + Ti = 0 or
⇣

p + 2�
Rm

⌘

n + T = 0, (6)

where, for an external fluid bordering D, T = �Pn, with P the value of the
pressure in the external fluid. On the lines, it is necessary to consider the partition
of S such that the edge 0pq is common to Sp and Sq ,

�pn0
pi + �qn0

qi � Li = 0 or �pn

0
p + �q n

0
q � L = 0. (7)

Surface condition (6) is the Laplace equation and line condition (7) is the Young–
Dupré equation with a line tension L.

It is interesting to note that Steigmann and Li [1995] used the principle of virtual
work by utilizing a system of line coordinates on boundary surfaces and lines. By
introducing the free energy per unit area of interfaces and the free energy per unit of
contact curve, they obtained Laplace’s equation and a generalization of the Young–
Dupré equation of equilibrium; moreover, by employing the necessary conditions
for energy-minimizing states of fluid systems they got a demonstration that the line
tension associated with a three-phase contact curve must be nonnegative.

When � is not constant but �� = 0, we obtain the same equations for (5) and
(7) but (6) on S is replaced by

⇣

p + 2�
Rm

⌘

n + (1 � nn

T ) grad � + T = 0.

The additive term (1 � nn

T ) grad � = gradtg � is the tangential part of grad � to
the surface S. This term corresponds to a shear stress necessarily balanced by the
tangential component of T . Such is the case when � is defined on the S0 image
of S in the reference space D0 (then, � = �0(X)). We understand the importance
of the surface energy constitutive behavior; this questioning is emphasized in the
following section.

3. Capillarity of liquid in contact with solid and gas
in the presence of nonconstant surface energy

We have seen in the previous section that the problem associated with the behavior
of the surface energy is the key point to obtaining the boundary conditions on
interfaces and contact lines bordering the fluid bulk. In this section we consider
a very special case of surfactant: the interfaces are endowed with a concentration
of matter which affects the surface energy. The surface matter is attached to the
particles of the fluid such that they obey together to the same equations of motion
(1) and of virtual motion (2). We consider a more general case than in Section 2.2:
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S1

S2

S1

Ƚ

2n

1n

1n
t

2n

Figure 3. A liquid in drop form lies on a solid surface. The liquid
is bordered by a gas and a solid; S1 is the boundary between liquid
and solid; S0

1 is the boundary between gas and solid; S2 is the
interface between liquid and gas; n1 and n2 are the unit normal
vectors to S1 and S2, external to the domain of the liquid; the edge
0 (or contact line) is common to S1 and S2 and t is the unit tangent
vector to 0 relative to n1; n

0
1 = n1 ⇥ t and n

0
2 = n2 ⇥ (�t) are the

binormals to 0 relative to S1 and S2, respectively.

we study the motion of the continuous medium with viscous forces. This viscosity
affects not only the equation of motion but also the boundary conditions.

3.1. Geometrical description of the continuous medium. A drop of liquid fills the
set D and lies on the surface of a solid. The liquid drop is also bordered by a gas.
All the interfaces between liquid, solid and gas are assumed to be regular surfaces.
We call �S1

and �S2
the values of the surface energies of S1 and S2, respectively

(see Figure 3). These energies may depend on each point of the boundary of D.
Afterwards, on the domain S0

1, the surface energy between gas and solid is neglected
[Adamson 1967]. The liquid drop is submitted to a volume force ⇢ f . The external
surface force on D is modelized with two constraint vector fields, T1 on the solid
surface, S1, and T2 on the free surface, S2. The line tension L is assumed to be
null.

By using the principle of virtual work, we aim to write the equation of motion
of the liquid drop and the conditions on the surfaces and line bordering the liquid
drop.

3.2. Surfactant attached to interfacial fluid particles. To express the behavior of
the surface energy, we need to represent first the equation of the surface matter
density.

