On isoperimetric inequality in Arakelov geometry

Huayi Chen

To cite this version:

Huayi Chen. On isoperimetric inequality in Arakelov geometry. 2015. hal-01152356

HAL Id: hal-01152356
https://hal.science/hal-01152356
Preprint submitted on 16 May 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON ISOPERIMETRIC INEQUALITY IN ARAKELOV GEOMETRY

Huayi Chen

Abstract

We establish an isoperimetric inequality in an integral form and deduce a strong Brunn-Minkowski inequality in the Arakelov geometry setting.

(MSC2010 classification: 14G40, 11G30)

Contents

1. Introduction... 1
2. Reminder on adelic divisors.. . . 6
3. Relative isoperimetric inequality.................................... 12
4. Relative Brunn-Minkowski inequality............................ . . . 16

References.. 18

1. Introduction

The isoperimetric inequality in Euclidean geometry asserts that, for any convex body Δ in \mathbb{R}^{d}, one has

$$
\begin{equation*}
\operatorname{vol}(\partial \Delta)^{d} \geqslant d^{d} \operatorname{vol}(B) \operatorname{vol}(\Delta)^{d-1} \tag{1}
\end{equation*}
$$

where B denotes the closed unit ball in \mathbb{R}^{d}. From the point of view of convex geometry, the isoperimetric inequality can be deduced from the BrunnMinkowski inequality: for two Borel subsets A_{1} and A_{2} in \mathbb{R}^{d}, one has

$$
\begin{equation*}
\operatorname{vol}\left(A_{0}+A_{1}\right)^{1 / d} \geqslant \operatorname{vol}\left(A_{0}\right)^{1 / d}+\operatorname{vol}\left(A_{1}\right)^{1 / d} \tag{2}
\end{equation*}
$$

where

$$
A_{0}+A_{1}:=\left\{x+y \mid x \in A_{0}, y \in A_{1}\right\}
$$

is the Minkowski sum of A_{0} and A_{1}. The proof consists of taking $A_{0}=\Delta$ and $A_{1}=\varepsilon B$ in (2) with $\varepsilon>0$ and let ε tend to 0 . We refer the readers to [30] for a presentation on the history of the isoperimetric inequality and to the page 1190 of loc. cit. for more details on how to deduce (1) from (2). The same method actually leads to a lower bound for the mixed volume of convex bodies:

$$
\begin{equation*}
\operatorname{vol}_{d-1,1}\left(\Delta_{0}, \Delta_{1}\right)^{d} \geqslant \operatorname{vol}\left(\Delta_{0}\right)^{d-1} \cdot \operatorname{vol}\left(\Delta_{1}\right) \tag{3}
\end{equation*}
$$

where Δ_{0} and Δ_{1} are two convex bodies in \mathbb{R}^{d} and $\operatorname{vol}_{d-1,1}\left(\Delta_{0}, \Delta_{1}\right)$ is the mixed volume of index $(d-1,1)$ of them, which is equal to

$$
\lim _{\varepsilon \rightarrow 0+} \frac{\operatorname{vol}\left(\Delta_{0}+\varepsilon \Delta_{1}\right)-\operatorname{vol}\left(\Delta_{0}\right)}{\varepsilon d}
$$

We refer the readers to the work of Minkowski $[27]$ for the notion of mixed volumes in convex geometry. See $[8, \S 7.29]$ for more details.

Note that (3) is one of the inequalities of Alexandrov-Fenchel type for mixed volumes, which is actually equivalent to Brunn-Minkowski inequality (see for example [32, §7.2] for a proof). Note that the above inequalities in convex geometry are similar to some inequalities of intersection numbers in algebraic geometry. By using toric varieties, Teissier [33] and Khovanskii (see [12, §4.27]) have given proofs of Alexandrov-Fenchel inequality by using the Hodge index theorem.

In the arithmetic geometry setting, Bertrand [6, §1.2] has established a lower bound for the height function on an arithmetic variety, and interpreted it as an arithmetic analogue of the isoperimetric inequality. In [13], the author has proposed the notion of positive intersection product in Arakelov geometry and proved an analogue of the isoperimetric inequality in the form of (3), by using the arithmetic Brunn-Minkowski inequality established by Yuan [35].

The purpose of this article is to propose a refinement of the arithmetic isoperimetric inequality and Brunn-Minkowski inequality as follows.

