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Abstra
t

In this paper the Ver
hery's polar method is extended to the 
on
eptual frame-

work of the Reddy's Third-order Shear Deformation Theory (TSDT) of laminates. In

parti
ular, a mathemati
al representation based upon tensor invariants is derived for

all the laminate sti�ness matri
es (basi
 and higher-order sti�ness terms). The major

analyti
al results of the appli
ation of the polar formalism to the TSDT of laminates

are the generalisation of the 
on
ept of a quasi-homogeneous laminate as well as the

de�nition of some new 
lasses of laminates. Moreover, it is proved that the elasti


symmetries of the laminate shear sti�ness matri
es (basi
 and higher-order terms) de-

pend upon those of their in-plane 
ounterparts. As a 
onsequen
e of these results a

uni�ed formulation for the problem of designing the laminate elasti
 symmetries in the


ontext of the TSDT is proposed. The optimum solutions are found within the frame-

work of the polar-geneti
 approa
h, sin
e the obje
tive fun
tion is written in terms

of the laminate polar parameters, while a geneti
 algorithm is used as a numeri
al

tool for the solution sear
h. In order to support the theoreti
al results, and also to

prove the e�e
tiveness of the proposed approa
h, some new and meaningful numeri
al

examples are dis
ussed in the paper.

Keywords:

Anisotropy; Polar method; Geneti
 Algorithms; Composite materials; Stru
tural design;

Third-order Shear Deformation Theory.

Notations

CLT, Classi
al Laminate Theory

FSDT, First-order Shear Deformation Theory

TSDT, Third-order Shear Deformation Theory

GA, Geneti
 Algorithm

Γ = {O;x1, x2, x3}, lo
al (or material) frame of the elementary ply

ΓI = {O;x, y, z = x3}, global frame of the laminate

θ, rotation angle

{11, 22, 33, 32, 31, 21} ⇔ {1, 2, 3, 4, 5, 6}, 
orresponden
e between tensor and Voigt's (ma-

trix) notation for the indexes of tensors (lo
al frame)

{xx, yy, zz, zy, zx, yx} ⇔ {x, y, z, q, r, s}, 
orresponden
e between tensor and Voigt's (ma-

trix) notation for the indexes of tensors (global frame)

Zij , (i, j = 1, 2 or i, j = x, y), se
ond-rank plane tensor using tensor notation (lo
al and

global frame)
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Lijkl, (i, j, k, l = 1, 2 or i, j, k, l = x, y), fourth-rank plane tensor using tensor notation

(lo
al and global frame)

u, v, w, 
omponents of the laminate displa
ement �eld within the global frame ΓI

u0, v0, w0, φx, φy, the �ve independent kinemati
 unknowns in the 
ontext of the Reddy's

TSDT

n, number of layers

{δk} (k = 1, ..., n), ve
tor of the layers orientation angles

zk−1, zk, thi
kness 
oordinates of bottom and top fa
es of the k-th 
onstitutive ply,

respe
tively

h, overall thi
kness of the laminate

{ε(0)}, {ε(1)}, {ε(3)}, 3× 1 ve
tors of in-plane strains of the laminate middle plane

{γ(0)}, {γ(2)}, 2× 1 ve
tors of the transverse shear strains of the laminate middle plane

{N}, {M}, {P}, 3× 1 ve
tors of higher-order generalised in-plane for
es (per unit length)

{Q}, {R}, 2×1 ve
tors of higher-order generalised transverse shear for
es (per unit length)

[Q], 3× 3 in-plane redu
ed sti�ness matrix of the 
onstitutive lamina

[Q̂], 2× 2 out-of-plane redu
ed sti�ness matrix of the 
onstitutive lamina

T0, T1, R0, R1,Φ0,Φ1, polar parameters of a fourth-rank plane tensor (also used for the

lamina in-plane redu
ed sti�ness matrix [Q])

T,R,Φ, polar parameters of a se
ond-rank plane tensor (also used for the lamina trans-

verse shear redu
ed sti�ness matrix [Q̂])

[A], [B], [D], [E], [F], [H], 3 × 3 in-plane sti�ness matri
es of the laminate (membrane,

membrane/bending 
oupling, bending and higher-order sti�ness, respe
tively)

[A∗], [B∗], [D∗], [E∗], [F∗], [H∗], 3 × 3 homogenised in-plane sti�ness matri
es of the lam-

inate (membrane, membrane/bending 
oupling, bending and higher-order sti�ness,

respe
tively)

[Â], [D̂], [F̂], 2 × 2 transverse shear sti�ness matri
es of the laminate (basi
 and higher-

order sti�ness, respe
tively)

[Â∗], [D̂∗], [F̂∗], 2 × 2 homogenised transverse shear sti�ness matri
es of the laminate

(basi
 and higher-order sti�ness, respe
tively)
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bk, dk, ek, fk, hk, 
oe�
ients of the laminate sti�ness matri
es

T0M∗ , T1M∗ , R0M∗ , R1M∗ ,Φ0M∗ ,Φ1M∗
, polar parameters of the generi
 homogenised in-

plane sti�ness matrix of the laminate (M∗ = A∗, B∗,D∗, E∗, F ∗,H∗)

T
M̂∗

, R
M̂∗

,Φ
M̂∗

, polar parameters of the generi
 homogenised transverse shear sti�ness

matrix of the laminate (M̂∗ = Â∗, D̂∗, F̂ ∗)

[C∗
1], [C

∗
2], [C

∗
3], 3× 3 laminate homogeneity matri
es

Ei, (i = 1, 2, 3), Young's moduli of the 
onstitutive lamina (material frame)

Gij , (i, j = 1, 2, 3), shear moduli of the 
onstitutive lamina (material frame)

νij , (i, j = 1, 2, 3), Poisson's ratios of the 
onstitutive lamina (material frame)

tply, thi
kness of the 
onstitutive lamina

Ψ , overall obje
tive fun
tion for the problem of designing the elasti
 symmetries of the

laminate

{f}, 37× 1 ve
tor of partial obje
tive fun
tions

[W], 37× 37 positive semi-de�nite diagonal weight matrix

R̂0M∗ , R̂1M∗ , Φ̂0M∗ , Φ̂1M∗
imposed values for the polar parameters of matrix [M∗], (M∗ =

A∗,D∗,F∗,H∗)

Npop, number of populations

Nind, number of individuals

Ngen, number of generations

pcross, 
rossover probability

pmut, mutation probability

1 Introdu
tion

As well known, the Classi
 Laminate Theory (CLT) together with the First-order Shear De-

formation Theory (FSDT) are the simplest theories employed for des
ribing the me
hani
al

behaviour of a 
omposite laminate 
onsidered as an equivalent homogeneous (generally)

anisotropi
 plate. Su
h theories properly des
ribe the laminate kinemati
 response in the


ase of small (CLT) or moderate (FSDT) values of the plate 
hara
teristi
 aspe
t ratio

(i.e. the ratio of its thi
kness to its shorter side). However, the major drawba
k of these

theories is in the estimation of the in�uen
e of the laminate transverse shear sti�ness on
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its me
hani
al response (whi
h be
omes more and more important for thi
k plates). On

one hand, in the 
ase of the CLT the laminate transverse shear sti�ness does not intervene

in the de�nition of the laminate 
onstitutive equation (making this theory adequate only

for thin laminates). On the other hand, in the framework of the FSDT the in�uen
e of the

transverse shear sti�ness is taken into a

ount within the de�nition of the laminate 
onsti-

tutive behaviour. Nevertheless, due to the kinemati
 model on whi
h the FSDT relies, the

through-the-thi
kness shear stresses are 
onstant within ea
h 
onstitutive layer, leading in

this way to a me
hani
al 
ontradi
tion. Indeed, the shear stresses do not satisfy: a) the

boundary 
onditions on the external fa
es of the laminate, b) the lo
al equilibrium equa-

tions (elasti
ity solution) and 
) the 
ontinuity 
ondition at the layers interfa
e, see [1℄. To

over
ome these 
ontradi
tions, it is 
ommon to introdu
e the so-
alled �shear 
orre
tion

fa
tor� [1, 2℄ whi
h generally satis�es only two of the previous three 
onditions. However,

in the 
ontext of the FSDT, the de�nition of the shear 
orre
tion fa
tor is immediate only

for isotropi
 plates, while it be
omes more arduous de�ning su
h a quantity for a laminate

sin
e it depends upon the geometri
al parameters of the sta
k (layers orientations and

positions) [1℄.