Under the mapping ', the set D0 with boundary S0 has image D with boundary S.
We assume there exists an insoluble surfactant with a surface mass concentration
c0 defined on D0 of image c in D [Levitch 1962; Adamson 1967; Defay 1971].
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Let us consider the case when the surfactant is attached to the fluid particles on
the surface S, that is,

c0 = c0(X), (8)

where X 2 S0.
The mass conservation of the surfactant on the surface S requires that for any

subset S⇤
0 of S0, of image S⇤ subset of S,

ZZ

S⇤
c ds =

ZZ

S⇤
0

c0 ds0. (9)

Relation (9) implies

c det F n

T
0 F�1

n = c0 with n

T
0 = n

T F
p

(nT F FT
n)

, (10)

where n0 denotes the unit normal vector to S0. The proof of (10) is given in the
Appendix.

From (10), we obtain the following: Firstly, the conservation of the surface
concentration of the surfactant,

dc
dt

+ c(div u � n

T
Dn) = 0, (11)

where u is the fluid velocity vector and

D = 1
2 (@u/@x + (@u/@x)T )

denotes the rate of the deformation tensor of the fluid. The term div u � n

T
Dn

expresses the tangential divergence relative to the surface S.
Secondly, the variation of the mass concentration of the surfactant,

�c + c
h

div ⇣ � n

T @⇣
@x

n

i

= 0. (12)

The proofs of (11) and (12) are also given in the Appendix. In the case when the
surface energy � is a function of the surfactant concentration,

� = � (c),

we deduce �� = � 0(c) �c. If we denote

� = � � c� 0(c), (13)

which is the Legendre transformation of � with respect to c, then by taking (A.3)
into account we obtain, in the Appendix,

�E = �
ZZ

S

h 2�
Rm

n

T + gradT � (1 � nn

T )
i

⇣ ds +
Z

0

� n

0T ⇣ dl. (14)
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As we shall see in Section 4, � is the surface tension of the interface S. The
variation �c of the concentration has an important consequence on the surfactant
behavior and the surfactant behavior is essential to determining the virtual work of
the liquid drop.

Relation (13) can easily be extended to several surfactants: if

� = � (c1, . . . , cn),

where the ci , for i 2 {1, . . . , n}, are the concentrations of the n surfactants, then

� = � �
n

X

i=1

ci
@�
@ci

,

corresponding to the Legendre transformation of � with respect to ci , i 2 {1, . . . , n}
and (14) is always valid.

3.3. Governing equation of motion and boundary conditions. As previously in-
dicated, we do not consider the thermodynamical problem of interfaces, but, for
example, when the medium is isothermal, ↵ can be considered as the specific free
energy of the bulk and � the free surface energy of the interface.

The use of virtual displacements yields a linear functional of virtual works, the
sum of several partial works. To enumerate the works of forces, we have to consider
how they are obtained in the literature [Germain 1973a; 1973b; Gouin 2007]. The
virtual work expressions of volume force ⇢ f , surface force T , and liquid pressure
p are the same as in Section 2.2.

(a) For fluid motion, the virtual work of mass impulsions is

�
ZZZ

D
⇢a

T ⇣ dv,

where a is the acceleration vector.

(b) For dissipative motion, we must add the virtual work of viscous stresses

�
ZZZ

D
tr
⇣

⌧v
@⇣
@x

⌘

dv,

where ⌧v denotes the viscous stress tensor usually written in Navier–Stokes form
[Adamson 1967]. Taking account of the relation

tr
⇣

⌧v
@⇣
@x

⌘

= div(⌧v⇣ ) � (div ⌧v)⇣ ,

an integration by parts using Stokes’ formula in (14) for the virtual work of inter-
facial forces, together with the relations n

0
1 = n1 ⇥ t and n

0
2 = �n2 ⇥ t , allows us
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to obtain the virtual work of forces applied to the domain D:

�⌧ =
ZZZ

D
(� gradT p + div ⌧v + ⇢ f

T � ⇢a

T )⇣ dv

+
ZZ

S1



gradT �1(1 � n1n

T
1 ) +

✓

p + 2�1

Rm1

◆

n

T
1 � n

T
1 ⌧v + T

T
1

�

⇣ ds

+
ZZ

S2



gradT �2(1 � n2n

T
2 ) +

✓

p + 2�2

Rm2

◆

n

T
2 � n

T
2 ⌧v + T

T
2

�

⇣ ds

+
Z

0

(�1n

0T
1 � �2n

0T
2 )⇣ dl,

(15)

where Rmi denotes the mean radius of curvature of Si , �i denotes the surface tension
of Si , and Ti the surface force on Si , i 2 {1, 2}; T2 = �Pn2, where P is the pressure
in the external gas to the domain D.