Theorem 1.1. - Let K be a number field and X be a geometrically integral projective scheme of dimension $d \geqslant 1$ over $\operatorname{Spec} K$. If \bar{D}_{0} and \bar{D}_{1} are adelic arithmetic \mathbb{R}-Cartier divisors on X which are nef and big, then one has

$$
\begin{equation*}
(d+1)\left(\bar{D}_{0}^{d} \cdot \bar{D}_{1}\right) \geqslant d\left(\frac{\operatorname{vol}\left(D_{1}\right)}{\operatorname{vol}\left(D_{0}\right)}\right)^{1 / d} \widehat{\operatorname{vol}}\left(\bar{D}_{0}\right)+\frac{\operatorname{vol}\left(D_{0}\right)}{\operatorname{vol}\left(D_{1}\right)} \widehat{\operatorname{vol}}\left(\bar{D}_{1}\right) \tag{4}
\end{equation*}
$$

Moreover, if $\left(\bar{D}_{i}\right)_{i=1}^{n}$ is a family of nef and big adelic arithmetic \mathbb{R}-Cartier divisors, then one has

$$
\begin{equation*}
\frac{\widehat{\operatorname{vol}}\left(\bar{D}_{1}+\cdots+\bar{D}_{n}\right)}{\operatorname{vol}\left(D_{1}+\cdots+D_{n}\right)} \geqslant \varphi\left(D_{1}, \ldots, D_{n}\right)^{-1} \sum_{i=1}^{n} \frac{\widehat{\operatorname{vol}}\left(\bar{D}_{i}\right)}{\operatorname{vol}\left(D_{i}\right)} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi\left(D_{1}, \ldots, D_{n}\right):=d+1-d \frac{\operatorname{vol}\left(D_{1}\right)^{1 / d}+\cdots+\operatorname{vol}\left(D_{n}\right)^{1 / d}}{\operatorname{vol}\left(D_{1}+\cdots+D_{n}\right)^{1 / d}} \tag{6}
\end{equation*}
$$

Compared to the direct arithmetic analogue of Brunn-Minkowski inequality (see [35, Theorem B]), the inequality (19) distinguishes the contribution of the geometric structure of the \mathbb{R}-Cartier divisors D_{1}, \ldots, D_{n}. In the above theorem, $\operatorname{vol}(\cdot)$ and $\widehat{\operatorname{vol}}(\cdot)$ denote respectively the volume function of \mathbb{R}-Cartier divisors and the arithmetic volume function of adelic arithmetic \mathbb{R}-Cartier divisors (see [29]). Recall that for an adelic arithmetic \mathbb{R}-Cartier divisor \bar{D} on X one has

$$
\operatorname{vol}(D):=\lim _{n \rightarrow+\infty} \frac{\operatorname{dim}_{K}\left(H^{0}(X, n D)\right)}{n^{d} / d!}
$$

and

$$
\widehat{\operatorname{vol}}(\bar{D}):=\lim _{n \rightarrow+\infty} \frac{\log \# \widehat{H}^{0}(X, n \bar{D})}{n^{d+1} /(d+1)!}
$$

where $H^{0}(X, n D)=\left\{s \in K(X)^{\times}: \operatorname{div}(s)+D \geqslant 0\right\} \cup\{0\}$, and

$$
\widehat{H}^{0}(X, n D)=\left\{s \in H^{0}(X, n D):\|s\|_{\text {sup }} \leqslant 1\right\}
$$

If \bar{D} is a nef adelic arithmetic \mathbb{R}-Cartier divisor, then $\operatorname{vol}(D)$ and $\widehat{\operatorname{vol}}(\bar{D})$ can be expressed as (arithmetic) intersection numbers:

$$
\operatorname{vol}(D)=\left(D^{d}\right), \quad \widehat{\operatorname{vol}}(\bar{D})=\left(\bar{D}^{d+1}\right)
$$

