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Abstrat

In this paper the Verhery's polar method is extended to the oneptual frame-

work of the Reddy's Third-order Shear Deformation Theory (TSDT) of laminates. In

partiular, a mathematial representation based upon tensor invariants is derived for

all the laminate sti�ness matries (basi and higher-order sti�ness terms). The major

analytial results of the appliation of the polar formalism to the TSDT of laminates

are the generalisation of the onept of a quasi-homogeneous laminate as well as the

de�nition of some new lasses of laminates. Moreover, it is proved that the elasti

symmetries of the laminate shear sti�ness matries (basi and higher-order terms) de-

pend upon those of their in-plane ounterparts. As a onsequene of these results a

uni�ed formulation for the problem of designing the laminate elasti symmetries in the

ontext of the TSDT is proposed. The optimum solutions are found within the frame-

work of the polar-geneti approah, sine the objetive funtion is written in terms

of the laminate polar parameters, while a geneti algorithm is used as a numerial

tool for the solution searh. In order to support the theoretial results, and also to

prove the e�etiveness of the proposed approah, some new and meaningful numerial

examples are disussed in the paper.

Keywords:

Anisotropy; Polar method; Geneti Algorithms; Composite materials; Strutural design;

Third-order Shear Deformation Theory.

Notations

CLT, Classial Laminate Theory

FSDT, First-order Shear Deformation Theory

TSDT, Third-order Shear Deformation Theory

GA, Geneti Algorithm

Γ = {O;x1, x2, x3}, loal (or material) frame of the elementary ply

ΓI = {O;x, y, z = x3}, global frame of the laminate

θ, rotation angle

{11, 22, 33, 32, 31, 21} ⇔ {1, 2, 3, 4, 5, 6}, orrespondene between tensor and Voigt's (ma-

trix) notation for the indexes of tensors (loal frame)

{xx, yy, zz, zy, zx, yx} ⇔ {x, y, z, q, r, s}, orrespondene between tensor and Voigt's (ma-

trix) notation for the indexes of tensors (global frame)

Zij , (i, j = 1, 2 or i, j = x, y), seond-rank plane tensor using tensor notation (loal and

global frame)
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Lijkl, (i, j, k, l = 1, 2 or i, j, k, l = x, y), fourth-rank plane tensor using tensor notation

(loal and global frame)

u, v, w, omponents of the laminate displaement �eld within the global frame ΓI

u0, v0, w0, φx, φy, the �ve independent kinemati unknowns in the ontext of the Reddy's

TSDT

n, number of layers

{δk} (k = 1, ..., n), vetor of the layers orientation angles

zk−1, zk, thikness oordinates of bottom and top faes of the k-th onstitutive ply,

respetively

h, overall thikness of the laminate

{ε(0)}, {ε(1)}, {ε(3)}, 3× 1 vetors of in-plane strains of the laminate middle plane

{γ(0)}, {γ(2)}, 2× 1 vetors of the transverse shear strains of the laminate middle plane

{N}, {M}, {P}, 3× 1 vetors of higher-order generalised in-plane fores (per unit length)

{Q}, {R}, 2×1 vetors of higher-order generalised transverse shear fores (per unit length)

[Q], 3× 3 in-plane redued sti�ness matrix of the onstitutive lamina

[Q̂], 2× 2 out-of-plane redued sti�ness matrix of the onstitutive lamina

T0, T1, R0, R1,Φ0,Φ1, polar parameters of a fourth-rank plane tensor (also used for the

lamina in-plane redued sti�ness matrix [Q])

T,R,Φ, polar parameters of a seond-rank plane tensor (also used for the lamina trans-

verse shear redued sti�ness matrix [Q̂])

[A], [B], [D], [E], [F], [H], 3 × 3 in-plane sti�ness matries of the laminate (membrane,

membrane/bending oupling, bending and higher-order sti�ness, respetively)

[A∗], [B∗], [D∗], [E∗], [F∗], [H∗], 3 × 3 homogenised in-plane sti�ness matries of the lam-

inate (membrane, membrane/bending oupling, bending and higher-order sti�ness,

respetively)

[Â], [D̂], [F̂], 2 × 2 transverse shear sti�ness matries of the laminate (basi and higher-

order sti�ness, respetively)

[Â∗], [D̂∗], [F̂∗], 2 × 2 homogenised transverse shear sti�ness matries of the laminate

(basi and higher-order sti�ness, respetively)
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bk, dk, ek, fk, hk, oe�ients of the laminate sti�ness matries

T0M∗ , T1M∗ , R0M∗ , R1M∗ ,Φ0M∗ ,Φ1M∗
, polar parameters of the generi homogenised in-

plane sti�ness matrix of the laminate (M∗ = A∗, B∗,D∗, E∗, F ∗,H∗)

T
M̂∗

, R
M̂∗

,Φ
M̂∗

, polar parameters of the generi homogenised transverse shear sti�ness

matrix of the laminate (M̂∗ = Â∗, D̂∗, F̂ ∗)

[C∗
1], [C

∗
2], [C

∗
3], 3× 3 laminate homogeneity matries

Ei, (i = 1, 2, 3), Young's moduli of the onstitutive lamina (material frame)

Gij , (i, j = 1, 2, 3), shear moduli of the onstitutive lamina (material frame)

νij , (i, j = 1, 2, 3), Poisson's ratios of the onstitutive lamina (material frame)

tply, thikness of the onstitutive lamina

Ψ , overall objetive funtion for the problem of designing the elasti symmetries of the

laminate

{f}, 37× 1 vetor of partial objetive funtions

[W], 37× 37 positive semi-de�nite diagonal weight matrix

R̂0M∗ , R̂1M∗ , Φ̂0M∗ , Φ̂1M∗
imposed values for the polar parameters of matrix [M∗], (M∗ =

A∗,D∗,F∗,H∗)

Npop, number of populations

Nind, number of individuals

Ngen, number of generations

pcross, rossover probability

pmut, mutation probability

1 Introdution

As well known, the Classi Laminate Theory (CLT) together with the First-order Shear De-

formation Theory (FSDT) are the simplest theories employed for desribing the mehanial

behaviour of a omposite laminate onsidered as an equivalent homogeneous (generally)

anisotropi plate. Suh theories properly desribe the laminate kinemati response in the

ase of small (CLT) or moderate (FSDT) values of the plate harateristi aspet ratio

(i.e. the ratio of its thikness to its shorter side). However, the major drawbak of these

theories is in the estimation of the in�uene of the laminate transverse shear sti�ness on
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its mehanial response (whih beomes more and more important for thik plates). On

one hand, in the ase of the CLT the laminate transverse shear sti�ness does not intervene

in the de�nition of the laminate onstitutive equation (making this theory adequate only

for thin laminates). On the other hand, in the framework of the FSDT the in�uene of the

transverse shear sti�ness is taken into aount within the de�nition of the laminate onsti-

tutive behaviour. Nevertheless, due to the kinemati model on whih the FSDT relies, the

through-the-thikness shear stresses are onstant within eah onstitutive layer, leading in

this way to a mehanial ontradition. Indeed, the shear stresses do not satisfy: a) the

boundary onditions on the external faes of the laminate, b) the loal equilibrium equa-

tions (elastiity solution) and ) the ontinuity ondition at the layers interfae, see [1℄. To

overome these ontraditions, it is ommon to introdue the so-alled �shear orretion

fator� [1, 2℄ whih generally satis�es only two of the previous three onditions. However,

in the ontext of the FSDT, the de�nition of the shear orretion fator is immediate only

for isotropi plates, while it beomes more arduous de�ning suh a quantity for a laminate

sine it depends upon the geometrial parameters of the stak (layers orientations and

positions) [1℄.