Higher order theories allow for over
oming su
h a di�
ulty: they give a better de-

s
ription of both the laminate kinemati
s and stress �eld without the need of introdu
ing

any 
orre
tion 
oe�
ient. However these theories require the introdu
tion of higher-order

stress resultants and sti�ness matri
es whose physi
al meaning is not immediate. In lit-

erature one 
an �nd several higher-order theories of di�erent nature: for ea
h theory the

displa
ement �eld is expanded in a �nite series (in terms of the thi
kness 
oordinate) of

unknown fun
tions: the terms of the series (i.e. the fun
tions depending upon the thi
k-

ness 
oordinate) 
an belong to a given basis (polynomial, trigonometri
, radial, B-spline,

NURBS, et
.). In prin
iple it is possible to expand the displa
ement �eld up to any degree

in terms of the thi
kness 
oordinate. Nevertheless, an expansion up to the third order (the

so-
alled third-order theory) is su�
ient to 
apture the quadrati
 variation of the trans-

verse shear strains and stresses within ea
h layer. There are a lot of papers on third-order

theories, see for instan
e [3, 4, 5, 6, 7, 8, 9, 10, 11℄. Despite they seem to di�er from ea
h

other, the displa
ement �elds of these theories are me
hani
ally equivalent (or related),

see [12℄. Re
ently, the 
lassi
al Third-order Shear Deformation Theory (TSDT) of lami-

nates, initially introdu
ed by Reddy [3℄, has been extended and reformulated a

ording to

the Eringen's nonlo
al linear elasti
ity theory to 
apture small s
ale size e�e
ts through

the thi
kness [13℄.

The aim of this paper does not 
onsist in a 
riti
al analysis of all the di�erent types

of TSDT that 
an be found in literature, rather it aims to shed some light on 
ertain

aspe
ts linked to the formulation of the laminate 
onstitutive equation in the 
on
eptual

framework of the 
lassi
al TSDT of Reddy [1℄. Parti
ularly, the obje
tive of the present

5



work is twofold: on one hand it aims of 
larifying the physi
al meaning of the higher-order

sti�ness matri
es while on the other hand it intends of estimating their in�uen
e on the

elasti
 response of the laminate. To these purposes the polar method initially introdu
ed

by Ver
hery [14℄, later enri
hed and deeply investigated by Vannu

i and his 
o-workers [15,

16, 17, 18, 19℄ and re
ently extended to the FSDT of laminates [20℄ is here employed (for

the �rst time) within the framework of the TSDT. In parti
ular, the expression of the

polar parameters of the laminate higher-order sti�ness matri
es is analyti
ally derived.

Thanks to the polar formalism and its appli
ation to the TSDT it is possible to introdu
e

some new 
lasses of laminates and also to generalise the de�nition of a quasi-homogeneous

laminate, initially introdu
ed by Vannu

i and Ver
hery [21℄. A

ordingly, it is possible to


arry out a more general analysis of the elasti
 response of the laminate by reformulating

and generalising the problem of designing its elasti
 symmetries (initially introdu
ed by

Vannu

i [22℄ and later extended to the FSDT [20℄) within the 
ontext of the TSDT. This

problem is formulated as an un
onstrained minimisation problem in the spa
e of the full set

of the laminate polar parameters (even in
luding the higher-order sti�ness matri
es). Due

to its parti
ular nature (i.e. a non-
onvex optimisation problem in the spa
e of the layers

orientation angles), the solution sear
h pro
ess is performed by using the geneti
 algorithm

(GA) BIANCA [23, 24, 25℄. Finally, in order to numeri
ally prove and support the major

analyti
al results found in this work, some meaningful and non-
onventional examples are

presented.

The paper is organised as follows: Se
tion 2 brie�y re
alls the fundamentals of the polar

formalism. In Se
tion 3 the polar method is applied in the framework of the TSDT, by

highlighting the major analyti
al results. Se
tion 4 presents the mathemati
al formulation

of the problem of designing the elasti
 symmetries of a laminate as an optimisation problem

and the generalisation of this formulation when 
onsidering the laminate behaviour in

the 
ontext of the TSDT. Se
tion 5 shows some numeri
al results in order to prove the

e�e
tiveness of the polar formalism when it is applied to the TSDT. Finally Se
tion 6 ends

the paper with some 
on
luding remarks.

2 Fundamentals of the Polar Method

For the sake of synthesis in this se
tion the main results of the Polar Method introdu
ed by

Ver
hery in 1979 [14℄ are brie�y re
alled. The polar method is essentially a mathemati
al

te
hnique that allows for expressing any n-rank plane tensor through a set of tensor in-

variants. As a 
onsequen
e, su
h a representation 
an be applied not only to elasti
ity-like

tensors but also to a very general (even asymmetri
) plane tensor, see for instan
e [26℄.

For more details on the polar formalism the reader is addressed to [15℄.

In the framework of the polar formalism a se
ond-rank (symmetri
) tensor Zij, (i, j =
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1, 2), within the lo
al frame Γ, 
an be stated as:

Z11 = T + R cos 2Φ ,
Z12 = R sin 2Φ ,
Z22 = T − R cos 2Φ ,

(1)

where T is the isotropi
 modulus, R the deviatori
 one and Φ the polar angle. Furthermore,

for a se
ond-rank plane symmetri
 tensor there are only two tensor invariants, i.e. the polar

moduli T and R, while the polar angle Φ 
an be arbitrarily 
hosen to �x the referen
e frame.

The 
onverse relations are:

T =
Z11 + Z22

2
,

Rei2Φ =
Z11 − Z22

2
+ iZ12 ,

(2)

where i =
√
−1 is the imaginary unit. For a se
ond-rank plane tensor the only possible

symmetry is the isotropy whi
h 
an be obtained when the deviatori
 modulus of the tensor

is null, i.e. R = 0. Moreover, when using the polar formalism, the 
omponents of the

se
ond-rank tensor 
an be expressed in a very straightforward manner in the frame ΓI

(turned 
ounter-
lo
k wise by an angle θ around the x3 axis) as follows:

Zxx = T + R cos 2(Φ − θ) ,
Zxy = R sin 2(Φ − θ) ,
Zyy = T − R cos 2(Φ − θ) .

(3)

Con
erning a fourth-rank elasti
ity-like plane tensor Lijkl, (i, j, k, l = 1, 2) (expressed

within the lo
al frame Γ), its polar representation writes:

L1111 = T0 + 2T1 + R0 cos 4Φ0 + 4R1 cos 2Φ1 ,
L1122 = − T0 + 2T1 − R0 cos 4Φ0 ,
L1112 = R0 sin 4Φ0 + 2R1 sin 2Φ1 ,
L2222 = T0 + 2T1 + R0 cos 4Φ0 − 4R1 cos 2Φ1 ,
L2212 = − R0 sin 4Φ0 + 2R1 sin 2Φ1 ,
L1212 = T0 − R0 cos 4Φ0 .

(4)

As it 
learly appears from Eq. (4) the six independent Cartesian 
omponents of Lijkl are

expressed in terms of six polar parameters: T0 and T1 are the isotropi
 moduli, R0 and

R1 are the anisotropi
 ones, while Φ0 and Φ1 are the polar angles. Only �ve quantities

are tensor invariants, namely the polar moduli T0, T1, R0, R1 together with the angular

di�eren
e Φ0 −Φ1. One of the two polar angles, Φ0 or Φ1, 
an be arbitrarily 
hosen to �x

the referen
e frame. The 
onverse relations 
an be stated as:

8T0 = L1111 − 2L1122 + 4L1212 + L2222 ,

8T1 = L1111 + 2L1122 + L2222 ,

8R0e
i4Φ0 = L1111 − 2L1122 − 4L1212 + L2222 + 4i(L1112 − L2212) ,

8R1e
i2Φ1 = L1111 − L2222 + 2i(L1112 + L2212) .