In the particular case where $d=2$ (namely X is an arithmetic surface), the inequality (4) becomes a strong form of the arithmetic Hodge index inequality

$$
2\left(\bar{D}_{0} \cdot \bar{D}_{1}\right) \geqslant \frac{\operatorname{deg}\left(D_{1}\right)}{\operatorname{deg}\left(D_{0}\right)} \widehat{\operatorname{vol}}\left(\bar{D}_{0}\right)+\frac{\operatorname{deg}\left(D_{0}\right)}{\operatorname{deg}\left(D_{1}\right)} \widehat{\operatorname{vol}}\left(\bar{D}_{1}\right)
$$

established in [14, Theorem 6.14], generalizing previous works of Faltings [16] and Hriljac [21]. Similarly to [14], we also use the interpretation of the arithmetic volume of a big adelic arithmetic \mathbb{R}-Cartier divisor \bar{D} as the integral of a concave function on the Okounkov body $\Delta(D)$ of the \mathbb{R}-Cartier divisor D, which is a convex body in \mathbb{R}^{d}. However the proof of Theorem 1.1 follows a strategy which is different from the way indicated in [14], where the author has introduced for any couple $\left(\Delta_{1}, \Delta_{2}\right)$ of convex bodies in \mathbb{R}^{d} a number $\rho\left(\Delta_{1}, \Delta_{2}\right)$ (called the correlation index of Δ_{1} and $\left.\Delta_{2}\right)$ which measures the degree of uniformity in the Minkowski sum $\Delta_{1}+\Delta_{2}$ of the sum of two uniform random variables valued in Δ_{1} and Δ_{2} respectively (for any convex body $\Delta \subset \mathbb{R}^{d}$, a Borel probability measure on \mathbb{R}^{d} is called the uniform distribution on Δ if it is absolutely continuous with respect to the Lebesgue measure, and the corresponding Radon-Nikodym density is $1 / \operatorname{vol}(\Delta)$, where $\operatorname{vol}(\Delta)$ is the Lebesgue measure of Δ; a random variable valued in \mathbb{R}^{d} is called uniformly
distributed in Δ if it follows this measure as its probability law). It has been established the inequality

$$
\frac{\widehat{\operatorname{vol}}\left(\bar{D}_{1}+\bar{D}_{2}\right)}{\operatorname{vol}\left(\Delta\left(D_{1}\right)+\Delta\left(D_{2}\right)\right)} \geqslant \rho\left(\Delta\left(D_{1}\right), \Delta\left(D_{2}\right)\right)^{-1}\left(\frac{\widehat{\operatorname{vol}}\left(\bar{D}_{1}\right)}{\operatorname{vol}\left(\Delta\left(D_{1}\right)\right)}+\frac{\widehat{\operatorname{vol}}\left(\bar{D}_{2}\right)}{\operatorname{vol}\left(\Delta\left(D_{2}\right)\right)}\right)
$$

for any couple $\left(\bar{D}_{1}, \bar{D}_{2}\right)$ of big and nef adelic arithmetic \mathbb{R}-Cartier divisors on X, and been suggested that the estimation of the correlation index $\rho\left(\Delta\left(D_{1}\right), \Delta\left(D_{2}\right)\right)$ should lead to more concrete inequalities of the form of (19). However, the main point in this approach is to construct a suitable correlation structure between two random variables which are uniformly distributed in $\Delta\left(D_{1}\right)$ and $\Delta\left(D_{2}\right)$ such that the sum of the random variables is as uniform as possible in the Minkowski sum $\Delta\left(D_{1}\right)+\Delta\left(D_{2}\right)$. We can for exemple deduce from a work of Bobkov and Madiman [7] the following uniform upper bound (where we choose independent random variables) (see [14, Proposition 2.9])

$$
\rho\left(\Delta\left(D_{1}\right), \Delta\left(D_{2}\right)\right) \leqslant\binom{ 2 d}{d}
$$

This upper bound is larger than $\varphi\left(D_{1}, D_{2}\right)$, which is clearly bounded from above by $d+1$ by the classical Brunn-Minkowski inequality.

The strategy of this article is inspired by the works of Knothe [25] and Brenier [10, 11] on measure preserving diffeomorphism between two convex bodies (see also the works of Gromov [19], Alesker, Dar and Milman [2] for more developments of this method and for applications in Alexandrov-Fenchel type inequalities in the convex geometry setting, and the memoire of Barthe [3] for diverse applications of this method in functional inequalities). Given a couple $\left(\Delta_{0}, \Delta_{1}\right)$ of convex bodies in \mathbb{R}^{d}, one can construct a C^{1} diffeomorphism $f: \Delta_{0} \rightarrow \Delta_{1}$ which transports the uniform probability measure of Δ_{0} to that of Δ_{1}, namely the determinant of the Jacobian J_{f} is constant on the interior of Δ_{0}. Such diffeomorphism is not unique: in the construction of Knothe, the Jacobian J_{f} is upper triangle, while in the construction of Brenier, J_{f} is symmetric and positive definite.