Higher order theories allow for overoming suh a di�ulty: they give a better de-

sription of both the laminate kinematis and stress �eld without the need of introduing

any orretion oe�ient. However these theories require the introdution of higher-order

stress resultants and sti�ness matries whose physial meaning is not immediate. In lit-

erature one an �nd several higher-order theories of di�erent nature: for eah theory the

displaement �eld is expanded in a �nite series (in terms of the thikness oordinate) of

unknown funtions: the terms of the series (i.e. the funtions depending upon the thik-

ness oordinate) an belong to a given basis (polynomial, trigonometri, radial, B-spline,

NURBS, et.). In priniple it is possible to expand the displaement �eld up to any degree

in terms of the thikness oordinate. Nevertheless, an expansion up to the third order (the

so-alled third-order theory) is su�ient to apture the quadrati variation of the trans-

verse shear strains and stresses within eah layer. There are a lot of papers on third-order

theories, see for instane [3, 4, 5, 6, 7, 8, 9, 10, 11℄. Despite they seem to di�er from eah

other, the displaement �elds of these theories are mehanially equivalent (or related),

see [12℄. Reently, the lassial Third-order Shear Deformation Theory (TSDT) of lami-

nates, initially introdued by Reddy [3℄, has been extended and reformulated aording to

the Eringen's nonloal linear elastiity theory to apture small sale size e�ets through

the thikness [13℄.

The aim of this paper does not onsist in a ritial analysis of all the di�erent types

of TSDT that an be found in literature, rather it aims to shed some light on ertain

aspets linked to the formulation of the laminate onstitutive equation in the oneptual

framework of the lassial TSDT of Reddy [1℄. Partiularly, the objetive of the present
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work is twofold: on one hand it aims of larifying the physial meaning of the higher-order

sti�ness matries while on the other hand it intends of estimating their in�uene on the

elasti response of the laminate. To these purposes the polar method initially introdued

by Verhery [14℄, later enrihed and deeply investigated by Vannui and his o-workers [15,

16, 17, 18, 19℄ and reently extended to the FSDT of laminates [20℄ is here employed (for

the �rst time) within the framework of the TSDT. In partiular, the expression of the

polar parameters of the laminate higher-order sti�ness matries is analytially derived.

Thanks to the polar formalism and its appliation to the TSDT it is possible to introdue

some new lasses of laminates and also to generalise the de�nition of a quasi-homogeneous

laminate, initially introdued by Vannui and Verhery [21℄. Aordingly, it is possible to

arry out a more general analysis of the elasti response of the laminate by reformulating

and generalising the problem of designing its elasti symmetries (initially introdued by

Vannui [22℄ and later extended to the FSDT [20℄) within the ontext of the TSDT. This

problem is formulated as an unonstrained minimisation problem in the spae of the full set

of the laminate polar parameters (even inluding the higher-order sti�ness matries). Due

to its partiular nature (i.e. a non-onvex optimisation problem in the spae of the layers

orientation angles), the solution searh proess is performed by using the geneti algorithm

(GA) BIANCA [23, 24, 25℄. Finally, in order to numerially prove and support the major

analytial results found in this work, some meaningful and non-onventional examples are

presented.

The paper is organised as follows: Setion 2 brie�y realls the fundamentals of the polar

formalism. In Setion 3 the polar method is applied in the framework of the TSDT, by

highlighting the major analytial results. Setion 4 presents the mathematial formulation

of the problem of designing the elasti symmetries of a laminate as an optimisation problem

and the generalisation of this formulation when onsidering the laminate behaviour in

the ontext of the TSDT. Setion 5 shows some numerial results in order to prove the

e�etiveness of the polar formalism when it is applied to the TSDT. Finally Setion 6 ends

the paper with some onluding remarks.

2 Fundamentals of the Polar Method

For the sake of synthesis in this setion the main results of the Polar Method introdued by

Verhery in 1979 [14℄ are brie�y realled. The polar method is essentially a mathematial

tehnique that allows for expressing any n-rank plane tensor through a set of tensor in-

variants. As a onsequene, suh a representation an be applied not only to elastiity-like

tensors but also to a very general (even asymmetri) plane tensor, see for instane [26℄.

For more details on the polar formalism the reader is addressed to [15℄.

In the framework of the polar formalism a seond-rank (symmetri) tensor Zij, (i, j =
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1, 2), within the loal frame Γ, an be stated as:

Z11 = T + R cos 2Φ ,
Z12 = R sin 2Φ ,
Z22 = T − R cos 2Φ ,

(1)

where T is the isotropi modulus, R the deviatori one and Φ the polar angle. Furthermore,

for a seond-rank plane symmetri tensor there are only two tensor invariants, i.e. the polar

moduli T and R, while the polar angle Φ an be arbitrarily hosen to �x the referene frame.

The onverse relations are:

T =
Z11 + Z22

2
,

Rei2Φ =
Z11 − Z22

2
+ iZ12 ,

(2)

where i =
√
−1 is the imaginary unit. For a seond-rank plane tensor the only possible

symmetry is the isotropy whih an be obtained when the deviatori modulus of the tensor

is null, i.e. R = 0. Moreover, when using the polar formalism, the omponents of the

seond-rank tensor an be expressed in a very straightforward manner in the frame ΓI

(turned ounter-lok wise by an angle θ around the x3 axis) as follows:

Zxx = T + R cos 2(Φ − θ) ,
Zxy = R sin 2(Φ − θ) ,
Zyy = T − R cos 2(Φ − θ) .

(3)

Conerning a fourth-rank elastiity-like plane tensor Lijkl, (i, j, k, l = 1, 2) (expressed

within the loal frame Γ), its polar representation writes:

L1111 = T0 + 2T1 + R0 cos 4Φ0 + 4R1 cos 2Φ1 ,
L1122 = − T0 + 2T1 − R0 cos 4Φ0 ,
L1112 = R0 sin 4Φ0 + 2R1 sin 2Φ1 ,
L2222 = T0 + 2T1 + R0 cos 4Φ0 − 4R1 cos 2Φ1 ,
L2212 = − R0 sin 4Φ0 + 2R1 sin 2Φ1 ,
L1212 = T0 − R0 cos 4Φ0 .

(4)

As it learly appears from Eq. (4) the six independent Cartesian omponents of Lijkl are

expressed in terms of six polar parameters: T0 and T1 are the isotropi moduli, R0 and

R1 are the anisotropi ones, while Φ0 and Φ1 are the polar angles. Only �ve quantities

are tensor invariants, namely the polar moduli T0, T1, R0, R1 together with the angular

di�erene Φ0 −Φ1. One of the two polar angles, Φ0 or Φ1, an be arbitrarily hosen to �x

the referene frame. The onverse relations an be stated as:

8T0 = L1111 − 2L1122 + 4L1212 + L2222 ,

8T1 = L1111 + 2L1122 + L2222 ,

8R0e
i4Φ0 = L1111 − 2L1122 − 4L1212 + L2222 + 4i(L1112 − L2212) ,

8R1e
i2Φ1 = L1111 − L2222 + 2i(L1112 + L2212) .

(5)
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The Cartesian omponents of the fourth-rank tensor expressed in the frame ΓI
are:

Lxxxx = T0 + 2T1 + R0 cos 4(Φ0 − θ) + 4R1 cos 2(Φ1 − θ) ,
Lxxyy = − T0 + 2T1 − R0 cos 4(Φ0 − θ) ,
Lxxxy = R0 sin 4(Φ0 − θ) + 2R1 sin 2(Φ1 − θ) ,
Lyyyy = T0 + 2T1 + R0 cos 4(Φ0 − θ) − 4R1 cos 2(Φ1 − θ) ,
Lyyxy = − R0 sin 4(Φ0 − θ) + 2R1 sin 2(Φ1 − θ) ,
Lxyxy = T0 − R0 cos 4(Φ0 − θ) .