The field of virtual displacement x 2 D �! ⇣ (x) 2 T
x

(D) must be tangent to
the solid (rigid) surface S1. The fundamental lemma of variational calculus yields
the equation of motion associated with domain D, the conditions on surfaces S1
and S2, and the condition on contact line 0.

Due to the fact that (15) is expressed in separate form in the sense of distributions
[Schwartz 1966], the d’Alembert–Lagrange principle implies that 8 ⇣ (x) 2 T

x

(D)

tangent to S1, each of the four integrals of (15) is null. Then, we obtain equations
on D, S1, S2, and 0, respectively.

• We get the equation of motion in D:

⇢a + grad p = (div ⌧v)T + ⇢ f . (16)

Equation (16) is the Navier–Stokes equation for compressible fluids when ⌧v is
written in the classical linear form by using the rate of the fluid deformation tensor,
⌧v = �(tr D)1 + 2µD. We may add a classical condition for the velocity on the
boundary as the adherence condition.

• We get the condition on surface S1. The virtual displacement is tangent to S1; the
constraint n

T
1 ⇣ = 0 implies there exists a scalar Lagrange multiplier x 2 S1 �!

�(x) 2 <, such that
✓

p + 2�1

Rm1

◆

n1 � ⌧ vn1 + (1 � n1n

T
1 ) grad �1 + T1 = �n1, (17)

The normal and tangential components of (17) relative to S1 are deduced from (17):

p + 2�1

Rm1

� n

T
1 ⌧ vn1 + n

T
1 T1 = � , (18)

(1 � n1n

T
1 )(�⌧vn1 + grad �1 + T1) = 0. (19)



INTERFACES ENDOWED WITH NONCONSTANT ENERGIES 35

Following (18), we obtain the value of � along the surface S1. The scalar field
� corresponds to the unknown value of the normal stress vector on the surface
S1; it corresponds to the difference between the mechanical and viscous normal
stresses and a stress due to the curvature of S1 taking into account the surface
tension. Equation (19) represents the balance between the tangential components
of the mechanical and viscous stresses and the tangential component of the surface
tension gradient.
• We get the condition on surface S2:

✓

p + 2�2

Rm2

◆

n2 � ⌧ vn2 + (1 � n2n

T
2 ) grad �2 � Pn2 = 0. (20)

The normal and tangential components of (20) relative to S2 are deduced:

2�2

Rm2

� n

T
2 ⌧ vn2 + p = P, (21)

(1 � n2n

T
2 )(�⌧vn2 + grad �2) = 0. (22)

Equation (21) corresponds to the expression of the Laplace equation in the case
of viscous motion; the normal component of viscous stresses is taken into account.
Equation (22) is similar to (19) for the surface S2 but without the component of
the stress vector.
• We get the condition on line 0. To get the line condition we must consider a
virtual displacement tangent to S1 and consequently in the form

⇣ = ↵ t + � t ⇥ n1,

where ↵ and � are two scalar fields defined on 0. From the last integral of (15),
we get the following immediately: For any scalar field x 2 0 �! �(x) 2 <,

Z

0

��1n

0T
1 (t ⇥ n1) dl �

Z

0

��2n

0T
2 (t ⇥ n1) dl = 0,

with n

0
1 = �t ⇥ n1 and n

0
2 = t ⇥ n2, and consequently,

��1 � �2n

T
2 n1 = 0.