If Z_{0} is a random variable which is uniformly distributed in Δ_{0}, then $Z_{1}:=$ $f\left(Z_{0}\right)$ is uniformly distributed in Δ_{1}. One may expect that the random variable $Z_{0}+Z_{1}$ follows a probability law which is close to the uniform probability measure on $\Delta_{0}+\Delta_{1}$. In fact, the random variable $Z_{0}+Z_{1}$ can also be expressed as $Z_{0}+f\left(Z_{0}\right)$. Its probability law identifies with the direct image of the uniform probability measure on Δ_{0} by the map $\mathrm{Id}+f$, which admits Id $+J_{f}$ as its Jacobian, the determinant of which can be estimated in terms of the determinant of J_{f}. In the case where $\mathrm{Id}+f$ is injective (for example the Knothe map), this lower bound leads to the following upper bound for the
correlation index

$$
\begin{equation*}
\rho\left(\Delta_{0}, \Delta_{1}\right) \leqslant \frac{\operatorname{vol}\left(\Delta_{0}+\Delta_{1}\right)}{\left(\operatorname{vol}\left(\Delta_{0}\right)^{1 / d}+\operatorname{vol}\left(\Delta_{1}\right)^{1 / d}\right)^{d}} . \tag{7}
\end{equation*}
$$

By this method we obtain a weaker version of the inequality (19) in the case where $n=2$ by replacing $\varphi\left(D_{0}, D_{1}\right)^{-1}$ by

$$
\frac{\left(\operatorname{vol}\left(D_{0}\right)^{1 / d}+\operatorname{vol}\left(D_{1}\right)^{1 / d}\right)^{d}}{\operatorname{vol}\left(D_{0}+D_{1}\right)}
$$

This function is in general not bounded when D_{0} and D_{1} vary.
The main idea of the article is to use an infinitesimal variant of the above argument. Instead of considering the map $\operatorname{Id}+f: \Delta_{0} \rightarrow \Delta_{0}+\Delta_{1}$, we consider Id $+\varepsilon f: \Delta_{0}+\varepsilon \Delta_{1}$ for $\varepsilon>0$ sufficiently small, and use it to establish an isoperimetric inequality in an integral form (see Theorem 3.1). By this method we obtain the strong form of the arithmetic isoperimetric inequality as in (4) and then deduce the arithmetic relative Brunn-Minkowski inequality (5). Note that this does not signify that we improve the inequality (7) by replacing the right hand side of the inequality by

$$
d+1-d \frac{\operatorname{vol}\left(\Delta_{0}\right)^{d / 1}+\operatorname{vol}\left(\Delta_{1}\right)^{1 / d}}{\operatorname{vol}\left(\Delta_{0}+\Delta_{1}\right)^{1 / d}}
$$

For example, it remains an open question to determine if the correlation index $\rho\left(\Delta_{0}, \Delta_{1}\right)$ is always bounded from above by $d+1$.

Finally, I would like to cite several refinements of the Brunn-Minkowski inequality in convex geometry, where the results are also expressed in a relative form similarly to (5), either with respect to an orthogonal projection in a hyperplane [20] or in terms of a comparison between the volume and the mixed volume [17] in the style of Bergstrom's inequality [4]. It is not excluded that the method presented in this article will bring new ideas to the researches in these directions.

The article is organized as follows. In the second section, we recall the notation and basic facts about adelic arithmetic \mathbb{R}-Cartier divisors. In the third section, we prove a relative version of isoperimetric inequality in convex geometry and deduce the arithmetic isoperimetric inequality (4). In the fourth and last section, we proved the relative arithmetic Brunn-Minkowski inequality (5).

Acknowledgements. - I would like to thank Omid Amini, June Huh, Raphaël Rossignol for discussions.