(5)
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The Cartesian 
omponents of the fourth-rank tensor expressed in the frame ΓI
are:

Lxxxx = T0 + 2T1 + R0 cos 4(Φ0 − θ) + 4R1 cos 2(Φ1 − θ) ,
Lxxyy = − T0 + 2T1 − R0 cos 4(Φ0 − θ) ,
Lxxxy = R0 sin 4(Φ0 − θ) + 2R1 sin 2(Φ1 − θ) ,
Lyyyy = T0 + 2T1 + R0 cos 4(Φ0 − θ) − 4R1 cos 2(Φ1 − θ) ,
Lyyxy = − R0 sin 4(Φ0 − θ) + 2R1 sin 2(Φ1 − θ) ,
Lxyxy = T0 − R0 cos 4(Φ0 − θ) .

(6)

Finally, it 
an be proved that in the 
ase of a fourth-rank elasti
ity-like plane tensor four dif-

ferent types of elasti
 symmetry exist: (a) Ordinary orthotropy

(
Φ0 − Φ1 = K

π

4
, K = 0, 1

)
;

(b)R0−Orthotropy (R0 = 0); (
) Square symmetry (R1 = 0) and (d) Isotropy (R0 = R1 = 0).

For a deeper insight in the matter the reader is addressed to [15, 20℄.

3 Appli
ation of the Polar Formalism to the Third-order Shear

Deformation Theory of laminates

3.1 Constitutive equations of the laminate

For the sake of simpli
ity in this se
tion all of the equations governing the laminate me-


hani
al response will be formulated in the 
ontext of the Voigt's (matrix) notation. The

passage from tensor notation to the Voigt's one 
an be easily expressed through the well-

known two-way relationships among indexes (for both lo
al and global frames) as follows:

{11, 22, 33, 32, 31, 21} ⇔ {1, 2, 3, 4, 5, 6} ,

{xx, yy, zz, zy, zx, yx} ⇔ {x, y, z, q, r, s} .
(7)

Let us 
onsider a multilayer plate 
omposed of n plies. Let be δk, zk−1 and zk the

orientation angle and the thi
kness 
oordinates of the bottom and top surfa
es of the k-th

elementary lamina, respe
tively, as illustrated in Fig.1. Within the 
on
eptual framework

of the 
lassi
al TSDT introdu
ed by Reddy [1℄ the displa
ement �eld of the laminated plate


an be expressed (within the laminate global frame ΓI
) as:

u (x, y, z) = u0 (x, y) + φx (x, y)

(
z − 4z3

3h2

)
− 4z3

3h2
∂w0

∂x
,

v (x, y, z) = v0 (x, y) + φy (x, y)

(
z − 4z3

3h2

)
− 4z3

3h2
∂w0

∂y
,

w (x, y, z) = w0 (x, y) ,

(8)

where h is the total thi
kness of the laminate. In Eq.(8) u0, v0, w0, φx and φy are the �ve

independent kinemati
s unknowns. It is noteworthy that this displa
ement �eld engenders

a transverse shear stress �eld having a quadrati
 variation through the thi
kness of ea
h


onstitutive lamina whi
h pre
isely meets the tra
tion-free boundary 
onditions on the
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top and bottom fa
es of the laminate, see [1℄. Taking into a

ount su
h 
onsiderations,

the laminate 
onstitutive equation, under the hypothesis of small strains and moderate

rotations [1℄, 
an be stated as:





{N}
{M}
{P}





=




[A] [B] [E]

[B] [D] [F]

[E] [F] [H]








{ε(0)}
{ε(1)}
{ε(3)}





, (9)





{Q}
{R}



 =




[Â] [D̂]

[D̂] [F̂]







{γ(0)}
{γ(2)}



 . (10)

In Eqs. (9) and (10) {ε(0)}, {ε(1)} and {ε(3)} represent the in-plane strains of the laminate

middle plane while {γ(0)} and {γ(2)} are the transverse shear strains: all of these quantities

an be derived by means of the non-linear strain-displa
ement relationship in the 
ase of

moderate rotations and small strains. {N}, {M} and {P} are the higher-order generalised

in-plane stress resultants while {Q} and {R} are the higher-order generalised transverse

shear stress resultants. For a deeper insight in the matter (mainly about the de�nition of

these quantities) the reader is addressed to [1℄. Here the major 
on
ern is the analysis of

the elasti
 response of the laminate through an investigation of the elasti
 symmetries of its

higher-order sti�ness 
hara
teristi
s. In parti
ular, in Eqs. (9) and (10) [A], [B], [D], [E],

[F] and [H] are the in-plane sti�ness matri
es (membrane, membrane/bending 
oupling,

bending and higher-order sti�ness terms) while [Â], [D̂] and [F̂] are the transverse shear

sti�ness matri
es (basi
 and higher-order terms) of the laminate. Su
h matri
es are de�ned

as follows:

[A] =
n∑

k=1

[Q (δk)] (zk − zk−1) , [B] =
1

2

n∑
k=1

[Q (δk)]
(
z2k − z2k−1

)
,

[D] =
1

3

n∑
k=1

[Q (δk)]
(
z3k − z3k−1

)
, [E] =

1

4

n∑
k=1

[Q (δk)]
(
z4k − z4k−1

)
,

[F] =
1

5

n∑
k=1

[Q (δk)]
(
z5k − z5k−1

)
, [H] =

1

7

n∑
k=1

[Q (δk)]
(
z7k − z7k−1

)
,

(11)

[Â] =
n∑

k=1

[Q̂(δk)] (zk − zk−1) , [D̂] =
1

3

n∑
k=1

[Q̂(δk)]
(
z3k − z3k−1

)
,

[F̂] =
1

5

n∑
k=1

[Q̂(δk)]
(
z5k − z5k−1

)
.

(12)

In the previous equations [Q (δk)] and [Q̂(δk)] are the in-plane and the transverse shear

redu
ed sti�ness matri
es of the k-th ply, respe
tively. Eqs. (11) and (12) 
an be simpli�ed
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for a laminate 
omposed of identi
al layers, i.e. layers having same material properties and

thi
kness, as follows:

[A] =
h

n

n∑
k=1

[Q (δk)] , [B] =
1

2

(
h

n

)2 n∑
k=1

bk [Q (δk)] ,

[D] =
1

12

(
h

n

)3 n∑
k=1

dk [Q (δk)] , [E] =
1

8

(
h

n

)4 n∑
k=1

ek [Q (δk)] ,

[F] =
1

80

(
h

n

)5 n∑
k=1

fk [Q (δk)] , [H] =
1

448

(
h

n

)7 n∑
k=1

hk [Q (δk)] ,

(13)

[Â] =
h

n

n∑
k=1

[Q̂(δk)] , [D̂] =
1

12

(
h

n

)3 n∑
k=1

dk[Q̂(δk)] ,

[F̂] =
1

80

(
h

n

)5 n∑
k=1

fk[Q̂(δk)] ,

(14)

where the expression of the 
oe�
ients bk, dk, ek, fk and hk and the related geometri
al

properties are dis
ussed in Appendix A.

Let us 
onsider the redu
ed sti�ness matri
es of the elementary ply. It 
an be easily

noti
ed that after a 
hange of frame (i.e. when passing from the lamina lo
al frame Γ to

the global one ΓI
) the 
omponents of matrix [Q(δk)] behave like those of a fourth-rank

elasti
ity-like plane tensor, while those of [Q̂(δk)] vary a

ording to the transformation

law of a se
ond-rank symmetri
 plane tensor, see [20℄. Therefore these matri
es 
an be

represented by means of the polar formalism:

Qxx = T0 + 2T1 + R0 cos 4(Φ0 + δk) + 4R1 cos 2(Φ1 + δk) ,
Qxy = − T0 + 2T1 − R0 cos 4(Φ0 + δk) ,
Qxs = R0 sin 4(Φ0 + δk) + 2R1 sin 2(Φ1 + δk) ,
Qyy = T0 + 2T1 + R0 cos 4(Φ0 + δk) − 4R1 cos 2(Φ1 + δk) ,
Qys = − R0 sin 4(Φ0 + δk) + 2R1 sin 2(Φ1 + δk) ,
Qss = T0 − R0 cos 4(Φ0 + δk) ,

(15)

Q̂qq = T + R cos 2(Φ − δk) ,

Q̂qr = R sin 2(Φ − δk) ,

Q̂rr = T − R cos 2(Φ − δk) .

