N

N

A method of terminating asynchronous iterative
algorithms on message passing systems
Didier El Baz

» To cite this version:

Didier El Baz. A method of terminating asynchronous iterative algorithms on message passing systems.
Parallel Algorithms and Applications, 1996, 9 (1), pp.153-158. hal-01152363

HAL Id: hal-01152363
https://hal.science/hal-01152363
Submitted on 16 May 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01152363
https://hal.archives-ouvertes.fr

A METHOD OF TERMINATING ASYNCHRONOUS ITERATIVE

ALGORITHMS ON MESSAGE PASSING SYSTEMS

Didier EL. BAZ
LAAS du CNRS, 7, avenue du Colonel Roche,

31077 Toulouse Cedex, France

A method of terminating of asynchronous iterative algorithms on message passing architectures is pre-
sented. Asynchronous algorithms are slightly modified. The method is original, general, and requires few

extra communications. A formal proof of validity of the proposed termination procedure is given.

KEY WORDS: distributed termination, asynchronous iterative algorithms, fixed point problems, message

passing architectures.

C.R. CATEGORIES: D1.3, G1.0.

1. INTRODUCTION

In this paper we study the solution of fixed point problems via asynchronous iterative methods whereby
computations are carried out by several processors without any order nor synchronization. We concen-
trate on the termination of asynchronous iterations on message passing architectures. In this case the
termination problem presents many difficulties since processors possess only local information, there is
no global clock, and the communication delays may be unpredictable. This topic is related to numerical
analysis (termination must occur when the iteration vector is sufficiently close to a solution of the nu-
merical problem) and computer science (a special procedure must be designed for the observation of the
state of the processors, the detection of the termination, and finally, the termination of the different pro-
cesses). We note that this problem is relevant to the termination detection of distributed processes (see

[1] to [3]). However asynchronous algorithms iterate in general indefinitely and computation processes

are never idle.

In this paper we propose an original and general method for terminating asynchronous iterative

algorithms which requires few additional communications. This method can be applied with success to
all asynchronous iterative algorithms satisfying the conditions of the Asynchronous Convergence Theorem
of Bertsekas (see [4] and [5, p. 431]).

In Section two we present asynchronous iterations and some basic termination methods. Section three

deals with a new distributed termination procedure.

2. TERMINATION OF ASYNCHRONOUS ITERATIVE ALGORITHMS

We consider in this paper the solution of fixed point problems, p = F(p), where F is a mapping
from R™ onto itself. We concentrate on asynchronous iterative algorithms which are sequences {p(k)} of

vectors of R" defined as follows (see [5, subsection 6.1]).

2.1. Asynchronous Iterative Algorithms

DEFINITION 2.1. We assume that there is a set of times T = {0,1,2,...} at which one or more
components of vector p are updated by some processor. Let T¢ be the subset of times at which component

p; is updated. For all ¢ € {1,...,n}, the sequences {p;(k)} are defined recursively by:
pilk +1) = Fi(pi({(k)), s u(75 (K))), Yk € T', pi(k + 1) = pi(k),Vk & T", (2.1)

where F; is the i-th component of the mapping F' and for all ¢ € {1,...,n}:

(a) the set T is infinite,

(b) 0 < 7i(k) < k,Vj € {1,...,n},¥k € T,

(c) if {k:} is a sequence of elements of T that, tends to infinity, then lim; o, 7/(k;) = +o0 for every j.

For further details about asynchronous iterative algorithms the reader is referred to [5]-[8]. More
specifically, convergence of asynchronous iterative algorithms has been established for many problems (see
for example [5] to [16]). Particular attention must be paid to the Asynchronous Convergence Theorem of
Bertsekas (see [4] and [5, p. 431]). This theorem is a powerful aid in showing convergence of asynchronous
iterative algorithms and will be very useful for the design of the original termination procedure of Section
three. The general conditions of the Asynchronous Convergence Theorem of Bertsekas are given as

follows:

ASSUMPTION 2.1. There is a sequence of nonempty sets {P(k)} with

..P(k+1)cP(k)cC..CR",

satisfying the following two conditions:

Box Condition: for every k, there exist sets P;(k),i = 1,...,n, such that P(k) is their Cartesian product:

P(k) = Pi(k) x ... x Py (k).