2. Reminder on adelic divisors

Throughout the article, K denotes a field. Let X be a geometrically integral projective scheme over K and d be its Krull dimension.
2.1. \mathbb{R}-Cartier divisors. - In this subsection, we recall some notions and facts about \mathbb{R}-Cartier divisors on a projective variety.
2.1.1. Denote by $\operatorname{Div}(X)$ the group of all Cartier divisors on X and by $\operatorname{Div}^{+}(X)$ the sub-semigroup of $\operatorname{Div}(X)$ of all effective divisors. Let $\operatorname{Div}(X)_{\mathbb{R}}$ be the vector space $\operatorname{Div}(X) \otimes_{\mathbb{Z}} \mathbb{R}$, the elements of which are called \mathbb{R}-Cartier divisors. An \mathbb{R}-Cartier divisor D is said to be effective if it belongs to the positive cone generated by effective Cartier divisors on X. By abuse of notation, we still use the expression $D \geqslant 0$ to denote the effectivity of an \mathbb{R}-Cartier divisor D.
2.1.2. Let D be an \mathbb{R}-Cartier divisor on X. We denote by $H^{0}(D)$ the set

$$
\left\{f \in K(X)^{\times} \mid(f)+D \geqslant 0\right\} \cup\{0\}
$$

where $K(X)$ is the field of all rational functions on X, and (f) denotes the principal divisor associated to the rational function f. This is a K-vector subspace of finite rank of $K(X)$. We denote by $h^{0}(D)$ its rank over K. Recall that the volume of D is defined as

$$
\operatorname{vol}(D):=\limsup _{n \rightarrow+\infty} \frac{h^{0}(n D)}{n^{d} / d!}
$$

If $\operatorname{vol}(D)>0$, then the \mathbb{R}-Cartier divisor D is said to be big. The big \mathbb{R}-Cartier divisors form an open cone in $\operatorname{Div}(X)_{\mathbb{R}}$, denoted by $\operatorname{Big}_{\mathbb{R}}(X)$.
2.1.3. A Cartier divisor D is said to be ample if the associated invertible sheaf $\mathcal{O}(D)$ is ample. An \mathbb{R}-Cartier divisor is said to be ample if it belongs to the open cone $\operatorname{Amp}_{\mathbb{R}}(X)$ in $\operatorname{Div}(X)_{\mathbb{R}}$ generated by ample Cartier divisors. The closure of the ample cone is denote by $\operatorname{Nef}_{\mathbb{R}}(X)$. The \mathbb{R}-Cartier divisors which belong to $\operatorname{Nef}_{\mathbb{R}}(X)$ are said to be nef.
2.1.4. Recall that the function of self-intersection number $D \mapsto\left(D^{d}\right)$ is a homogeneous polynomial of degree d on the vector space $\operatorname{Div}(X)_{\mathbb{R}}$. Its polar form

$$
\left(D_{1}, \ldots, D_{d}\right) \in \operatorname{Div}(X)_{\mathbb{R}}^{d} \longmapsto\left(D_{1} \cdots D_{d}\right)
$$

is the function of intersection number. Note that the volume of a nef \mathbb{R}-Cartier divisor D coincides with the self-intersection number of D. In particular, the volume function is a homogeneous polynomial of degree d on the nef cone.
2.1.5. Let D be an \mathbb{R}-Cartier divisor on X. We call linear system of D any K-vector subspace of $H^{0}(D)$. We call graded linear series of D any \mathbb{N}-graded sub- K-algebra of $V_{\bullet}(D):=\bigoplus_{n \in \mathbb{N}} H^{0}(n D)$. If $V_{\bullet}=\bigoplus_{n \in \mathbb{N}} V_{n}$ is a graded linear series of D, its volume is defined as

$$
\operatorname{vol}\left(V_{\bullet}\right):=\limsup _{n \rightarrow \infty} \frac{\operatorname{dim}_{K}\left(V_{n}\right)}{n^{d} / d!}
$$

Therefore the volume of the total graded linear series $V_{\bullet}(D)$ is equal to the volume of the \mathbb{R}-Cartier divisor D.

Following [26, Definition 2.9], we say that a graded linear series V_{\bullet} of an \mathbb{R} Cartier divisor D contains an ample \mathbb{R}-Cartier divisor if there exists an ample \mathbb{R}-Cartier divisor A such that $V_{\bullet}(A) \subset V_{\bullet}$ (see also [14, Remark 3.2] for some equivalent forms of it). This condition implies that the volume of V_{\bullet} is >0.