(6)

Finally, it an be proved that in the ase of a fourth-rank elastiity-like plane tensor four dif-

ferent types of elasti symmetry exist: (a) Ordinary orthotropy

(
Φ0 − Φ1 = K

π

4
, K = 0, 1

)
;

(b)R0−Orthotropy (R0 = 0); () Square symmetry (R1 = 0) and (d) Isotropy (R0 = R1 = 0).

For a deeper insight in the matter the reader is addressed to [15, 20℄.

3 Appliation of the Polar Formalism to the Third-order Shear

Deformation Theory of laminates

3.1 Constitutive equations of the laminate

For the sake of simpliity in this setion all of the equations governing the laminate me-

hanial response will be formulated in the ontext of the Voigt's (matrix) notation. The

passage from tensor notation to the Voigt's one an be easily expressed through the well-

known two-way relationships among indexes (for both loal and global frames) as follows:

{11, 22, 33, 32, 31, 21} ⇔ {1, 2, 3, 4, 5, 6} ,

{xx, yy, zz, zy, zx, yx} ⇔ {x, y, z, q, r, s} .
(7)

Let us onsider a multilayer plate omposed of n plies. Let be δk, zk−1 and zk the

orientation angle and the thikness oordinates of the bottom and top surfaes of the k-th

elementary lamina, respetively, as illustrated in Fig.1. Within the oneptual framework

of the lassial TSDT introdued by Reddy [1℄ the displaement �eld of the laminated plate

an be expressed (within the laminate global frame ΓI
) as:

u (x, y, z) = u0 (x, y) + φx (x, y)

(
z − 4z3

3h2

)
− 4z3

3h2
∂w0

∂x
,

v (x, y, z) = v0 (x, y) + φy (x, y)

(
z − 4z3

3h2

)
− 4z3

3h2
∂w0

∂y
,

w (x, y, z) = w0 (x, y) ,

(8)

where h is the total thikness of the laminate. In Eq.(8) u0, v0, w0, φx and φy are the �ve

independent kinematis unknowns. It is noteworthy that this displaement �eld engenders

a transverse shear stress �eld having a quadrati variation through the thikness of eah

onstitutive lamina whih preisely meets the tration-free boundary onditions on the
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top and bottom faes of the laminate, see [1℄. Taking into aount suh onsiderations,

the laminate onstitutive equation, under the hypothesis of small strains and moderate

rotations [1℄, an be stated as:





{N}
{M}
{P}





=




[A] [B] [E]

[B] [D] [F]

[E] [F] [H]








{ε(0)}
{ε(1)}
{ε(3)}





, (9)





{Q}
{R}



 =




[Â] [D̂]

[D̂] [F̂]







{γ(0)}
{γ(2)}



 . (10)

In Eqs. (9) and (10) {ε(0)}, {ε(1)} and {ε(3)} represent the in-plane strains of the laminate

middle plane while {γ(0)} and {γ(2)} are the transverse shear strains: all of these quantities
an be derived by means of the non-linear strain-displaement relationship in the ase of

moderate rotations and small strains. {N}, {M} and {P} are the higher-order generalised

in-plane stress resultants while {Q} and {R} are the higher-order generalised transverse

shear stress resultants. For a deeper insight in the matter (mainly about the de�nition of

these quantities) the reader is addressed to [1℄. Here the major onern is the analysis of

the elasti response of the laminate through an investigation of the elasti symmetries of its

higher-order sti�ness harateristis. In partiular, in Eqs. (9) and (10) [A], [B], [D], [E],

[F] and [H] are the in-plane sti�ness matries (membrane, membrane/bending oupling,

bending and higher-order sti�ness terms) while [Â], [D̂] and [F̂] are the transverse shear

sti�ness matries (basi and higher-order terms) of the laminate. Suh matries are de�ned

as follows:

[A] =
n∑

k=1

[Q (δk)] (zk − zk−1) , [B] =
1

2

n∑
k=1

[Q (δk)]
(
z2k − z2k−1

)
,

[D] =
1

3

n∑
k=1

[Q (δk)]
(
z3k − z3k−1

)
, [E] =

1

4

n∑
k=1

[Q (δk)]
(
z4k − z4k−1

)
,

[F] =
1

5

n∑
k=1

[Q (δk)]
(
z5k − z5k−1

)
, [H] =

1

7

n∑
k=1

[Q (δk)]
(
z7k − z7k−1

)
,

(11)

[Â] =
n∑

k=1

[Q̂(δk)] (zk − zk−1) , [D̂] =
1

3

n∑
k=1

[Q̂(δk)]
(
z3k − z3k−1

)
,

[F̂] =
1

5

n∑
k=1

[Q̂(δk)]
(
z5k − z5k−1

)
.

(12)

In the previous equations [Q (δk)] and [Q̂(δk)] are the in-plane and the transverse shear

redued sti�ness matries of the k-th ply, respetively. Eqs. (11) and (12) an be simpli�ed

9



for a laminate omposed of idential layers, i.e. layers having same material properties and

thikness, as follows:

[A] =
h

n

n∑
k=1

[Q (δk)] , [B] =
1

2

(
h

n

)2 n∑
k=1

bk [Q (δk)] ,

[D] =
1

12

(
h

n

)3 n∑
k=1

dk [Q (δk)] , [E] =
1

8

(
h

n

)4 n∑
k=1

ek [Q (δk)] ,

[F] =
1

80

(
h

n

)5 n∑
k=1

fk [Q (δk)] , [H] =
1

448

(
h

n

)7 n∑
k=1

hk [Q (δk)] ,

(13)

[Â] =
h

n

n∑
k=1

[Q̂(δk)] , [D̂] =
1

12

(
h

n

)3 n∑
k=1

dk[Q̂(δk)] ,

[F̂] =
1

80

(
h

n

)5 n∑
k=1

fk[Q̂(δk)] ,

(14)

where the expression of the oe�ients bk, dk, ek, fk and hk and the related geometrial

properties are disussed in Appendix A.

Let us onsider the redued sti�ness matries of the elementary ply. It an be easily

notied that after a hange of frame (i.e. when passing from the lamina loal frame Γ to

the global one ΓI
) the omponents of matrix [Q(δk)] behave like those of a fourth-rank

elastiity-like plane tensor, while those of [Q̂(δk)] vary aording to the transformation

law of a seond-rank symmetri plane tensor, see [20℄. Therefore these matries an be

represented by means of the polar formalism:

Qxx = T0 + 2T1 + R0 cos 4(Φ0 + δk) + 4R1 cos 2(Φ1 + δk) ,
Qxy = − T0 + 2T1 − R0 cos 4(Φ0 + δk) ,
Qxs = R0 sin 4(Φ0 + δk) + 2R1 sin 2(Φ1 + δk) ,
Qyy = T0 + 2T1 + R0 cos 4(Φ0 + δk) − 4R1 cos 2(Φ1 + δk) ,
Qys = − R0 sin 4(Φ0 + δk) + 2R1 sin 2(Φ1 + δk) ,
Qss = T0 − R0 cos 4(Φ0 + δk) ,

(15)

Q̂qq = T + R cos 2(Φ + δk) ,

Q̂qr = R sin 2(Φ + δk) ,

Q̂rr = T − R cos 2(Φ + δk) .