Synchronous Convergence Condition: F(p) € P(k + 1), Yk and p € P(k). Furthermore, if {p(k)} is a

sequence such that p(k) € P(k) for every k, then every limit point of {p(k)} is a fixed point of F.

It follows from the Asynchronous Convergence Theorem of Bertsekas that if the above conditions are
satisfied and the initial solution estimate p(0) belongs to the set P(0), then every limit point of {p(k)} is

a fixed point of F.

2.2. Some Basic Termination Methods

An interesting approach to the termination problem has been proposed by Bertsekas and Tsitsiklis (see

[5, Section 8] and [17]). The termination problem is decomposed into two parts. First, the asynchronous
iterative algorithm is modified so that it converges to a fixed point sufficiently close to the solution of the
problem and terminates in finite time. Then, a termination detection procedure is applied. Bertsekas and
Tsitsiklis propose the following modification of the asynchronous iterative algorithm. If an update does
not sufficiently alter the value of a component of the iteration vector, then it is not taken into account and
communicated to other processors. Thus, termination occurs when for all processors an update causes no
change in the value of the components (i.e. all local termination conditions are satisfied) and no message is
in transit. Several procedures can be used for the detection of the termination. We can quote for example
the procedure of Dijkstra and Scholten (see [18], and [5]) and the snapshot algorithm of Chandy and
Lamport (see [19], and [5]). The former is based on message acknowledgment and generation of activity
graph. The latter is based on marker message generation, with processors and links state recording at
delivery of marker messages. The state recorded in a snapshot does not correspond to a true global

state of the computing system at a given time. However the information contained in a snapshot is

sufficient for the detection of certain properties of the global state of the system. To the best of our
knowledges, the method of Bertsekas and Tsitsiklis is one of the rare methods in the literature for which
there exists a rigorous proof of validity. However the method presents several drawbacks: it requires the
use of a complex protocol and twice as much messages as the initial asynchronous iterative algorithm.
Finally, hypotheses which are stronger than the conditions of the Asynchronous Convergence Theorem of
Bertsekas and Tsitsiklis must be satisfied so that the modified asynchronous iterative algorithm converges

and terminates in finite time.

Savari and Bertsekas (see [20]) have proposed another very interesting approach whereby asyn-
chronous iterative algorithms stay essentially unchanged. Each processor sends a new update if the
value of a component is changed. Another feature of this approach is the broadcast of requests in the
whole network as often as the local termination condition is not satisfied. As a consequence, a processor
iterates (i.e. is active) as long as its local termination condition is unsatisfied or requests are received.
Termination occurs when all local termination conditions are satisfied and no request is in transit. Ter-
mination is detected using a standard protocol (see [3], [18], and [19]). Savari and Bertsekas have given
a formal proof of validity of this termination method. As an advantage, this method can be applied with
success to a wider class of algorithms than the method of Bertsekas and Tsitsiklis. Its main drawback
is a very large number of communications. Requests must be broadcasted in the whole network whereas

acknowledgments are only sent to adjacent processors in [5].

3. A NEW TERMINATION METHOD

In this section we present a new method for terminating asynchronous iterative algorithms. The
method is based on a convergence concept proposed by Bertsekas (see [4] and [5, p. 431]). In par-
ticular, we make extensive use of the sequence of level sets {P(k)} and the Asynchronous Convergence
Theorem of Bertsekas presented in Section 2. The termination method requires slight modifications of

the asynchronous iterative algorithms and few extra control messages.