We assume that X contains at least a regular rational point. By the works of Lazarsfeld and Mustaţǎ [26] and Kaveh and Khovanskii [24, 23], to each graded linear series V_{\bullet} of some \mathbb{R}-Cartier divisor, which contains an ample \mathbb{R}-Cartier divisor, we can attach a convex body $\Delta\left(V_{\bullet}\right)$ (called the NewtonOkounkov body of V_{\bullet}), upon the choice (which we will fix throughout the article) of a regular rational point of X and a regular sequence in the local ring of the scheme X on this point, such that

$$
\operatorname{vol}\left(\Delta\left(V_{\bullet}\right)\right)=d!\operatorname{vol}\left(V_{\bullet}\right)
$$

where $\operatorname{vol}\left(\Delta\left(V_{\bullet}\right)\right)$ denotes the Lebesgue measure of the convex body $\Delta\left(V_{\bullet}\right)$. We refer the readers to [26, Theorem 2.13] for more details.
2.1.6. Let V_{\bullet} and V_{\bullet}^{\prime} be two graded linear series of two \mathbb{R}-Cartier divisors D and D^{\prime} respectively. Let W_{\bullet} be a graded linear series of $D+D^{\prime}$ such that

$$
\forall n \in \mathbb{N},\left\{f g \mid f \in V_{n}, g \in V_{n}^{\prime}\right\} \subset W_{n}
$$

Assume that the graded linear series V_{\bullet} and V_{\bullet}^{\prime} contain ample \mathbb{R}-Cartier divisors, then also is the graded linear series W_{\bullet}. Moreover, one has

$$
\Delta\left(V_{\bullet}\right)+\Delta\left(V_{\bullet}^{\prime}\right) \subset \Delta\left(W_{\bullet}\right)
$$

Therefore the Brunn-Minkowski theorem (in classical convex geometry setting) leads to

$$
\begin{equation*}
\operatorname{vol}\left(W_{\bullet}\right)^{1 / d} \geqslant \operatorname{vol}\left(V_{\bullet}\right)^{1 / d}+\operatorname{vol}\left(V_{\bullet}^{\prime}\right)^{1 / d} \tag{8}
\end{equation*}
$$

2.2. Adelic \mathbb{R}-Cartier divisors. - In this subsection, we recall some notions and facts about adelic \mathbb{R}-Cartier divisors. The references are [18, 29]. We assume that K is a number field. Let M_{K} be the set of all places of K. For any place $v \in M_{K}$, let $|\cdot|_{v}$ be the absolute value on K in the equivalence class v which extends either the usual absolute value on \mathbb{Q} or some p-adic absolute value (such that $|p|_{v}=p^{-1}$), where p is a prime number. Denote by K_{v} the
completion of the field K with respect to the topology corresponding to the place v, on which the absolute value $|\cdot|_{v}$ extends in a unique way.
2.2.1. Let X be a geometrically integral K-scheme. For any $v \in M_{K}$, let $X_{v}^{\text {an }}$ be the Berkovich analytic space associated to the K_{v}-scheme $X_{v}:=X \otimes_{K} K_{v}$. As a set, it can be realized as the colimit of the functor from the category of all valued extensions of K_{v} (namely fields extensions of K_{v} equipped with absolute values extending $|\cdot|_{v}$) to that of sets, which sends any valued extension K_{v}^{\prime} / K_{v} to the set of all K_{v}-points of X_{v} valued in K_{v}^{\prime}. We denote by $j_{v}: X_{v}^{\text {an }} \rightarrow X_{v}$ the map which sends any element $x \in X_{v}^{\text {an }}$ to its underlying point in X_{v}. The most coarse topology on $X_{v}^{\text {an }}$ which makes the map j_{v} continuous is called the Zariski topology on $X_{v}^{\text {an }}$.