(16)

To be remarked that in the previous equations it is the material frame of the k-th lamina

(and not the global one) whih is turned ounter-lok wise by an angle δk around the

x3 axis. In Eqs. (15) and (16) T0, T1, R0, R1, Φ0 and Φ1 are the polar parameters

of the in-plane redued sti�ness matrix of the lamina, while T , R, and Φ are those of

the transverse shear sti�ness matrix: all of these parameters solely depend upon the ply

material properties (e.g. if the ply is orthotropi the polar parameters of [Q(δk)] depend

upon E1, E2, G12 and ν12, while those of [Q̂(δk)] depend upon G23 and G13).
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In order to better analyse and understand the mehanial response of the laminate it

is useful to homogenise the units of its harateristi sti�ness matries to those of the ply

redued sti�ness matries:

[A∗] =
1

h
[A] , [B∗] =

2

h2
[B] , [D∗] =

12

h3
[D] ,

[E∗] =
8

h4
[E] , [F∗] =

80

h5
[F] , [H∗] =

448

h7
[H] ,

[Â∗] =
1

h
[Â] , [D̂∗] =

12

h3
[D̂] , [F̂∗] =

80

h5
[F̂] .

(17)

In the framework of the polar formalism it is possible to express all of the previous

matries in terms of their polar parameters. In partiular, matries [A∗], [B∗], [D∗], [E∗],

[F∗] and [H∗] behave like a fourth-rank elastiity-like plane tensor while matries [Â∗],

[D̂∗] and [F̂∗] behave like a seond-rank symmetri plane tensor. Moreover, the polar

parameters of these matries an be expressed as funtions of the polar parameters of

the lamina redued sti�ness matries and of the geometrial properties of the stak (i.e.

the layer orientation and position). The polar representation of the homogenised sti�ness

matries of the laminate an be stated as:

T0A∗ = T0 ,

T1A∗ = T1 ,

R0A∗ei4Φ0A∗ =
1

n
R0e

i4Φ0

n∑
k=1

ei4δk ,

R1A∗ei2Φ1A∗ =
1

n
R1e

i2Φ1

n∑
k=1

ei2δk ,

(18)

T0B∗ = 0 ,

T1B∗ = 0 ,

R0B∗ei4Φ0B∗ =
1

n2
R0e

i4Φ0

n∑
k=1

bke
i4δk ,

R1B∗ei2Φ1B∗ =
1

n2
R1e

i2Φ1

n∑
k=1

bke
i2δk ,

(19)

T0D∗ = T0 ,

T1D∗ = T1 ,

R0D∗ei4Φ0D∗ =
1

n3
R0e

i4Φ0

n∑
k=1

dke
i4δk ,

R1D∗ei2Φ1D∗ =
1

n3
R1e

i2Φ1

n∑
k=1

dke
i2δk ,

(20)
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T0E∗ = 0 ,

T1E∗ = 0 ,

R0E∗ei4Φ0E∗ =
1

n4
R0e

i4Φ0

n∑
k=1

eke
i4δk ,

R1E∗ei2Φ1E∗ =
1

n4
R1e

i2Φ1

n∑
k=1

eke
i2δk ,

(21)

T0F ∗ = T0 ,

T1F ∗ = T1 ,

R0F ∗ei4Φ0F∗ =
1

n5
R0e

i4Φ0

n∑
k=1

fke
i4δk ,

R1F ∗ei2Φ1F∗ =
1

n5
R1e

i2Φ1

n∑
k=1

fke
i2δk ,

(22)

T0H∗ = T0 ,

T1H∗ = T1 ,

R0H∗ei4Φ0H∗ =
1

n7
R0e

i4Φ0

n∑
k=1

hke
i4δk ,

R1H∗ei2Φ1H∗ =
1

n7
R1e

i2Φ1

n∑
k=1

hke
i2δk ,

(23)

TÂ∗
= T ,

RÂ∗
ei2ΦÂ∗ =

1

n
Rei2Φ

n∑
k=1

ei2δk ,
(24)

T
D̂∗

= T ,

R
D̂∗

ei2ΦD̂∗ =
1

n3
Rei2Φ

n∑
k=1

dke
i2δk ,

(25)

TF̂ ∗
= T ,

RF̂ ∗
ei2ΦF̂∗ =

1

n5
Rei2Φ

n∑
k=1

fke
i2δk .

(26)

The above equations have been derived by following the same logial proedure used in the

ase of the polar analysis of the FSDT, see [20℄. After a quik glane to Eqs. (18)-(26) the

following aspets an be highlighted:

• the isotropi polar moduli of matries [A∗], [D∗], [F∗] and [H∗] are equal to those of

the in-plane redued sti�ness matrix of the elementary ply;
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• the isotropi part of matries [B∗] and [E∗] is null;

• the isotropi modulus of matries [Â∗], [D̂∗] and [F̂∗] is equal to that of the transverse

shear sti�ness matrix of the onstitutive lamina;

Moreover (as in the ase of the de�nition of the laminate homogenised transverse shear

sti�ness matrix in the ontext of the FSDT) it an be proved that both the deviatori

modulus and the polar angle of matries [Â∗], [D̂∗] and [F̂ ∗] an be expressed as a linear

ombination of the anisotropi polar modulus R1M∗
and the related polar angle Φ1M∗

of matries [A∗], [D∗] and [F∗], respetively (see [20℄ for the details on the mathematial

passages):

RÂ∗
ei2ΦÂ∗ =

R

R1
R1A∗ei2(Φ1A∗+Φ−Φ1) ,

R
D̂∗

ei2ΦD̂∗ =
R

R1
R1D∗ei2(Φ1D∗+Φ−Φ1) ,

RF̂ ∗
ei2ΦF̂∗ =

R

R1
R1F ∗ei2(Φ1F∗+Φ−Φ1) .

(27)

Eq.(27) means that, when the material of the elementary ply is �xed a priori, the overall

elasti response of the laminate depends only on the anisotropi part of matries [A∗],

[B∗], [D∗], [E∗], [F∗] and [H∗]. In partiular, the designer an at, through a variation

of the geometri parameters of the stak, only on the anisotropi polar moduli and polar

angles of the laminate in-plane sti�ness matries in order to ahieve the required mehanial

response (the deviatori part of the shear sti�ness matries [Â∗], [D̂∗] and [F̂∗] being diretly

linked to the anisotropi terms of their in-plane ounterparts). Moreover, as it learly

appears from Eq.(27), the ratio between the deviatori part of matries [Â∗], [D̂∗] and

[F̂∗] and the anisotropi term R1M∗ei2Φ1M∗

of their in-plane ounterparts is onstant one

the material of the onstitutive layer is hosen: suh a ratio does not depend upon the

layers orientations and positions, rather it solely varies with the material properties of the

onstitutive layer. Finally, due to the relationships (27) if one of the matries [A∗], [D∗] and

[F∗] is haraterised by a square symmetri behaviour (i.e. R1M∗ = 0) the orresponding

transverse shear sti�ness matrix will exhibit an isotropi behaviour (the deviatori part of

the matrix beomes null, i.e. R
M̂∗

= 0).