3.1. Principle of Termination

Termination must occur when the iteration vector belongs to the level set P(§), where § is a given

constant and no message is in transit. We note that the termination test:
p(k+1) € P(q), (3.1)

is particularly relevant in the case where F' is a P-contraction mapping, i.e. when there exists a nonneg-

ative matrix P with spectral radius p(P) < 1, satisfying:
1F(p) = F(@)II < P.llp =PIl . Vp,p’ € D(F),

where ||| is a vectorial norm on R™ and D(F) is the domain of F. Then, the initial error satisfies:
1p(0) = p*[I < (1 = P)~" |Ip(0) — F(p(0))Il,

where p* denotes the solution of the problem (see [8]). Moreover the error is reduced at least by P?

when the termination test is satisfied.

In the sequel we will use the following notations.

The subset of 7% with elements smaller than k is denoted by T(k). We have:
T'(k) = {r € T"|r < k}.

N denotes the subset of {1,...,n}, such that j € N if F} is a function of the component p; of vector p.

For all i € {1,...,n}, {g;(k + 1)} is a subsequence of integers defined recursively by:

2(0)=0,¢(k+1) = _rgvg q;(tj(k)) + 1,k e T". (3.2)
Jen

We state now a preliminary result using (3.2).

LEMMA 3.1. Let Assumption 2.1 hold, ¢ be a given constant, and consider asynchronous iterative
algorithms defined by (2.1). Then, for all i € {1,...,n}, there exists a finite time k& € T, such that we
have: p;(k + 1) € Pi(g).

Proof: If Assumption 2.1 holds then, it follows from (3.2) that ¢;(k+ 1) corresponds to the index ¢’ of the
smallest level set P(q'), such that p;(k + 1) € P(¢'). Hence, for all i € {1, ...,n}, the sequence {p;(k+1)}
is such that p;(k+1) € P;(q;(k+1)). Moreover it follows from assumptions (a)-(c) and the Asynchronous

Convergence Theorem of Bertsekas that we have:
klim qi(k+1) = +o00,Vi € {1,...,n}.
i —00

Thus, for any given constant ¢ and for all ¢ € {1,....,n}, there exists a finite time k € T, such that we
have:

pi(k+1) € Pi(q).
3.2. The Termination Method

We modify slightly the asynchronous algorithm defined by (2.1). The definition of the modified
asynchronous algorithm is given as follows.
DEFINITION 3.1. Each processor implementing the modified asynchronous algorithm computes at each
k € T p;(k + 1) using (2.1) and the associated index ¢;(k + 1) defined by (3.2). The values p;(k + 1)

and ¢;(k + 1) are transmitted to adjacent processors if max,cri) ¢i(r +1) < ¢.

We note that the computation of ¢;(k + 1) is not time consuming. We see that the modified asyn-
chronous algorithm requires longer messages than asynchronous iterations defined by (2.1). However, only
one integer is added to each message. Moreover the last value of p;(k+ 1) and ¢;(k + 1) is communicated

only once.

For the termination detection we can apply a classical method like the snapshot algorithm of Chandy

and Lamport (see [19]).

Finally, we note that the termination method studied in this Section can also be used for block

asynchronous iterations.

The following proposition is the main result of this Section.

PROPOSITION 3.1. Let assumptions of Lemma 3.1 hold. Then, for any modified asynchronous iterative
algorithm satisfying Definition 3.1, there exists a finite time k such that the termination condition holds

at k.

Proof: Tt follows from Definition 3.1 and Lemma 3.1 that for any given constant § and for all € {1, ...,n},

there exists a finite time &’ € T% such that we have:
pi(k'+ 1) € Pi(q:(K' + 1)) C Pi(q),
where p;(k' + 1) and ¢;(k¥" + 1) are the last communicated values of p; and ¢;, respectively. Moreover it

follows from (c) that p;(k" + 1) and ¢;(k" + 1) are not in transit after a finite time k7 > k'.