Berkovich [5] defines another topology on $X_{v}^{\text {an }}$ which is finer than the Zariski topology. If U is a Zariski open subset of X_{v} and f is a regular function on U, then for each point $x \in U^{\text {an }}:=j_{v}^{-1}(U)$, the regular function f defines by reduction an element $f(x)$ in the residue field of $j_{v}(x)$. Note that, by the construction of the Berkovich analytique space $X_{v}^{\text {an }}$, this residue field is equipped with an absolute value (depending on x) which extends $|\cdot|_{v}$. We denote by $|f|_{v}(x)$ the absolute value of $f(x)$. Thus we obtain a real-valued function $|f|_{v}$ on $j_{v}^{-1}(U)$. The Berkovich topology is then defined as the most coarse topology which makes continuous the map j_{v} and all functions of the form $|f|_{v}$ (where f is a regular function on some Zariski open subset of X_{v}). The set $X_{v}^{\text {an }}$ equipped with the Berkovich topology is separated and compact.
2.2.2. Let v be a place of K. We denote by $\mathcal{C}_{X_{v}^{\text {an }}}^{0}$ the sheaf of continuous realvalued functions on the topological space $X_{v}^{\text {an }}$ (equipped with the Berkovich topology). For any Berkovich open subset V of $X_{v}^{\text {an }}$, denote by $C^{0}(V)$ the set of all sections of $\mathcal{C}_{X_{v}^{\text {an }}}^{0}$ over V. It is a vector space over \mathbb{R}. Let $\widehat{C}^{0}\left(X_{v}^{\text {an }}\right)$ be the colimit of the vector spaces $C^{0}\left(U^{\text {an }}\right)$, where U runs over the (filtered) ordered set of all non-empty Zariski open subsets of X_{v}. Note that any nonempty Zariski open subset of $X_{v}^{\text {an }}$ is dense in $X_{v}^{\text {an }}$ for the Berkovich topology (see [5, Proposition 3.4.5]). Therefore, for any non-empty Zariski open subset U of X_{v}, the natural map $C^{0}\left(U^{\text {an }}\right) \rightarrow \widehat{C}^{0}\left(X_{v}^{\text {an }}\right)$ is injective. If an element in $\widehat{C}^{0}\left(X_{v}^{\text {an }}\right)$ belongs to the image of this map, we say that it extends to a continuous function on $U^{\text {an }}$.

If f is a rational function on $X_{v}^{\text {an }}$, then it identifies with a regular function on some non-empty Zariski open subset U of X_{v}. Therefore the function $|f|_{v}$ determines an element in $\widehat{C}^{0}\left(X_{v}^{\text {an }}\right)$. If f is non-zero, by possibly shrinking the Zariski open set U, we may assume that $f(x) \neq 0$ for any $x \in U$. Therefore the continuous function $\log |f|_{v}$ on $U^{\text {an }}$ also determines an element $\widehat{C}^{0}\left(X_{v}^{\text {an }}\right)$, which we still denote by $\log |f|_{v}$ by abuse of notation. Thus we obtain an additive map from $K\left(X_{v}\right)^{\times}$(where $K\left(X_{v}\right)$ denotes the field of all rational
functions on X_{v}) to $\widehat{C}^{0}\left(X_{v}\right)$, which induces an \mathbb{R}-linear homomorphism from $K\left(X_{v}\right)_{\mathbb{R}}^{\times}:=K\left(X_{v}\right)^{\times} \otimes_{\mathbb{Z}} \mathbb{R}$ to $\widehat{C}^{0}\left(X_{v}^{\text {an }}\right)$.
2.2.3. Let D be an \mathbb{R}-Cartier divisor on X. For any $v \in M_{K}$, it induces by extension of fields an \mathbb{R}-Cartier divisor D_{v} on X_{v}. We say that an element $f \in K\left(X_{v}\right)_{\mathbb{R}}^{\times}$defines D_{v} locally on a Zariski open subset U of X_{v} if one can write D_{v} as

$$
\lambda_{1} D_{1}+\cdots+\lambda_{n} D_{n}
$$

where D_{1}, \ldots, D_{n} are Cartier divisors on X_{v}, and there exist elements f_{1}, \ldots, f_{n} of $K\left(X_{v}\right)^{\times}$such that f_{i} defines D_{i} on U and that $f=f_{1}^{\lambda_{1}} \cdots f_{n}^{\lambda_{n}}$. We call v-Green function of D any element $g_{v} \in \widehat{C}^{0}\left(X_{v}^{\text {an }}\right)$ such that, for any element $f \in K\left(X_{v}\right)_{\mathbb{R}}^{\times}$which defines D_{v} locally on a Zariski open subset U, the element $g_{v}+\log |f|_{v}$ extends to a continuous function on $U^{\text {an }}$. Note that for each element $s \in H^{0}(D)$, the element $|s|_{v} \mathrm{e}^{-g_{v}} \in \widehat{C}^{0}\left(X_{v}\right)$ extends to a continuous function on $X_{v}^{\text {an }}$ (see [29, Proposition 2.1.3], see also [14, Remark 4.2]). Attention, our choice of normalization for the Green function is different from that in [29]. Moreover, the map

$$
s \longmapsto\|s\|_{g_{v}, \sup }:=\sup _{x \in X_{v}^{\mathrm{an}}}|s|_{v}(x) \mathrm{e}^{-g_{v}(x)}
$$

is a norm on $H^{0}(D)$, which extends naturally to a norm on $H^{0}(D) \otimes_{K} K_{v}$.
2.2.4. In the case where v is a non-archimedean place of K, a typical example of v-Green function is that arising from an integral model. Let D be an \mathbb{R} Cartier divisor on X. An integral model of (X, D) consists of a projective and flat \mathcal{O}_{K}-scheme \mathscr{X} such that $\mathscr{X}_{K}=X$, and an \mathbb{R}-Cartier divisor \mathscr{D} on \mathscr{X} such that $\left.\mathscr{D}\right|_{X}=D$, where \mathcal{O}_{K} denotes the ring of all algebraic integers in K.