(16)

To be remarked that in the previous equations it is the material frame of the k-th lamina

(and not the global one) whi
h is turned 
ounter-
lo
k wise by an angle δk around the

x3 axis. In Eqs. (15) and (16) T0, T1, R0, R1, Φ0 and Φ1 are the polar parameters

of the in-plane redu
ed sti�ness matrix of the lamina, while T , R, and Φ are those of

the transverse shear sti�ness matrix: all of these parameters solely depend upon the ply

material properties (e.g. if the ply is orthotropi
 the polar parameters of [Q(δk)] depend

upon E1, E2, G12 and ν12, while those of [Q̂(δk)] depend upon G23 and G13).

10



In order to better analyse and understand the me
hani
al response of the laminate it

is useful to homogenise the units of its 
hara
teristi
 sti�ness matri
es to those of the ply

redu
ed sti�ness matri
es:

[A∗] =
1

h
[A] , [B∗] =

2

h2
[B] , [D∗] =

12

h3
[D] ,

[E∗] =
8

h4
[E] , [F∗] =

80

h5
[F] , [H∗] =

448

h7
[H] ,

[Â∗] =
1

h
[Â] , [D̂∗] =

12

h3
[D̂] , [F̂∗] =

80

h5
[F̂] .

(17)

In the framework of the polar formalism it is possible to express all of the previous

matri
es in terms of their polar parameters. In parti
ular, matri
es [A∗], [B∗], [D∗], [E∗],

[F∗] and [H∗] behave like a fourth-rank elasti
ity-like plane tensor while matri
es [Â∗],

[D̂∗] and [F̂∗] behave like a se
ond-rank symmetri
 plane tensor. Moreover, the polar

parameters of these matri
es 
an be expressed as fun
tions of the polar parameters of

the lamina redu
ed sti�ness matri
es and of the geometri
al properties of the sta
k (i.e.

the layer orientation and position). The polar representation of the homogenised sti�ness

matri
es of the laminate 
an be stated as:

T0A∗ = T0 ,

T1A∗ = T1 ,

R0A∗ei4Φ0A∗ =
1

n
R0e

i4Φ0

n∑
k=1

ei4δk ,

R1A∗ei2Φ1A∗ =
1

n
R1e

i2Φ1

n∑
k=1

ei2δk ,

(18)

T0B∗ = 0 ,

T1B∗ = 0 ,

R0B∗ei4Φ0B∗ =
1

n2
R0e

i4Φ0

n∑
k=1

bke
i4δk ,

R1B∗ei2Φ1B∗ =
1

n2
R1e

i2Φ1

n∑
k=1

bke
i2δk ,

(19)

T0D∗ = T0 ,

T1D∗ = T1 ,

R0D∗ei4Φ0D∗ =
1

n3
R0e

i4Φ0

n∑
k=1

dke
i4δk ,

R1D∗ei2Φ1D∗ =
1

n3
R1e

i2Φ1

n∑
k=1

dke
i2δk ,

(20)
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T0E∗ = 0 ,

T1E∗ = 0 ,

R0E∗ei4Φ0E∗ =
1

n4
R0e

i4Φ0

n∑
k=1

eke
i4δk ,

R1E∗ei2Φ1E∗ =
1

n4
R1e

i2Φ1

n∑
k=1

eke
i2δk ,

(21)

T0F ∗ = T0 ,

T1F ∗ = T1 ,

R0F ∗ei4Φ0F∗ =
1

n5
R0e

i4Φ0

n∑
k=1

fke
i4δk ,

R1F ∗ei2Φ1F∗ =
1

n5
R1e

i2Φ1

n∑
k=1

fke
i2δk ,

(22)

T0H∗ = T0 ,

T1H∗ = T1 ,

R0H∗ei4Φ0H∗ =
1

n7
R0e

i4Φ0

n∑
k=1

hke
i4δk ,

R1H∗ei2Φ1H∗ =
1

n7
R1e

i2Φ1

n∑
k=1

hke
i2δk ,

(23)

TÂ∗
= T ,

RÂ∗
ei2ΦÂ∗ =

1

n
Rei2Φ

n∑
k=1

e−i2δk ,
(24)

T
D̂∗

= T ,

R
D̂∗

ei2ΦD̂∗ =
1

n3
Rei2Φ

n∑
k=1

dke
−i2δk ,

(25)

TF̂ ∗
= T ,

RF̂ ∗
ei2ΦF̂∗ =

1

n5
Rei2Φ

n∑
k=1

fke
−i2δk .

(26)

The above equations have been derived by following the same logi
al pro
edure used in the


ase of the polar analysis of the FSDT, see [20℄. After a qui
k glan
e to Eqs. (18)-(26) the

following aspe
ts 
an be highlighted:

• the isotropi
 polar moduli of matri
es [A∗], [D∗], [F∗] and [H∗] are equal to those of

the in-plane redu
ed sti�ness matrix of the elementary ply;

12



• the isotropi
 part of matri
es [B∗] and [E∗] is null;

• the isotropi
 modulus of matri
es [Â∗], [D̂∗] and [F̂∗] is equal to that of the transverse

shear sti�ness matrix of the 
onstitutive lamina;

Moreover (as in the 
ase of the de�nition of the laminate homogenised transverse shear

sti�ness matrix in the 
ontext of the FSDT) it 
an be proved that both the deviatori


modulus and the polar angle of matri
es [Â∗], [D̂∗] and [F̂ ∗] 
an be expressed as a linear


ombination of the anisotropi
 polar modulus R1M∗
and the related polar angle Φ1M∗

of matri
es [A∗], [D∗] and [F∗], respe
tively (see [20℄ for the details on the mathemati
al

passages):

RÂ∗
ei2ΦÂ∗ =

R

R1
R1A∗ei2(Φ+Φ1−Φ1A∗) ,

R
D̂∗

ei2ΦD̂∗ =
R

R1
R1D∗ei2(Φ+Φ1−Φ1D∗) ,

RF̂ ∗
ei2ΦF̂∗ =

R

R1
R1F ∗ei2(Φ+Φ1−Φ1F∗) .

(27)

Eq.(27) means that, when the material of the elementary ply is �xed a priori, the overall

elasti
 response of the laminate depends only on the anisotropi
 part of matri
es [A∗],

[B∗], [D∗], [E∗], [F∗] and [H∗]. In parti
ular, the designer 
an a
t, through a variation

of the geometri
 parameters of the sta
k, only on the anisotropi
 polar moduli and polar

angles of the laminate in-plane sti�ness matri
es in order to a
hieve the required me
hani
al

response (the deviatori
 part of the shear sti�ness matri
es [Â∗], [D̂∗] and [F̂∗] being dire
tly

linked to the anisotropi
 terms of their in-plane 
ounterparts). Moreover, as it 
learly

appears from Eq.(27), the ratio between the deviatori
 part of matri
es [Â∗], [D̂∗] and

[F̂∗] and the anisotropi
 term R1M∗ei2Φ1M∗

of their in-plane 
ounterparts is 
onstant on
e

the material of the 
onstitutive layer is 
hosen: su
h a ratio does not depend upon the

layers orientations and positions, rather it solely varies with the material properties of the


onstitutive layer. Finally, due to the relationships (27) if one of the matri
es [A∗], [D∗] and

[F∗] is 
hara
terised by a square symmetri
 behaviour (i.e. R1M∗ = 0) the 
orresponding

transverse shear sti�ness matrix will exhibit an isotropi
 behaviour (the deviatori
 part of

the matrix be
omes null, i.e. R
M̂∗

= 0).

3.2 De�nition of some new 
lasses of laminates

When looking at Eqs.(18)-(27) one 
an noti
e that the laminate elasti
 behaviour is gov-

erned, at the ma
ro-s
ale, by an overall number of 39 polar parameters: six for ea
h one of

the matri
es [A∗], [B∗], [D∗], [E∗], [F∗] and [H∗] together with the isotropi
 polar moduli

of matri
es [Â∗], [D̂∗] and [F̂∗] (the deviatori
 part being linked to the anisotropi
 part of

13



their in-plane 
ounterparts). In this set the isotropi
 moduli of [B∗] and [E∗] are null while

those of the remaining matri
es are equal to the isotropi
 moduli of the lamina redu
ed

sti�ness matri
es. The only polar parameters whi
h depend upon the geometri
al 
hara
-

teristi
s of the sta
k are the anisotropi
 moduli R0M∗
and R1M∗

as well as the related polar

angles Φ0M∗
and Φ1M∗

of the laminate in-plane sti�ness matri
es for an overall number

of 24 polar parameters on whi
h the designer 
an intervene to get the desired me
hani
al

response at the ma
ro-s
ale.