3.2 De�nition of some new lasses of laminates

When looking at Eqs.(18)-(27) one an notie that the laminate elasti behaviour is gov-

erned, at the maro-sale, by an overall number of 39 polar parameters: six for eah one of

the matries [A∗], [B∗], [D∗], [E∗], [F∗] and [H∗] together with the isotropi polar moduli

of matries [Â∗], [D̂∗] and [F̂∗] (the deviatori part being linked to the anisotropi part of
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their in-plane ounterparts). In this set the isotropi moduli of [B∗] and [E∗] are null while

those of the remaining matries are equal to the isotropi moduli of the lamina redued

sti�ness matries. The only polar parameters whih depend upon the geometrial hara-

teristis of the stak are the anisotropi moduli R0M∗
and R1M∗

as well as the related polar

angles Φ0M∗
and Φ1M∗

of the laminate in-plane sti�ness matries for an overall number

of 24 polar parameters on whih the designer an intervene to get the desired mehanial

response at the maro-sale.

The set of polar parameters to be designed an be further redued by generalising to

the ase of the TSDT the onept of a quasi-homogeneous laminate initially introdued by

Vannui and Verhery [21℄. To this purpose let us introdue the laminate homogeneity

matries [C∗
1], [C

∗
2] and [C∗

3], whih are de�ned as:

[C∗
1] = [A∗]− [D∗] , [C∗

2] = [D∗]− [F∗] , [C∗
3] = [F∗]− [H∗] . (28)

In the framework of the TSDT the following de�nitions apply:

1. a laminate is de�ned fully unoupled if and only if

[B∗] = [E∗] = [O] ; (29)

2. a laminate is said homogeneous in bending if and only if

[C∗
2] = [C∗

3] = [O] ; (30)

3. a laminate is said homogeneous in membrane and bending if and only if

[C∗
1] = [C∗

2] = [C∗
3] = [O] ; (31)

4. a laminate is de�ned fully unoupled and homogeneous if and only if

[B∗] = [E∗] = [C∗
1] = [C∗

2] = [C∗
3] = [O] . (32)

It is noteworthy that, sine the deviatori part of the laminate transverse shear sti�ness

matries depends upon the anisotropi one of their in-plane ounterparts, Eqs.(30) and (31)

imply that the resulting laminate will be homogeneous also in terms of its shear sti�ness

properties.

As a onlusive remark, it an be notied that when the elasti unoupling ondition

is met, the laminate mehanial response is governed by a set of 16 polar parameters,

whilst if the laminate is fully unoupled and homogeneous the number of polar parameters

whereon the designer an at redues from 24 to four, i.e. the anisotropi polar moduli and

the related polar angles of matrix [A∗]. This last lass of laminates is rather fundamental
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for design purposes: despite the kinemati model on whih the TSDT relies is �riher�

and more general than that of the CLT, in this ase the number of independent tensor

invariants haraterising the mehanial response of the laminate and on whih the designer

an intervene is the same as the ase of the CLT.

4 Elasti symmetries of the laminate: the Polar Approah in

the framework of the TSDT

In this Setion, the problem of designing the laminate elasti symmetries is generalised

to the theoretial framework of the TSDT. This problem was initially introdued by Van-

nui [22℄ for the ase of the CLT, later it has been modi�ed and extended to the ase

of laminates with variable number of plies [19℄ and to the oneptual framework of the

FSDT [20℄.

As widely disussed in [22℄, this problem an be stated as an unonstrained minimisation

problem in the spae of the laminate polar parameters. The goal of this problem is to

�nd at least one staking sequene meeting the elasti requirements for the multilayer

plate (in terms of the elasti symmetries of the di�erent sti�ness matries governing the

laminate behaviour) provided by the problem at hand. In the ontext of the TSDT this

unonstrained minimisation problem an be stated as:

min
{δ1,...,δn}

Ψ (δ1, ..., δn) = {f}T [W] {f} , (33)

where Ψ is the overall objetive funtion expressing the laminate elasti response and

δk is the orientation angle of the k-th layer (k = 1, ...n). {f} is the vetor of the partial

objetive funtions (eah one linked to a partiular elasti symmetry) while [W] is a positive

semi-de�nite diagonal matrix of weights whose terms an be equal to either zero or one

(depending on the onsidered ombination of elasti symmetries). The omponents of the

vetor {f} as well as the related physial meaning are listed here below:

• f1 =
‖ [B∗] ‖
‖ [Q] ‖ is the membrane/bending unoupling ondition;

• f2 =
‖ [E∗] ‖
‖ [Q] ‖ is the membrane/higher-order bending unoupling ondition;

• f2+j =
‖[C∗

j ]‖
‖ [Q] ‖ with j = 1, 2, 3 are the homogeneity onditions;

• f5+i =
Φ0M∗ − Φ1M∗ −KM∗π/4

π/4
, with KM∗ = 0, 1), is the ordinary orthotropy on-

dition for the generi homogenised in-plane sti�ness matrix [M∗] of the laminate;

• f9+i =
R0M∗

R0
is the R0-orthotropy ondition for [M∗];
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• f13+i =
R1M∗

R1
is the square symmetry ondition for [M∗];

• f17+i =

√
R2

0M∗ + 4R2
1M∗

√
R2

0 + 4R2
1

is the isotropy ondition for [M∗];

• f21+i =
R0M∗ − R̂0M∗

R̂0M∗

represents a ondition on the value of the �rst anisotropi

modulus of [M∗] whih an be used in the ases of ordinary orthotropy or square

symmetry (but not in the ases of both R0-orthotropy and isotropy);

• f25+i =
R1M∗ − R̂1M∗

R̂1M∗

represents a ondition on the value of the seond anisotropi

modulus of [M∗] whih an be used in the ases of ordinary orthotropy or R0-

orthotropy (but not in the ases of both square symmetry and isotropy);

• f29+i =
Φ0M∗ − Φ̂0M∗

π/4
represents a ondition on the value of the orientation of the

main orthotropy axis of [M∗] whih an be used in the ase of square symmetry (but

not in the ases of ordinary orthotropy, R0-orthotropy and isotropy);

• f33+i =
Φ1M∗ − Φ̂1M∗

π/4
represents a ondition on the value of the orientation of the

main orthotropy axis of [M∗] whih an be used in the ases of ordinary orthotropy

or R0-orthotropy (but not in the ases of both square symmetry and isotropy);

In the previous formulae [M∗] = [A∗], [D∗], [F∗], [H∗] when i = 1, 2, 3, 4, respetively: i.e.

the onsidered elasti ondition an be imposed on eah one of the homogenised in-plane

sti�ness matries of the laminate, depending on the elasti requirements provided by the

problem at hand.

It an be notied that all of the omponents of the vetor {f} are expressed in terms of

the polar parameters of the laminate homogenised in-plane sti�ness matries and that they

have been normalised with the orresponding ounterparts of the matrix [Q]. Moreover,

the expression of the matrix norm used for the �rst �ve partial funtions is that proposed

by Kandil and Verhery [27℄:

‖ [Q] ‖ =
√

T 2
0 + 2T 2

1 +R2
0 + 4R2

1 , (34)

an analogous relationship applies for matries [B∗], [E∗], [C∗
1], [C

∗
2] and [C∗

3]. Of ourse, the

terms belonging to the diagonal of the weight matrix [W] annot be all di�erent from zero

at the same time: for instane it is not possible to design a laminate whih is simultaneously

orthotropi and isotropi in membrane, or a laminate whih is homogeneous in bending

with [D∗] showing an orthotropi response while [F∗] and [H∗] having an isotropi behaviour

(indeed if the laminate is homogeneous in bending it is haraterised by the same elasti
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behaviour for [D∗], [F∗] and [H∗]), et. Therefore a partiular are must be taken in tuning

the terms of the weight matrix.