Denoting by ✓ the angle hn1, n2i, we obtain the well-known relation of Young–
Dupré but adapted to �1 and �2 in place of �1 and �2:

�1 + �2 cos ✓ = 0. (23)

3.4. Remarks. For a motionless fluid, ⌧v = 0 and consequently, (19) yields

gradtg �1 = �T1tg,
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where gradtg �1 and T1tg denote the tangential parts of grad �1 and T1, respectively.
The tangential part of the vector stress is opposite to the surface tension gradient.
Therefore, at a given value of T1n = n

T
1 T1, (18) yields the value � corresponding

to the normal stress vector to the surface S1, (21) yields P = p + 2�2/Rm2 corre-
sponding to the classical equation of Badshforth and Adams [Adamson 1967] but
with the surface tension �2 instead of �2, and (22) implies (1 � n2n

T
2 ) grad �2 = 0.

At equilibrium, along S2, the surface tension �2 must be uniform.
In the case of motion, (22) represents the Marangoni effect as proposed in [Gibbs

1928; Defay 1971] but with the surface tension �2 instead of �2.

4. Surface energy and surface tension

A surface tension must appear on the boundary conditions as a force per unit of
line. The Legendre transformation � of � with respect to c exactly corresponds
to this property on the contact line 0; then, surface tension � differs from the
surface energy; this important property was pointed out by Gibbs [1928] and Defay
[1971] by means of thermodynamical considerations. The fundamental difference
between surface tension and surface energy, in the presence of attached surfactants,
is illustrated in the following cases corresponding to formal behaviors.

- If � is independent of c, then � = � : the surface tension is equal to the surface
energy. This is the classical case of capillarity for fluids considered in Section 2.2
and (23) is the classical Young–Dupré condition on the contact lines.

- In fact, � is a decreasing function of c [Adamson 1967]; when c is small enough
we consider the behavior

� = �0 � �1c, where �0 > 0 and �1 > 0;
then, (13) implies � = �0 and surface tension and surface energy are different.

- Now, we consider a formal case when the surface energy density model is written
in the form

� = �0 � �1c � �2c sin
⇣1

c

⌘

,

where �0 > 0, �1 > 0, and �2 > 0. Then, (13) implies

� = �0 � �2 cos
⇣1

c

⌘

. (24)

This case does not correspond to � as a monotonic decreasing function of c. Nev-
ertheless, when c ! 0, � does not have any limit and we get

� 2 [�0 � �2, �0 + �2].
The surface tension may have a large scale of values. When the concentration
c is low, a variation of the concentration c may generate strong fluctuations of
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the surface tension without significant change of the surface energy. Alternatively,
the concentration behavior strongly affects the surface tension but not the surface
energy. Relation (24) fits with the well-known physical case of hysteresis behavior
for a drop lying on a horizontal plane (see, for example, [Gouin 2003] and the
literature therein). So, the surface roughness is not the only reason of the hysteresis
of the contact angle even if the surface energy is nearly constant.

5. Conclusion

The principle of virtual work allows us to deduce the equation of motion and the
conditions on the surfaces and lines by means of a variational analysis. When
capillary forces operate and surfactant molecules are attached to the fluid molecules
at the interfaces, the conditions on the surfaces and lines point out a fundamental
difference between the concepts of surface energy and surface tension. This fact
was thermodynamically predicted in [Gibbs 1928; Defay 1971]. The hysteresis
phenomenon may appear even if surface energy is almost constant on a planar
substrate when the surface tension strongly varies.

In (23), �1 and �2 are not assumed to be constant, but are defined at each point of
0. This expression of the Young–Dupré boundary condition on the contact line 0 is
not true in more complex cases. For example, in the case when the surface tension
is a nonlocal functional of surfactant concentration, the surface tension is no longer
the classical Legendre transformation of the surface energy relative to surfactant
concentration and more complex behaviors can be foreseen. These behaviors can
change the variation of the integral of the free energy as in the case of shells or
in second-gradient models for which boundary conditions become more complex
[Cosserat and Cosserat 1909; Toupin 1962; Germain 1973b; Noll and Virga 1990;
Dell’Isola and Seppecher 1997]. In a further article [Gouin � 2014], we will see
this is also the case when the surface energy depends on the surface curvature as
in membranes and vesicles [Helfrich 1973; Seifert 1997; Agrawal and Steigmann
2011].