The set of polar parameters to be designed 
an be further redu
ed by generalising to

the 
ase of the TSDT the 
on
ept of a quasi-homogeneous laminate initially introdu
ed by

Vannu

i and Ver
hery [21℄. To this purpose let us introdu
e the laminate homogeneity

matri
es [C∗
1], [C

∗
2] and [C∗

3], whi
h are de�ned as:

[C∗
1] = [A∗]− [D∗] , [C∗

2] = [D∗]− [F∗] , [C∗
3] = [F∗]− [H∗] . (28)

In the framework of the TSDT the following de�nitions apply:

1. a laminate is de�ned fully un
oupled if and only if

[B∗] = [E∗] = [O] ; (29)

2. a laminate is said homogeneous in bending if and only if

[C∗
2] = [C∗

3] = [O] ; (30)

3. a laminate is said homogeneous in membrane and bending if and only if

[C∗
1] = [C∗

2] = [C∗
3] = [O] ; (31)

4. a laminate is de�ned fully un
oupled and homogeneous if and only if

[B∗] = [E∗] = [C∗
1] = [C∗

2] = [C∗
3] = [O] . (32)

It is noteworthy that, sin
e the deviatori
 part of the laminate transverse shear sti�ness

matri
es depends upon the anisotropi
 one of their in-plane 
ounterparts, Eqs.(30) and (31)

imply that the resulting laminate will be homogeneous also in terms of its shear sti�ness

properties.

As a 
on
lusive remark, it 
an be noti
ed that when the elasti
 un
oupling 
ondition

is met, the laminate me
hani
al response is governed by a set of 16 polar parameters,

whilst if the laminate is fully un
oupled and homogeneous the number of polar parameters

whereon the designer 
an a
t redu
es from 24 to four, i.e. the anisotropi
 polar moduli and

the related polar angles of matrix [A∗]. This last 
lass of laminates is rather fundamental
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for design purposes: despite the kinemati
 model on whi
h the TSDT relies is �ri
her�

and more general than that of the CLT, in this 
ase the number of independent tensor

invariants 
hara
terising the me
hani
al response of the laminate and on whi
h the designer


an intervene is the same as the 
ase of the CLT.

4 Elasti
 symmetries of the laminate: the Polar Approa
h in

the framework of the TSDT

In this Se
tion, the problem of designing the laminate elasti
 symmetries is generalised

to the theoreti
al framework of the TSDT. This problem was initially introdu
ed by Van-

nu

i [22℄ for the 
ase of the CLT, later it has been modi�ed and extended to the 
ase

of laminates with variable number of plies [19℄ and to the 
on
eptual framework of the

FSDT [20℄.

As widely dis
ussed in [22℄, this problem 
an be stated as an un
onstrained minimisation

problem in the spa
e of the laminate polar parameters. The goal of this problem is to

�nd at least one sta
king sequen
e meeting the elasti
 requirements for the multilayer

plate (in terms of the elasti
 symmetries of the di�erent sti�ness matri
es governing the

laminate behaviour) provided by the problem at hand. In the 
ontext of the TSDT this

un
onstrained minimisation problem 
an be stated as:

min
{δ1,...,δn}

Ψ (δ1, ..., δn) = {f}T [W] {f} , (33)

where Ψ is the overall obje
tive fun
tion expressing the laminate elasti
 response and

δk is the orientation angle of the k-th layer (k = 1, ...n). {f} is the ve
tor of the partial

obje
tive fun
tions (ea
h one linked to a parti
ular elasti
 symmetry) while [W] is a positive

semi-de�nite diagonal matrix of weights whose terms 
an be equal to either zero or one

(depending on the 
onsidered 
ombination of elasti
 symmetries). The 
omponents of the

ve
tor {f} as well as the related physi
al meaning are listed here below:

• f1 =
‖ [B∗] ‖
‖ [Q] ‖ is the membrane/bending un
oupling 
ondition;

• f2 =
‖ [E∗] ‖
‖ [Q] ‖ is the membrane/higher-order bending un
oupling 
ondition;

• f2+j =
‖[C∗

j ]‖
‖ [Q] ‖ with j = 1, 2, 3 are the homogeneity 
onditions;

• f5+i =
Φ0M∗ − Φ1M∗ −KM∗π/4

π/4
, with KM∗ = 0, 1), is the ordinary orthotropy 
on-

dition for the generi
 homogenised in-plane sti�ness matrix [M∗] of the laminate;

• f9+i =
R0M∗

R0
is the R0-orthotropy 
ondition for [M∗];
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• f13+i =
R1M∗

R1
is the square symmetry 
ondition for [M∗];

• f17+i =

√
R2

0M∗ + 4R2
1M∗

√
R2

0 + 4R2
1

is the isotropy 
ondition for [M∗];

• f21+i =
R0M∗ − R̂0M∗

R̂0M∗

represents a 
ondition on the value of the �rst anisotropi


modulus of [M∗] whi
h 
an be used in the 
ases of ordinary orthotropy or square

symmetry (but not in the 
ases of both R0-orthotropy and isotropy);

• f25+i =
R1M∗ − R̂1M∗

R̂1M∗

represents a 
ondition on the value of the se
ond anisotropi


modulus of [M∗] whi
h 
an be used in the 
ases of ordinary orthotropy or R0-

orthotropy (but not in the 
ases of both square symmetry and isotropy);

• f29+i =
Φ0M∗ − Φ̂0M∗

π/4
represents a 
ondition on the value of the orientation of the

main orthotropy axis of [M∗] whi
h 
an be used in the 
ase of square symmetry (but

not in the 
ases of ordinary orthotropy, R0-orthotropy and isotropy);

• f33+i =
Φ1M∗ − Φ̂1M∗

π/4
represents a 
ondition on the value of the orientation of the

main orthotropy axis of [M∗] whi
h 
an be used in the 
ases of ordinary orthotropy

or R0-orthotropy (but not in the 
ases of both square symmetry and isotropy);

In the previous formulae [M∗] = [A∗], [D∗], [F∗], [H∗] when i = 1, 2, 3, 4, respe
tively: i.e.

the 
onsidered elasti
 
ondition 
an be imposed on ea
h one of the homogenised in-plane

sti�ness matri
es of the laminate, depending on the elasti
 requirements provided by the

problem at hand.

It 
an be noti
ed that all of the 
omponents of the ve
tor {f} are expressed in terms of

the polar parameters of the laminate homogenised in-plane sti�ness matri
es and that they

have been normalised with the 
orresponding 
ounterparts of the matrix [Q]. Moreover,

the expression of the matrix norm used for the �rst �ve partial fun
tions is that proposed

by Kandil and Ver
hery [27℄:

‖ [Q] ‖ =
√

T 2
0 + 2T 2

1 +R2
0 + 4R2

1 , (34)

an analogous relationship applies for matri
es [B∗], [E∗], [C∗
1], [C

∗
2] and [C∗

3]. Of 
ourse, the

terms belonging to the diagonal of the weight matrix [W] 
annot be all di�erent from zero

at the same time: for instan
e it is not possible to design a laminate whi
h is simultaneously

orthotropi
 and isotropi
 in membrane, or a laminate whi
h is homogeneous in bending

with [D∗] showing an orthotropi
 response while [F∗] and [H∗] having an isotropi
 behaviour

(indeed if the laminate is homogeneous in bending it is 
hara
terised by the same elasti
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behaviour for [D∗], [F∗] and [H∗]), et
. Therefore a parti
ular 
are must be taken in tuning

the terms of the weight matrix.

As a 
on
lusive remark it is noteworthy that the obje
tive fun
tion Ψ is a dimensionless,

positive semi-de�nite 
onvex fun
tion in the spa
e of laminate polar parameters whose

absolute minima are known a priori sin
e they are the zeroes of this fun
tion. On the other

hand Ψ is a highly non-
onvex non-linear fun
tion in the spa
e of plies orientation angles,

i.e. the true design variables of problem (33), be
ause the laminate polar parameters

depend upon 
ir
ular fun
tions of these angles, see Eqs. (18)-(23). For more details about

the nature of this problem the reader is addressed to [19, 25℄.