As a onlusive remark it is noteworthy that the objetive funtion Ψ is a dimensionless,

positive semi-de�nite onvex funtion in the spae of laminate polar parameters whose

absolute minima are known a priori sine they are the zeroes of this funtion. On the other

hand Ψ is a highly non-onvex non-linear funtion in the spae of plies orientation angles,

i.e. the true design variables of problem (33), beause the laminate polar parameters

depend upon irular funtions of these angles, see Eqs. (18)-(23). For more details about

the nature of this problem the reader is addressed to [19, 25℄.

5 Studied ases and results

In this Setion some meaningful numerial examples onerning the problem of designing

the laminate elasti behaviour are illustrated in order to numerially prove the existene

of the new lasses of laminates presented in Se. 3. Moreover, suh examples show on one

hand the e�etiveness of using the polar approah in the framework of the TSDT, while on

the other hand they show the e�etiveness of non-onventional lay-ups whih satisfy (for

eah onsidered ase) the presribed set of elasti requirements imposed by the problem.

In partiular, the problem of designing the laminate elasti symmetries is formulated and

solved in the following ases:

• fully unoupled laminate with square symmetri membrane behaviour;

• fully unoupled laminate homogeneous in bending with an orthotropi behaviour;

• fully unoupled and homogeneous laminate with a square symmetri behaviour.

Sine the elasti behaviour of the laminate depends upon the elasti properties of the

onstitutive lamina, the results must refer to a given material. In the ase of the numerial

examples illustrated in this Setion a transverse isotropi unidiretional arbon/epoxy ply

has been hosen, whose material properties are listed in Table 1. In addition the number

of layers n omposing the laminated plate is �xed equal to 20.

Due to the nature of the optimisation problem of Eq. (33), i.e. a highly non-onvex

unonstrained minimisation problem in the spae of the layers orientations, a geneti al-

gorithm, BIANCA [24, 25, 28℄, has been employed to �nd a solution. In this ase, eah

individual has a genotype omposed of n hromosomes, i.e. one for eah ply, haraterised

by a single gene oding the layer orientation. It must be pointed out that the orientation

angle of eah lamina an get all the values in the range [−89◦, 90◦] with a disretisation

step of 1◦. Suh a disretisation step has been hosen in order to prove that laminates with

given elasti properties an be easily obtained by abandoning the well-known onventional

rules for tailoring the laminate stak (e.g. symmetri-balaned staks) whih extremely
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shrink the searh spae for the problem at hand. Therefore, the true advantages in using

non-onventional staking sequenes are at least two: on one hand when using suh a dis-

retisation step for the plies orientations it is possible to explore the overall design spae

of problem (33), while on the other hand the polar-geneti approah leads to �nd very

general staks (nor symmetri neither balaned) that fully meet the elasti properties with

a fewer number of plies (hene lighter) than the standard ones. For more details about

these aspets the reader is addressed to [19, 25℄.

Finally, regarding the value of the geneti parameters for the GA BIANCA they are

listed in Table 2. For more details on the numerial tehniques developed within the

BIANCA ode and the meaning of the values of the di�erent parameters tuning the GA

the reader is addressed to [25, 28℄.

5.1 Case 1: fully unoupled laminate with square symmetri membrane

behaviour

The aim of this �rst ase is the design of a fully unoupled laminate with the membrane

sti�ness matrix [A∗] haraterised by a square symmetri behaviour with a presribed

orientation of the main orthtropy axis, i.e. in this ase Φ̂0A∗ = 0◦. Moreover, when

imposing this kind of symmetry on matrix [A∗] the designer an automatially obtain

an isotropi behaviour for matrix [Â∗], as a onsequene of Eq. (27). In this ase, the

expression of the overall objetive funtion Ψ of Eq. (33) an be obtained by setting

W11 = W22 = W1414 = W3030 = 1 and the rest of the terms of the diagonal matrix [W]

equal to zero:

Ψ =

(‖ [B∗] ‖
‖ [Q] ‖

)2

+

(‖ [E∗] ‖
‖ [Q] ‖

)2

+

(
R1A∗

R1

)2

+

(
Φ0A∗ − Φ̂0A∗

π/4

)2

. (35)

Table 3 shows two examples of laminate staking sequenes satisfying the riteria of

Eq. (35). The residual in the last olumn is the value of the objetive funtion Ψ for

eah solution (reall that exat solutions orrespond to zeros of the objetive funtion,

see [22℄ for more details). It an be notied that the optimal staking sequenes are really

general: they are nor symmetri neither balaned and they fully meet the elasti symmetry

requirements imposed on the laminate through Eq. (35) with only 20 plies.

Table 4 lists the value of the laminate polar parameters for the best staking sequene

(solution n. 1) of Table 3, while Fig. 2 illustrates the related polar diagrams for the �rst

Cartesian omponent of matries [A∗], [B∗], [D∗], [E∗], [F∗], [H∗] and the three Cartesian

omponents of matries [Â∗], [D̂∗] and [F̂∗]. One an notie that, aording to the theoreti-

al result of Eq. (27), the laminate is haraterised both by a square symmetri membrane

sti�ness behaviour (whose main orthotropi axis is oriented at 0◦, see Table 4) and by an

isotropi elasti response for matrix [Â∗]. In addition the laminate is pratially unoupled

(B∗
xx and E∗

xx redue to a small point in the entre of the plot) while it is ompletely
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anisotropi in bending beause no elasti requirements have been imposed on [D∗], [F∗] and

[H∗]. Moreover, as a onsequene of the anisotropy of matries [D∗] and [F∗], the higher-

order transverse shear matries [D̂∗] and [F̂∗] show a general orthotropi behaviour (the

deviatori modulus of these matries does not vanish, see Table 4). It is noteworthy that

suh results have been found with very general staks omposed of a few number of plies:

it is really di�ult (if not impossible) to obtain the same laminate mehanial response

with standard multilayer plates, i.e. plates haraterised by a symmetri, balaned lay-up.

As a �nal remark, Fig. 3 shows the variation of the value of the objetive funtion of

the best solution (of Table 3) along generations for problem (33) for this �rst ase. One

an easily see that the optimum solution has been found only after 210 generations. Sine

the problem is highly non-onvex, at the end of the geneti alulation it is possible to

�nd within the population not only the best solution but also some �tting quasi-optimal

solutions like solution n.2 of Table 3: the presene of suh solutions (whereof solution n.2

is only an example among the others omposing the �nal population) an be e�etively

exploited by the designer whih wants to deeply investigate their mehanial response with

respet to di�erent design riteria (e.g. bukling, natural frequenies, et.).

5.2 Case 2: fully unoupled laminate homogeneous in bending with an

orthotropi behaviour

For this seond ase the goal onsists in designing a fully unoupled laminate whih must

be simultaneously homogeneous in bending and haraterised by a �exural orthotropi

behaviour (with KD∗ = 1) with a presribed diretion of the main orthotropy axis (in this

ase Φ̂1D∗ = 0◦).

The expression of the overall objetive funtion Ψ of Eq. (33) an be obtained by setting

W11 = W22 = W44 = W55 = W77 = W3535 = 1 and the rest of the terms of the diagonal

matrix [W] equal to zero:

Ψ =

(‖ [B∗] ‖
‖ [Q] ‖

)2

+

(‖ [E∗] ‖
‖ [Q] ‖

)2

+

(‖[C∗
2]‖

‖ [Q] ‖

)2

+

+

(‖[C∗
3]‖

‖ [Q] ‖

)2

+

(
Φ0D∗ −Φ1D∗ − π/4

π/4

)2

+

(
Φ1D∗ − Φ̂1D∗

π/4

)2

.