Appendix: Geometrical preliminaries
[Kobayashi and Nomizu 1963; Aris 1989; Gouin and Kosiński 1998]

A.1 Expression of the virtual work of forces in capillarity. The hypotheses and
notations are presented in Section 2.2.

Lemma 1. We have the following relations:

� det F = det F div ⇣ , (A.1)

�(F�1
n) = �F�1 @⇣

@x

n + F�1�n. (A.2)
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The proof of (A.1) comes from the so-called Jacobi identity,

�(det F) = det F tr(F�1�F),

and from
�F = �

⇣

@x

@ X

⌘

= @⇣

@ X

.

Then,

tr(F�1�F) = tr
✓

@ X

@x

@⇣

@ X

◆

= tr
✓

@⇣

@ X

@ X

@x

◆

= tr
✓

@⇣

@x

◆

= div ⇣ .

The proof of (A.2) comes as follows:

�(F�1
n) = �(F�1)n + F�1 �n.

But F�1 F = 1 implies
�(F�1)F + F�1 �F = 0,

and so also
�(F�1) = �F�1 @⇣

@ X

F�1 = �F�1 @⇣

@x

,

which yields (A.2).

Lemma 2. Let us consider the surface integral

E =
ZZ

S
� ds.

Then the variation of E is,

�E =
ZZ

S

h

�� �
⇣ 2�

Rm
n

T + gradT � (1 � nn

T )
⌘

⇣
i

ds +
Z

0

� n

0T ⇣ dl. (A.3)

Relation (A.3) points out the extreme importance of knowing the variation of
�� . The variation �E of E drastically changes following the different possible
behaviors of the surface energy.

The proof can be found as follows. The external normal n(x) to S is locally
extended in the vicinity of S by the relation n(x) = grad d(x), where d is the
distance of point x to S; for any vector field w, we obtain [Kobayashi and Nomizu
1963; Aris 1989]

rot(n ⇥ w) = n div w � w div n + @n

@x

w � @w
@x

n.

From n

T @n

@x

= 0 and div n = � 2
Rm

, we deduce on S,

n

T rot(n ⇥ w) = div w + 2
Rm

n

T w � n

T @w
@x

n. (A.4)
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Due to
E =

ZZ

S
� det(n, d1x, d2x),

where d1x and d2x are differential vectors associated with two coordinate lines of
S, we get

E =
ZZ

S0

� det F det(F�1
n, d1 X, d2 X),

where d1x = F d1 X and d2x = F d2 X . Then,

�E =
ZZ

S0

�� det F det(F�1
n, d1 X, d2 X)+

ZZ

S0

� �(det F det(F�1
n, d1 X, d2 X)).

Due to Lemma 1 and the fact that n

T
n = 1 implies n

T �n = 0,
ZZ

S0

� �(det F det(F�1
n, d1 X, d2 X))

=
ZZ

S



� div ⇣ det(n, d1x, d2x)+� det(�n, d1x, d2x)�� det
✓

@⇣

@x

n, d1x, d2x

◆�

=
ZZ

S

✓

div(�⇣ ) � (gradT � )⇣ � � n

T @⇣

@x

n

◆

ds.

Relation (A.4) yields

div(�⇣ ) + 2�
Rm

n

T ⇣ � n

T @�⇣

@x

n = n

T rot(� n ⇥ ⇣ ).

Then,
ZZ

S0

� �(det F det(F�1
n, d1 X, d2 X))

=
ZZ

S

⇣

� 2�
Rm

n

T + gradT � (nn

T � 1)
⌘

⇣ ds +
ZZ

S
n

T rot(� n ⇥ ⇣ ) ds,

where gradT � (nn

T � 1) belongs to the cotangent plane to S and we obtain (A.3).