5 Studied 
ases and results

In this Se
tion some meaningful numeri
al examples 
on
erning the problem of designing

the laminate elasti
 behaviour are illustrated in order to numeri
ally prove the existen
e

of the new 
lasses of laminates presented in Se
. 3. Moreover, su
h examples show on one

hand the e�e
tiveness of using the polar approa
h in the framework of the TSDT, while on

the other hand they show the e�e
tiveness of non-
onventional lay-ups whi
h satisfy (for

ea
h 
onsidered 
ase) the pres
ribed set of elasti
 requirements imposed by the problem.

In parti
ular, the problem of designing the laminate elasti
 symmetries is formulated and

solved in the following 
ases:

• fully un
oupled laminate with square symmetri
 membrane behaviour;

• fully un
oupled laminate homogeneous in bending with an orthotropi
 behaviour;

• fully un
oupled and homogeneous laminate with a square symmetri
 behaviour.

Sin
e the elasti
 behaviour of the laminate depends upon the elasti
 properties of the


onstitutive lamina, the results must refer to a given material. In the 
ase of the numeri
al

examples illustrated in this Se
tion a transverse isotropi
 unidire
tional 
arbon/epoxy ply

has been 
hosen, whose material properties are listed in Table 1. In addition the number

of layers n 
omposing the laminated plate is �xed equal to 20.

Due to the nature of the optimisation problem of Eq. (33), i.e. a highly non-
onvex

un
onstrained minimisation problem in the spa
e of the layers orientations, a geneti
 al-

gorithm, BIANCA [24, 25, 28℄, has been employed to �nd a solution. In this 
ase, ea
h

individual has a genotype 
omposed of n 
hromosomes, i.e. one for ea
h ply, 
hara
terised

by a single gene 
oding the layer orientation. It must be pointed out that the orientation

angle of ea
h lamina 
an get all the values in the range [−89◦, 90◦] with a dis
retisation

step of 1◦. Su
h a dis
retisation step has been 
hosen in order to prove that laminates with

given elasti
 properties 
an be easily obtained by abandoning the well-known 
onventional

rules for tailoring the laminate sta
k (e.g. symmetri
-balan
ed sta
ks) whi
h extremely
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shrink the sear
h spa
e for the problem at hand. Therefore, the true advantages in using

non-
onventional staking sequen
es are at least two: on one hand when using su
h a dis-


retisation step for the plies orientations it is possible to explore the overall design spa
e

of problem (33), while on the other hand the polar-geneti
 approa
h leads to �nd very

general sta
ks (nor symmetri
 neither balan
ed) that fully meet the elasti
 properties with

a fewer number of plies (hen
e lighter) than the standard ones. For more details about

these aspe
ts the reader is addressed to [19, 25℄.

Finally, regarding the value of the geneti
 parameters for the GA BIANCA they are

listed in Table 2. For more details on the numeri
al te
hniques developed within the

BIANCA 
ode and the meaning of the values of the di�erent parameters tuning the GA

the reader is addressed to [25, 28℄.

5.1 Case 1: fully un
oupled laminate with square symmetri
 membrane

behaviour

The aim of this �rst 
ase is the design of a fully un
oupled laminate with the membrane

sti�ness matrix [A∗] 
hara
terised by a square symmetri
 behaviour with a pres
ribed

orientation of the main orthtropy axis, i.e. in this 
ase Φ̂0A∗ = 0◦. Moreover, when

imposing this kind of symmetry on matrix [A∗] the designer 
an automati
ally obtain

an isotropi
 behaviour for matrix [Â∗], as a 
onsequen
e of Eq. (27). In this 
ase, the

expression of the overall obje
tive fun
tion Ψ of Eq. (33) 
an be obtained by setting

W11 = W22 = W1414 = W3030 = 1 and the rest of the terms of the diagonal matrix [W]

equal to zero:

Ψ =

(‖ [B∗] ‖
‖ [Q] ‖

)2

+

(‖ [E∗] ‖
‖ [Q] ‖

)2

+

(
R1A∗

R1

)2

+

(
Φ0A∗ − Φ̂0A∗

π/4

)2

. (35)

Table 3 shows two examples of laminate sta
king sequen
es satisfying the 
riteria of

Eq. (35). The residual in the last 
olumn is the value of the obje
tive fun
tion Ψ for

ea
h solution (re
all that exa
t solutions 
orrespond to zeros of the obje
tive fun
tion,

see [22℄ for more details). It 
an be noti
ed that the optimal sta
king sequen
es are really

general: they are nor symmetri
 neither balan
ed and they fully meet the elasti
 symmetry

requirements imposed on the laminate through Eq. (35) with only 20 plies.

Table 4 lists the value of the laminate polar parameters for the best sta
king sequen
e

(solution n. 1) of Table 3, while Fig. 2 illustrates the related polar diagrams for the �rst

Cartesian 
omponent of matri
es [A∗], [B∗], [D∗], [E∗], [F∗], [H∗] and the three Cartesian


omponents of matri
es [Â∗], [D̂∗] and [F̂∗]. One 
an noti
e that, a

ording to the theoreti-


al result of Eq. (27), the laminate is 
hara
terised both by a square symmetri
 membrane

sti�ness behaviour (whose main orthotropi
 axis is oriented at 0◦, see Table 4) and by an

isotropi
 elasti
 response for matrix [Â∗]. In addition the laminate is pra
ti
ally un
oupled

(B∗
xx and E∗

xx redu
e to a small point in the 
entre of the plot) while it is 
ompletely
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anisotropi
 in bending be
ause no elasti
 requirements have been imposed on [D∗], [F∗] and

[H∗]. Moreover, as a 
onsequen
e of the anisotropy of matri
es [D∗] and [F∗], the higher-

order transverse shear matri
es [D̂∗] and [F̂∗] show a general orthotropi
 behaviour (the

deviatori
 modulus of these matri
es does not vanish, see Table 4). It is noteworthy that

su
h results have been found with very general sta
ks 
omposed of a few number of plies:

it is really di�
ult (if not impossible) to obtain the same laminate me
hani
al response

with standard multilayer plates, i.e. plates 
hara
terised by a symmetri
, balan
ed lay-up.

As a �nal remark, Fig. 3 shows the variation of the value of the obje
tive fun
tion of

the best solution (of Table 3) along generations for problem (33) for this �rst 
ase. One


an easily see that the optimum solution has been found only after 210 generations. Sin
e

the problem is highly non-
onvex, at the end of the geneti
 
al
ulation it is possible to

�nd within the population not only the best solution but also some �tting quasi-optimal

solutions like solution n.2 of Table 3: the presen
e of su
h solutions (whereof solution n.2

is only an example among the others 
omposing the �nal population) 
an be e�e
tively

exploited by the designer whi
h wants to deeply investigate their me
hani
al response with

respe
t to di�erent design 
riteria (e.g. bu
kling, natural frequen
ies, et
.).

5.2 Case 2: fully un
oupled laminate homogeneous in bending with an

orthotropi
 behaviour

For this se
ond 
ase the goal 
onsists in designing a fully un
oupled laminate whi
h must

be simultaneously homogeneous in bending and 
hara
terised by a �exural orthotropi


behaviour (with KD∗ = 1) with a pres
ribed dire
tion of the main orthotropy axis (in this


ase Φ̂1D∗ = 0◦).

The expression of the overall obje
tive fun
tion Ψ of Eq. (33) 
an be obtained by setting

W11 = W22 = W44 = W55 = W77 = W3535 = 1 and the rest of the terms of the diagonal

matrix [W] equal to zero:

Ψ =

(‖ [B∗] ‖
‖ [Q] ‖

)2

+

(‖ [E∗] ‖
‖ [Q] ‖

)2

+

(‖[C∗
2]‖

‖ [Q] ‖

)2

+

+

(‖[C∗
3]‖

‖ [Q] ‖

)2

+

(
Φ0D∗ −Φ1D∗ − π/4

π/4

)2

+

(
Φ1D∗ − Φ̂1D∗

π/4

)2

.