(36)

Two examples of laminate staking sequenes satisfying the riteria of Eq. (36) are listed

in Table 3. Table 5 lists the value of the laminate polar parameters for the best staking

sequene (solution n. 1) of Table 3, while Fig. 4 illustrates the related polar diagrams

of the sti�ness matries of the laminate. One an notie that the laminate is orhtotropi

in bending beause the shape of the polar diagrams for the matries [D∗], [F∗] and [H∗]

shows two axis of orthogonal symmetry with the main orthotropy axis oriented at 0◦. In

addition, the laminate is really homogeneous in bending beause the previous diagrams

are superposed: this superposition also applies for the polar diagrams of the omponents
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of matries [D̂∗] and [F̂∗]. Furthermore, the laminate is fully unoupled (B∗
xx and E∗

xx

redue to a small point in the entre of the plot) while it is ompletely anisotropi in terms

of the elasti response of the matrix [A∗].

Finally, Fig. 5 shows the variation of the value of the objetive funtion for the best

solution (of Table 3) along generations for problem (33) for this seond ase. It an be

notied that the optimum solution has been found after 185 generations. For the rest, the

onsiderations already done for ase 1 an be repeated here.

5.3 Case 3: fully unoupled and homogeneous laminate with a square

symmetri behaviour

The aim of this example is the design of a fully unoupled homogeneous laminate with an

overall square symmetri elasti behaviour (both in extension and bending) and with the

main axis of symmetry oriented at Φ̂0A∗ = 0◦.

The expression of the overall objetive funtion Ψ of Eq. (33) an be obtained by setting

W11 = W22 = W33 = W44 = W55 = W1414 = W3030 = 1 and the rest of the terms of the

diagonal matrix [W] equal to zero:

Ψ =

(‖ [B∗] ‖
‖ [Q] ‖

)2

+

(‖ [E∗] ‖
‖ [Q] ‖

)2

+

(‖[C∗
1]‖

‖ [Q] ‖

)2

+

+

(‖[C∗
2]‖

‖ [Q] ‖

)2

+

(‖[C∗
3]‖

‖ [Q] ‖

)2

+

(
R1A∗

R1

)2

+

(
Φ0A∗ − Φ̂0A∗

π/4

)2

.

(37)

Two examples of laminate staking sequenes satisfying the riteria of Eq. (37) are

listed in Table 3: also in this ase the optimal staks are very general staks. Table 6 lists

the value of the laminate polar parameters for the best staking sequene (solution n. 1)

of Table 3, while Fig. 6 illustrates the related polar diagrams for all the sti�ness matries

of the multilayer plate. It is noteworthy that, due to the theoretial result of Eq. (27), the

laminate is haraterised both by an overall square symmetri elasti response (for eah one

of the in-plane sti�ness matries) and by a global isotropi out-of-plane shear behaviour.

Moreover the laminate is fully unoupled and homogeneous (the polar diagrams of matries

[A∗], [D∗], [F∗] and [H∗] are in fat superposed). Finally, the main axis of symmetry for

every in-plane sti�ness matrix is oriented at 0◦.

As a �nal remark of this setion, Fig. 7 shows the variation of the value of the objetive

funtion for the best solution (of Table 3) along generations for problem (33) for this last

ase: the optimum solution has been found after about 105 generations. For the rest, the

onsiderations already done for ases 1 and 2 an be repeated here.

6 Conlusions

In this work the Verhery's polar method for representing plane tensors has been employed

within the oneptual framework of the lassial Reddy's Third-order Shear Deformation
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Theory of laminates. The following major results were analytially derived.

1. A mathematial formulation based upon tensor invariants has been proposed for all

the laminate sti�ness matries.

2. As a onsequene of the appliation of the polar formalism to the higher-order in-

plane and transverse shear sti�ness matries a generalisation of the onept of quasi-

homogeneous laminates has been proposed together with the de�nition of some new

lasses of laminates.

3. The elasti symmetries of the laminate out-of-plane shear sti�ness matries (basi and

higher-order terms) depend upon those of their in-plane ounterparts: in partiular,

the isotropi behaviour of the laminate shear sti�ness matries is losely related to

the square symmetri behaviour of their in-plane ounterparts.

4. For a speial lass of laminate, i.e. for a fully unoupled and homogeneous laminate,

the number of independent tensor invariants haraterising the mehanial response

of the laminate remains unhanged when passing from the ontext of the CLT to

that of the TSDT.

5. The uni�ed formulation of the problem of designing the laminate elasti symmetries

has been modi�ed and extended to the ontext of the TSDT.

To the best of the author's knowledge, this is the �rst time that a mathematial for-

mulation based upon tensor invariants (namely the polar method) has been applied to the

oneptual framework of the TSDT. The mehanial response of the laminated plate is

represented by means of the polar formalism that o�ers several advantages: a) the polar

invariants are diretly linked to the tensor elasti symmetries, b) the polar method allows

for eliminating from the proedure redundant mehanial properties and ) it allows for

easily expressing the hange of referene frame.

The e�etiveness of the proposed approah has been proved both analytially and

numerially by means of some new and meaningful numerial examples. The numerial

results presented in this work (whih have been found in the ontext of the polar-geneti

approah) show that when the well-known hypotheses and rules for tailoring laminates

are abandoned (i.e. when using symmetri, balaned staks and when onsidering a small

set of layer orientations shrunk to the values 0◦, ±45◦ and 90◦) it is possible to design

laminates with enhaned mehanial properties, very di�ult (if not impossible) to be

obtained otherwise.

Finally, it is opinion of the author that the polar-geneti approah an be extended

also to the theoretial framework of more aurate theories suh as higher-order theories

oupled with equivalent single layer kinemati models: researh is ongoing on these topis.
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Appendix A Analytial expression of the oe�ients of the

laminate sti�ness matries in the ase of iden-

tial plies

In order to determine the analytial expression of the oe�ients that intervene in the

formulation of the sti�ness matries of a laminate omposed of idential plies, see Eqs.

(13) and (14), the �rst step is the de�nition of the thikness oordinate for both the

bottom and the top faes of the k-th elementary layer. Sine the laminate is omposed of

n idential plies and being h its overall thikness, the expressions of zk−1 and zk an be

stated as (see Fig. 1):

zk−1 = −h

2
+ (k − 1)

h

n
, zk = −h

2
+ k

h

n
, k = 1, ..., n . (38)

To derive the expression of the laminate harateristi oe�ients bk, dk, ek, fk and hk

it su�es to substitute Eq. (38) in Eqs. (11). Whilst the alulation of oe�ients bk

and dk is trivial and represents a lassial result that an be found in literature [29℄,

on the other hand the determination of the analytial expression of oe�ients ek, fk

and hk is quite hard and needs the support of a symboli-based omputational software,

suh as Mathematia

R©
. By means of this language it is possible to derive the following

relationships:

bk = 2k − n− 1 ,

dk = 12k2 − 12k(n + 1) + 3n2 + 6n+ 4 ,

ek = 8k3 − 12k2(n+ 1) + 2k(3n2 + 6n+ 4)− (n3 + 3n2 + 4n+ 2) ,

fk = 80k4 − 160k3(n + 1) + 40k2(3n2 + 6n+ 4)− 40k(n3 + 3n2 + 4n+ 2)+
+5n4 + 20n3 + 40n2 + 40n + 16 ,

hk = 448k6 − 1344k5(n + 1) + 560k4(3n2 + 6n+ 4)+
−1120k3(n3 + 3n2 + 4n+ 2) + 84k2(5n4 + 20n3 + 40n2 + 40n+ 16)+
−28k(3n5 + 15n4 + 40n3 + 60n2 + 48n+ 16)+
+7n6 + 42n5 + 140n4 + 280n3 + 336n2 + 224n + 64 .