Hence, it follows that for any given constant ¢, there exists a finite time k such that we have:
p(k) € P(q),

and no message is in transit after k.

We note that the chaotic behavior of asynchronous iterations may lead to: ¢;(k' + 1) > g.

The method presented in this Section can be set between the method of Bertsekas and Tsitsiklis (see
[5], [17], and subsection 2.2) which alters significantly asynchronous iterations and the method of Savari
and Bertsekas (see [20] and subsection 2.2) which does not modify asynchronous iterations. The main
feature of the termination method presented here is that asynchronous algorithms are slightly modified.
Ag a result, no complex procedure must cope with important modifications of the asynchronous algorithm
as in [5] and [17] or a large number of communications as in [20]. Moreover the new termination

procedure applies to a greater class of algorithms than the method studied in [5] and [17].

References

[1] C. Hazary and H. Zedan, A distributed algorithm for distributed termination, Information Processing

Letters, 24 (1987), 293-297.

[2] F. Mattern, Algorithms for distributed termination detection, Distributed Computation, 2 (1987),

161-175.

[3] R.-W. Topor, Termination detection for distributed computation, Inform. Process. Lett., 18 (1984),

pp. 33-36.

[4] D.P. Bertsekas, Distributed asynchronous computation of fixed points, Mathematical Programming,

27 (1983), 107-120.

[5] D.P. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation, Numerical Methods, Prentice

Hall, Englewood Cliffs, New Jersey, 1989.

[6] G.M. Baudet, Asynchronous iterative methods for multiprocessors, J. Assoc. Comput. Mach., 2

(1978), 226-244.
[7] D. Chazan and W. Miranker, Chaotic relaxation, Linear Algebra Appl., 2 (1969), 199-222.
[8] J.C. Miellou, Algorithmes de relaxation chaotique & retards, RAIRO, R1 (1975), 55-82.

[9] D.P. Bertsekas and D. El Baz, Distributed asynchronous relaxation methods for convex network flow

problems, SIAM J. on Control and Optimization, 25 (1987), 74-85.

[10] D. El Baz, M-functions, and parallel asynchronous algorithms, STAM Journal on Numerical Analysis,

27 (1990), 136-140.

[11] D.J. Evans and W. Deren, An asynchronous parallel algorithm for solving a class of nonlinear

simultaneous equations, Parallel Computing, 17 (1991), 165-180.

[12] D. El Baz, Asynchronous gradient algorithms for a class of convex separable network flow problems,

to appear in Computational Optimization and Applications.

[13] B. Lubachevsky and D. Mitra, A chaotic asynchronous algorithm for computing the fixed point of

a nonnegative matrix of unit spectral radius, J.A.C. M., 33 (1986), 130-150.

[14] J.C. Miellou, Itérations chaotiques a retards, étude de la convergence dans le cas d’espaces partielle-

ment ordonnés, C.R.A.S. Paris, 280 (1975), 233-236.

[15] J.C. Miellou, Asynchronous iterations and order intervals, in Parallel Algorithms and Architectures,

M. Cosnard ed., North Holland, 1986 pp. 85-96.

[16] J. C. Miellou and P. Spiteri, Un critére de convergence pour des méthodes générales de point fixe,

R.A.LR.O. M2AN, 19 (1985), 645-669.

[17] D.P. Bertsekas and J. Tsitsiklis, Some aspects of parallel and distributed iterative algorithms. A

survey, Automatica, vol 27 (1991), 3-21.

[18] E.W. Dijkstra and C.S. Scholten, Termination detection for diffusing computation, Information

Processsing Letters, 11 (1980), 1-4.

[19] K.M. Chandy and L. Lamport, Distributed snapshots: Determining global state of distributed

systems, ACM Trans. on Computer Systems, 3 (1985), 63-75.

[20] S.A. Savari and D.P. Bertsekas, Finite termination of asynchronous iterative algorithms, LIDS report

P-2245, M.I.T. 1994.