(36)

Two examples of laminate sta
king sequen
es satisfying the 
riteria of Eq. (36) are listed

in Table 3. Table 5 lists the value of the laminate polar parameters for the best sta
king

sequen
e (solution n. 1) of Table 3, while Fig. 4 illustrates the related polar diagrams

of the sti�ness matri
es of the laminate. One 
an noti
e that the laminate is orhtotropi


in bending be
ause the shape of the polar diagrams for the matri
es [D∗], [F∗] and [H∗]

shows two axis of orthogonal symmetry with the main orthotropy axis oriented at 0◦. In

addition, the laminate is really homogeneous in bending be
ause the previous diagrams

are superposed: this superposition also applies for the polar diagrams of the 
omponents
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of matri
es [D̂∗] and [F̂∗]. Furthermore, the laminate is fully un
oupled (B∗
xx and E∗

xx

redu
e to a small point in the 
entre of the plot) while it is 
ompletely anisotropi
 in terms

of the elasti
 response of the matrix [A∗].

Finally, Fig. 5 shows the variation of the value of the obje
tive fun
tion for the best

solution (of Table 3) along generations for problem (33) for this se
ond 
ase. It 
an be

noti
ed that the optimum solution has been found after 185 generations. For the rest, the


onsiderations already done for 
ase 1 
an be repeated here.

5.3 Case 3: fully un
oupled and homogeneous laminate with a square

symmetri
 behaviour

The aim of this example is the design of a fully un
oupled homogeneous laminate with an

overall square symmetri
 elasti
 behaviour (both in extension and bending) and with the

main axis of symmetry oriented at Φ̂0A∗ = 0◦.

The expression of the overall obje
tive fun
tion Ψ of Eq. (33) 
an be obtained by setting

W11 = W22 = W33 = W44 = W55 = W1414 = W3030 = 1 and the rest of the terms of the

diagonal matrix [W] equal to zero:

Ψ =

(‖ [B∗] ‖
‖ [Q] ‖

)2

+

(‖ [E∗] ‖
‖ [Q] ‖

)2

+

(‖[C∗
1]‖

‖ [Q] ‖

)2

+

+

(‖[C∗
2]‖

‖ [Q] ‖

)2

+

(‖[C∗
3]‖

‖ [Q] ‖

)2

+

(
R1A∗

R1

)2

+

(
Φ0A∗ − Φ̂0A∗

π/4

)2

.

(37)

Two examples of laminate sta
king sequen
es satisfying the 
riteria of Eq. (37) are

listed in Table 3: also in this 
ase the optimal sta
ks are very general sta
ks. Table 6 lists

the value of the laminate polar parameters for the best sta
king sequen
e (solution n. 1)

of Table 3, while Fig. 6 illustrates the related polar diagrams for all the sti�ness matri
es

of the multilayer plate. It is noteworthy that, due to the theoreti
al result of Eq. (27), the

laminate is 
hara
terised both by an overall square symmetri
 elasti
 response (for ea
h one

of the in-plane sti�ness matri
es) and by a global isotropi
 out-of-plane shear behaviour.

Moreover the laminate is fully un
oupled and homogeneous (the polar diagrams of matri
es

[A∗], [D∗], [F∗] and [H∗] are in fa
t superposed). Finally, the main axis of symmetry for

every in-plane sti�ness matrix is oriented at 0◦.

As a �nal remark of this se
tion, Fig. 7 shows the variation of the value of the obje
tive

fun
tion for the best solution (of Table 3) along generations for problem (33) for this last


ase: the optimum solution has been found after about 105 generations. For the rest, the


onsiderations already done for 
ases 1 and 2 
an be repeated here.

6 Con
lusions

In this work the Ver
hery's polar method for representing plane tensors has been employed

within the 
on
eptual framework of the 
lassi
al Reddy's Third-order Shear Deformation
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Theory of laminates. The following major results were analyti
ally derived.

1. A mathemati
al formulation based upon tensor invariants has been proposed for all

the laminate sti�ness matri
es.

2. As a 
onsequen
e of the appli
ation of the polar formalism to the higher-order in-

plane and transverse shear sti�ness matri
es a generalisation of the 
on
ept of quasi-

homogeneous laminates has been proposed together with the de�nition of some new


lasses of laminates.

3. The elasti
 symmetries of the laminate out-of-plane shear sti�ness matri
es (basi
 and

higher-order terms) depend upon those of their in-plane 
ounterparts: in parti
ular,

the isotropi
 behaviour of the laminate shear sti�ness matri
es is 
losely related to

the square symmetri
 behaviour of their in-plane 
ounterparts.

4. For a spe
ial 
lass of laminate, i.e. for a fully un
oupled and homogeneous laminate,

the number of independent tensor invariants 
hara
terising the me
hani
al response

of the laminate remains un
hanged when passing from the 
ontext of the CLT to

that of the TSDT.

5. The uni�ed formulation of the problem of designing the laminate elasti
 symmetries

has been modi�ed and extended to the 
ontext of the TSDT.

To the best of the author's knowledge, this is the �rst time that a mathemati
al for-

mulation based upon tensor invariants (namely the polar method) has been applied to the


on
eptual framework of the TSDT. The me
hani
al response of the laminated plate is

represented by means of the polar formalism that o�ers several advantages: a) the polar

invariants are dire
tly linked to the tensor elasti
 symmetries, b) the polar method allows

for eliminating from the pro
edure redundant me
hani
al properties and 
) it allows for

easily expressing the 
hange of referen
e frame.

The e�e
tiveness of the proposed approa
h has been proved both analyti
ally and

numeri
ally by means of some new and meaningful numeri
al examples. The numeri
al

results presented in this work (whi
h have been found in the 
ontext of the polar-geneti


approa
h) show that when the well-known hypotheses and rules for tailoring laminates

are abandoned (i.e. when using symmetri
, balan
ed sta
ks and when 
onsidering a small

set of layer orientations shrunk to the values 0◦, ±45◦ and 90◦) it is possible to design

laminates with enhan
ed me
hani
al properties, very di�
ult (if not impossible) to be

obtained otherwise.

Finally, it is opinion of the author that the polar-geneti
 approa
h 
an be extended

also to the theoreti
al framework of more a

urate theories su
h as higher-order theories


oupled with equivalent single layer kinemati
 models: resear
h is ongoing on these topi
s.
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Appendix A Analyti
al expression of the 
oe�
ients of the

laminate sti�ness matri
es in the 
ase of iden-

ti
al plies

In order to determine the analyti
al expression of the 
oe�
ients that intervene in the

formulation of the sti�ness matri
es of a laminate 
omposed of identi
al plies, see Eqs.

(13) and (14), the �rst step is the de�nition of the thi
kness 
oordinate for both the

bottom and the top fa
es of the k-th elementary layer. Sin
e the laminate is 
omposed of

n identi
al plies and being h its overall thi
kness, the expressions of zk−1 and zk 
an be

stated as (see Fig. 1):

zk−1 = −h

2
+ (k − 1)

h

n
, zk = −h

2
+ k

h

n
, k = 1, ..., n . (38)

To derive the expression of the laminate 
hara
teristi
 
oe�
ients bk, dk, ek, fk and hk

it su�
es to substitute Eq. (38) in Eqs. (11). Whilst the 
al
ulation of 
oe�
ients bk

and dk is trivial and represents a 
lassi
al result that 
an be found in literature [29℄,

on the other hand the determination of the analyti
al expression of 
oe�
ients ek, fk

and hk is quite hard and needs the support of a symboli
-based 
omputational software,

su
h as Mathemati
a

R©
. By means of this language it is possible to derive the following

relationships:

bk = 2k − n− 1 ,

dk = 12k2 − 12k(n + 1) + 3n2 + 6n+ 4 ,

ek = 8k3 − 12k2(n+ 1) + 2k(3n2 + 6n+ 4)− (n3 + 3n2 + 4n+ 2) ,

fk = 80k4 − 160k3(n + 1) + 40k2(3n2 + 6n+ 4)− 40k(n3 + 3n2 + 4n+ 2)+
+5n4 + 20n3 + 40n2 + 40n + 16 ,

hk = 448k6 − 1344k5(n + 1) + 560k4(3n2 + 6n+ 4)+
−1120k3(n3 + 3n2 + 4n+ 2) + 84k2(5n4 + 20n3 + 40n2 + 40n+ 16)+
−28k(3n5 + 15n4 + 40n3 + 60n2 + 48n+ 16)+
+7n6 + 42n5 + 140n4 + 280n3 + 336n2 + 224n + 64 .