(39)

The variation of the previous oe�ients as funtion of the ply position k is depited in

Fig. A.1. It an be notied that oe�ients bk and ek have a skew-symmetri trend with

respet to the laminate middle plane, whilst the rest of the oe�ients show a symmetri

variation. By means of the software Mathematia

R©
one an also determine the following

fundamental analytial properties haraterising the laminate sti�ness oe�ients:

n∑
k=1

bk = 0 ,
n∑

k=1

dk = n3 ,
n∑

k=1

ek = 0 ,

n∑
k=1

fk = n5 ,
n∑

k=1

hk = n7 .

(40)
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It is noteworthy that the sum of oe�ients bk and ek is null and that this result agrees

with the skew-symmetri variation of these oe�ients within the laminate thikness.
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Tables

Tehnial onstants Polar parameters of [Q] Polar parameters of [Q̂]

E1 161000 MPa T0 23793.3868 MPa T 5095.4545 MPa

E2 9000 MPa T1 21917.8249 MPa R 1004.5454 MPa

G12 6100 MPa R0 17693.3868 MPa Φ 90 deg

ν12 0.26 R1 19072.0711 MPa

ν23 0.1 Φ0 0 deg

Φ1 0 deg

Density and thikness

ρ 1.58× 10−6
Kg/mm

3

tply 0.125 mm

Table 1: Material properties of the arbon-epoxy lamina.

Geneti parameters

Npop 1
Nind 500
Ngen 500
pcross 0.85
pmut 1/Nind

Seletion roulette-wheel

Elitism ative

Table 2: Geneti parameters of the GA BIANCA for problem (33).

Case N. Solution N. Staking sequene Residual

1 1 [72/14/-63/-80/-48/70/3/37/-25/-10/11/77/-19/62/11/-54/-88/-54/19/77℄ 6.0009× 10−6

2 [-1/-14/88/51/-73/-88/-32/24/20/62/-49/22/-44/-81/72/-9/-75/73/16/-15℄ 4.8924× 10−5

2 1 [-31/35/32/-31/-32/30/35/-70/-21/-38/-70/59/43/-31/-34/21/36/-29/-38/31℄ 1.7476× 10−4

2 [35/-43/-25/-27/23/32/56/-40/30/56/41/-31/-37/12/-41/-38/33/47/25/-31℄ 1.9490× 10−4

3 1 [78/-51/-2/10/41/89/-44/2/42/-82/71/-53/-19/17/-8/-87/87/62/-46/11℄ 6.6123× 10−4

2 [-3/-75/69/90/-11/5/26/-74/6/-10/80/86/83/-66/-5/6/-89/-19/18/88℄ 8.1274× 10−4

Table 3: Numerial results of problem (33) for ases 1, 2 and 3.
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In-plane elasti behaviour

Polar parameters [A∗] [B∗] [D∗] [E∗] [F∗] [H∗]

T0 [MPa℄ 23793.3868 0 23793.3868 0 23793.3868 23793.3868
T1 [MPa℄ 21917.8249 0 21917.8249 0 21917.8249 21917.8249
R0 [MPa℄ 3003.1984 51.76233 4107.1180 79.6684 4586.8578 5700.1396
R1 [MPa℄ 13.5942 31.1562 4739.5619 36.0186 6416.5852 8244.9550
Φ0 [deg℄ 0 N.D. 9 N.D. 3 -4

Φ1 [deg℄ N.D. N.D. 85 N.D. 75 70

Out-of-plane elasti behaviour

Polar parameters [Â∗] [D̂∗] [F̂∗]

T [MPa℄ 5095.4545 5095.4545 5095.4545
R [MPa℄ 0.7160 249.6376 337.9681
Φ [deg℄ N.D. −5 −15

Table 4: Laminate polar parameters for the best staking sequene of ase 1 (N.D.=not

de�ned, i.e. meaningless for the onsidered ombination of laminate elasti symmetries).

In-plane elasti behaviour

Polar parameters [A∗] [B∗] [D∗] [E∗] [F∗] [H∗]

T0 [MPa℄ 23793.3868 0 23793.3868 0 23793.3868 23793.3868
T1 [MPa℄ 21917.8249 0 21917.8249 0 21917.8249 21917.8249
R0 [MPa℄ 9047.8225 103.2427 10636.4139 438.0223 11013.4808 11103.5897
R1 [MPa℄ 5078.2024 16.6008 7845.7886 151.2313 8020.8991 8034.9545
Φ0 [deg℄ -45 N.D. 45 N.D. 45 45

Φ1 [deg℄ -6 N.D. 0 N.D. 0 0

Out-of-plane elasti behaviour

Polar parameters [Â∗] [D̂∗] [F̂∗]

T [MPa℄ 5095.4545 5095.4545 5095.4545
R [MPa℄ 267.4741 413.2457 422.4689
Φ [deg℄ 84 90 90

Table 5: Laminate polar parameters for the best staking sequene of ase 2 (N.D.=not

de�ned, i.e. meaningless for the onsidered ombination of laminate elasti symmetries).

In-plane elasti behaviour

Polar parameters [A∗] [B∗] [D∗] [E∗] [F∗] [H∗]

T0 [MPa℄ 23793.3868 0 23793.3868 0 23793.3868 23793.3868
T1 [MPa℄ 21917.8249 0 21917.8249 0 21917.8249 21917.8249
R0 [MPa℄ 3160.6773 403.7186 3449.9296 410.40234 3176.0704 3497.94823
R1 [MPa℄ 40.9970 164.6285 71.8450 503.3974 231.5776 237.4147
Φ0 [deg℄ 0 N.D. 0 N.D. 0 0

Φ1 [deg℄ N.D. N.D. N.D. N.D. N.D. N.D.

Out-of-plane elasti behaviour

Polar parameters [Â∗] [D̂∗] [F̂∗]

T [MPa℄ 5095.4545 5095.4545 5095.4545
R [MPa℄ 2.1594 3.7842 12.1974
Φ [deg℄ N.D. N.D. N.D.

Table 6: Laminate polar parameters for the best staking sequene of ase 3 (N.D.=not

de�ned, i.e. meaningless for the onsidered ombination of laminate elasti symmetries).
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Figures

Figure 1: De�nition of the geometrial parameters of the laminate.
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Figure 2: Polar diagrams of the laminate sti�ness matries for the best solution of ase 1. First

Cartesian omponent of (a) [A∗], [B∗], [D∗] and (b) [E∗], [F∗], [H∗]; the three Cartesian omponents

of () [Â∗], (d) [D̂∗] and (e) [F̂∗].
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Figure 3: Best values of the objetive funtion along generations, ase 1.
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Figure 4: Polar diagrams of the laminate sti�ness matries for the best solution of ase 2. First

Cartesian omponent of (a) [A∗], [B∗], [D∗] and (b) [E∗], [F∗], [H∗]; the three Cartesian omponents

of () [Â∗], (d) [D̂∗] and (e) [F̂∗].
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Figure 5: Best values of the objetive funtion along generations, ase 2.
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Figure 6: Polar diagrams of the laminate sti�ness matries for the best solution of ase 3. First

Cartesian omponent of (a) [A∗], [B∗], [D∗] and (b) [E∗], [F∗], [H∗]; the three Cartesian omponents

of () [Â∗], (d) [D̂∗] and (e) [F̂∗].
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Figure 7: Best values of the objetive funtion along generations, ase 3.
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Figure A.1: Variation of the laminate sti�ness oe�ients (a) bk, (b) dk, () ek, (d) fk and (e) hk

vs. the layer position k (for the ase n = 30).
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