A.1.1 Variation of the internal energy. Let us note that

�

ZZZ

D
⇢↵ dv =

ZZZ

D
⇢ �↵ dv, where �↵ = @↵

@⇢
�⇢ .

Due to the mass conservation,

⇢ det F = ⇢0(X), (A.5)

where ⇢0 is defined on D0, the differentiation of (A.5) yields

�⇢ det F + ⇢ �(det F) = 0,
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and from Lemma 1 we get
�⇢ = �⇢ div ⇣ .

Consequently, from p = ⇢2 @↵
@⇢

and div(p⇣ ) = p div ⇣ + (grad p)T ⇣ , we get

�

ZZZ

D
⇢↵ dv =

ZZZ

D
⇢

@↵
@⇢

�⇢ dv =
ZZZ

D
�p div ⇣ dv

=
ZZZ

D
(grad p)T ⇣ dv �

ZZ

S
pn

T ⇣ ds.
(A.6)

By taking into account (A.3), we immediately get (4).

A.2 Study of a surfactant attached to fluid particles.

A.2.1 Proof of (10). Under the hypotheses and notations of Section 3.2,
ZZ

S⇤
c ds =

ZZ

S⇤
det(nc, d1x, d2x) =

ZZ

S⇤
0

det(F F�1
nc, Fd1 X, Fd2 X)

=
ZZ

S⇤
0

c(det F) det(F�1
n, d1 X, d2 X) =

ZZ

S⇤
0

c(det F)nT
0 F�1

n ds0,

where n

T
0 n0 = 1. Moreover, n

T dx = 0 ) n

T Fd X = 0, then n

0T
0 = n

T F is normal
to S⇤

0 , and consequently,

n

T
0 = n

T F
p

(nT F FT
n)

, n

T = n

T
0 F�1

q

(nT
0 F�1(F�1)T

n0)
,

and from (9),

c det F
q

n

T
0 F�1(F�1)T

n0 = c0. (A.7)

A.2.2 Proof of (11) and (12). With the notations of Section 3.2, (A.7) yields

dc
dt

= �
c0

d(det F)
dt

(det F)2
q

(nT
0 F�1(F�1)T

n0)
�

c0
d
dt

(nT
0 F�1(F�1)T

n0)

2 det F(nT
0 F�1(F�1)T

n0)3/2
.

But,
d(det F)

dt
= (det F) div u and d

dt
(F�1(F�1)T ) = �2F�1

D(F�1)T . Then,

dc
dt

+ c(div u � n

T
Dn) = 0.

The same calculation with � in place of d
dt

yields immediately

�c + c


div ⇣ � n

T @⇣

@x

n

�

= 0.
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A.2.3 Proof of (14). From (12) and � = � (c) we get

�� = 



div ⇣ � n

T @⇣

@x

n

�

, with (c) = �c� 0(c).

Consequently,
ZZ

S
�� =

ZZ

S

✓

div(⇣ ) � gradT  ⇣ � n

T @⇣

@x

n

◆

ds.

But (A.4) implies

n

T rot(n ⇥ ⇣ ) = div(⇣ ) + 2
Rm

n

T ⇣ � n

T @(⇣ )

@x

n,

and

n

T @(⇣ )

@x

n = (nT ⇣ ).(gradT  n) + n

T @⇣

@x

n = gradT  nn

T ⇣ + n

T @⇣

@x

n.

Then,

div(⇣ )�gradT  ⇣�n

T @⇣

@x

n =� 2
Rm

n

T ⇣�gradT  (1�nn

T )⇣+n

T rot(n⇥⇣ ).

Due to
ZZ

S
n

T rot(n ⇥ ⇣ ) ds =
Z

0

n

0T ⇣ dl,

we get
ZZ

S
��� ds =

ZZ

S

h 2
Rm

n

T + gradT  (1 � nn

T )
i

⇣ ds �
Z

0

n

0T ⇣ dl,

and (A.3) yields

�E = �
ZZ

S

h 2�
Rm

n

T + gradT � (1 � nn

T )
i

⇣ ds +
Z

0

� n

0T ⇣ dl.
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