(39)

The variation of the previous 
oe�
ients as fun
tion of the ply position k is depi
ted in

Fig. A.1. It 
an be noti
ed that 
oe�
ients bk and ek have a skew-symmetri
 trend with

respe
t to the laminate middle plane, whilst the rest of the 
oe�
ients show a symmetri


variation. By means of the software Mathemati
a

R©
one 
an also determine the following

fundamental analyti
al properties 
hara
terising the laminate sti�ness 
oe�
ients:

n∑
k=1

bk = 0 ,
n∑

k=1

dk = n3 ,
n∑

k=1

ek = 0 ,

n∑
k=1

fk = n5 ,
n∑

k=1

hk = n7 .

(40)
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It is noteworthy that the sum of 
oe�
ients bk and ek is null and that this result agrees

with the skew-symmetri
 variation of these 
oe�
ients within the laminate thi
kness.
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Tables

Te
hni
al 
onstants Polar parameters of [Q] Polar parameters of [Q̂]

E1 161000 MPa T0 23793.3868 MPa T 5095.4545 MPa

E2 9000 MPa T1 21917.8249 MPa R 1004.5454 MPa

G12 6100 MPa R0 17693.3868 MPa Φ 90 deg

ν12 0.26 R1 19072.0711 MPa

ν23 0.1 Φ0 0 deg

Φ1 0 deg

Density and thi
kness

ρ 1.58× 10−6
Kg/mm

3

tply 0.125 mm

Table 1: Material properties of the 
arbon-epoxy lamina.

Geneti
 parameters

Npop 1
Nind 500
Ngen 500
pcross 0.85
pmut 1/Nind

Sele
tion roulette-wheel

Elitism a
tive

Table 2: Geneti
 parameters of the GA BIANCA for problem (33).

Case N. Solution N. Sta
king sequen
e Residual

1 1 [72/14/-63/-80/-48/70/3/37/-25/-10/11/77/-19/62/11/-54/-88/-54/19/77℄ 6.0009× 10−6

2 [-1/-14/88/51/-73/-88/-32/24/20/62/-49/22/-44/-81/72/-9/-75/73/16/-15℄ 4.8924× 10−5

2 1 [-31/35/32/-31/-32/30/35/-70/-21/-38/-70/59/43/-31/-34/21/36/-29/-38/31℄ 1.7476× 10−4

2 [35/-43/-25/-27/23/32/56/-40/30/56/41/-31/-37/12/-41/-38/33/47/25/-31℄ 1.9490× 10−4

3 1 [78/-51/-2/10/41/89/-44/2/42/-82/71/-53/-19/17/-8/-87/87/62/-46/11℄ 6.6123× 10−4

2 [-3/-75/69/90/-11/5/26/-74/6/-10/80/86/83/-66/-5/6/-89/-19/18/88℄ 8.1274× 10−4

Table 3: Numeri
al results of problem (33) for 
ases 1, 2 and 3.
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In-plane elasti
 behaviour

Polar parameters [A∗] [B∗] [D∗] [E∗] [F∗] [H∗]

T0 [MPa℄ 23793.3868 0 23793.3868 0 23793.3868 23793.3868
T1 [MPa℄ 21917.8249 0 21917.8249 0 21917.8249 21917.8249
R0 [MPa℄ 3003.1984 51.76233 4107.1180 79.6684 4586.8578 5700.1396
R1 [MPa℄ 13.5942 31.1562 4739.5619 36.0186 6416.5852 8244.9550
Φ0 [deg℄ 0 N.D. 9 N.D. 3 -4

Φ1 [deg℄ N.D. N.D. 85 N.D. 75 70

Out-of-plane elasti
 behaviour

Polar parameters [Â∗] [D̂∗] [F̂∗]

T [MPa℄ 5095.4545 5095.4545 5095.4545
R [MPa℄ 0.7160 249.6376 337.9681
Φ [deg℄ N.D. 5 15

Table 4: Laminate polar parameters for the best sta
king sequen
e of 
ase 1 (N.D.=not

de�ned, i.e. meaningless for the 
onsidered 
ombination of laminate elasti
 symmetries).

In-plane elasti
 behaviour

Polar parameters [A∗] [B∗] [D∗] [E∗] [F∗] [H∗]

T0 [MPa℄ 23793.3868 0 23793.3868 0 23793.3868 23793.3868
T1 [MPa℄ 21917.8249 0 21917.8249 0 21917.8249 21917.8249
R0 [MPa℄ 9047.8225 103.2427 10636.4139 438.0223 11013.4808 11103.5897
R1 [MPa℄ 5078.2024 16.6008 7845.7886 151.2313 8020.8991 8034.9545
Φ0 [deg℄ -45 N.D. 45 N.D. 45 45

Φ1 [deg℄ -6 N.D. 0 N.D. 0 0

Out-of-plane elasti
 behaviour

Polar parameters [Â∗] [D̂∗] [F̂∗]

T [MPa℄ 5095.4545 5095.4545 5095.4545
R [MPa℄ 267.4741 413.2457 422.4689
Φ [deg℄ −84 90 90

Table 5: Laminate polar parameters for the best sta
king sequen
e of 
ase 2 (N.D.=not

de�ned, i.e. meaningless for the 
onsidered 
ombination of laminate elasti
 symmetries).

In-plane elasti
 behaviour

Polar parameters [A∗] [B∗] [D∗] [E∗] [F∗] [H∗]

T0 [MPa℄ 23793.3868 0 23793.3868 0 23793.3868 23793.3868
T1 [MPa℄ 21917.8249 0 21917.8249 0 21917.8249 21917.8249
R0 [MPa℄ 3160.6773 403.7186 3449.9296 410.40234 3176.0704 3497.94823
R1 [MPa℄ 40.9970 164.6285 71.8450 503.3974 231.5776 237.4147
Φ0 [deg℄ 0 N.D. 0 N.D. 0 0

Φ1 [deg℄ N.D. N.D. N.D. N.D. N.D. N.D.

Out-of-plane elasti
 behaviour

Polar parameters [Â∗] [D̂∗] [F̂∗]

T [MPa℄ 5095.4545 5095.4545 5095.4545
R [MPa℄ 2.1594 3.7842 12.1974
Φ [deg℄ N.D. N.D. N.D.

Table 6: Laminate polar parameters for the best sta
king sequen
e of 
ase 3 (N.D.=not

de�ned, i.e. meaningless for the 
onsidered 
ombination of laminate elasti
 symmetries).
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Figures

Figure 1: De�nition of the geometri
al parameters of the laminate.
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Figure 2: Polar diagrams of the laminate sti�ness matri
es for the best solution of 
ase 1. First

Cartesian 
omponent of (a) [A∗], [B∗], [D∗] and (b) [E∗], [F∗], [H∗]; the three Cartesian 
omponents

of (
) [Â∗], (d) [D̂∗] and (e) [F̂∗].
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tive fun
tion along generations, 
ase 1.
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Figure 4: Polar diagrams of the laminate sti�ness matri
es for the best solution of 
ase 2. First

Cartesian 
omponent of (a) [A∗], [B∗], [D∗] and (b) [E∗], [F∗], [H∗]; the three Cartesian 
omponents

of (
) [Â∗], (d) [D̂∗] and (e) [F̂∗].
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Figure 5: Best values of the obje
tive fun
tion along generations, 
ase 2.
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Figure 6: Polar diagrams of the laminate sti�ness matri
es for the best solution of 
ase 3. First

Cartesian 
omponent of (a) [A∗], [B∗], [D∗] and (b) [E∗], [F∗], [H∗]; the three Cartesian 
omponents

of (
) [Â∗], (d) [D̂∗] and (e) [F̂∗].
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Figure 7: Best values of the obje
tive fun
tion along generations, 
ase 3.
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Figure A.1: Variation of the laminate sti�ness 
oe�
ients (a) bk, (b) dk, (
) ek, (d) fk and (e) hk

vs. the layer position k (for the 
ase n = 30).
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