Let x be a point in $X_{v}^{\text {an }}$ and $\kappa(x)$ be the residue field of $j_{v}(x)$. Then $\kappa(x)$ is naturally equipped with an absolute value which extends the absolute value $|\cdot|_{v}$ on K_{v}. Let $\kappa(x)^{\circ}$ be the valuation ring of $\kappa(x)$. Then the valuative criterion of properness leads to a unique morphism $\operatorname{Spec} \kappa(x)^{\circ} \rightarrow \mathscr{X}$ which extends the K morphism Spec $\kappa(x) \rightarrow X$ determined by the point x. In the case where $j_{v}(x)$ is outside of $\operatorname{Supp}\left(D_{v}\right)$, the pull-back of \mathscr{D} by the morphism $\operatorname{Spec} \kappa(x)^{\circ} \rightarrow \mathscr{X}$ is well defined, and is proportional to the divisor on $\operatorname{Spec} \kappa(x)^{\circ}$ corresponding to the closed point of Spec $\kappa(x)^{\circ}$. We denote by $g_{(\mathscr{X}, \mathscr{D}), v}(x)$ this ratio. Note that the element in $\widehat{C}^{0}\left(X_{v}^{\text {an }}\right)$ determined by the map $g_{(\mathscr{X}, \mathscr{D}), v}$ is a v-Green function of D (see [29, Proposition 2.1.4]), called the v-Green function associated to the integral model $(\mathscr{X}, \mathscr{D})$.
2.2.5. By adelic \mathbb{R}-Cartier divisor on X, we refer to any data \bar{D} of the form $\left(D,\left(g_{v}\right)_{v \in M_{K}}\right)$, where D is an \mathbb{R}-Cartier divisor on X and each g_{v} is a v-Green function of D. We also require that there exists an integral model $(\mathscr{X}, \mathscr{D})$ of (X, D) such that $g_{v}=g_{(\mathscr{X}, \mathscr{D}), v}$ for all but a finite number of $v \in M_{K}$.

If $\bar{D}_{1}=\left(D_{1},\left(g_{1, v}\right)_{v \in M_{K}}\right)$ and $\bar{D}_{2}=\left(D_{2},\left(g_{2, v}\right)_{v \in M_{K}}\right)$ are two adelic \mathbb{R} Cartier divisors, λ and μ are two real numbers, then

$$
\lambda \bar{D}_{1}+\mu \bar{D}_{2}:=\left(\lambda D_{1}+\mu D_{2},\left(\lambda g_{1, v}+\mu g_{2, v}\right)_{v \in M_{K}}\right)
$$

is an adelic \mathbb{R}-Cartier divisor. Therefore the set $\widehat{\operatorname{Div}}_{\mathbb{R}}(X)$ of all adelic \mathbb{R}-Cartier divisors forms a vector space over \mathbb{R}.

If \bar{D} is an adelic \mathbb{R}-Cartier divisor on X, the set

$$
\widehat{H}^{0}(\bar{D}):=\left\{s \in H^{0}(D): \forall v \in M_{K},\|s\|_{g_{v}, \text { sup }} \leqslant 1\right\}
$$

is finite (see $\S 2.2 .3$ for the definition of $\|\cdot\|_{g_{v}, \text { sup }}$). The arithmetic volume of \bar{D} is defined as (see [28] and $[\mathbf{2 9}, \S 4.3]$)

$$
\begin{equation*}
\widehat{\operatorname{vol}}(\bar{D}):=\limsup _{n \rightarrow+\infty} \frac{\log \# \widehat{H}^{0}(n \bar{D})}{n^{d+1} /(d+1)!} \tag{9}
\end{equation*}
$$

The adelic \mathbb{R}-Cartier divisor \bar{D} is said to be big if $\widehat{\operatorname{vol}}(\bar{D})>0$. We denote by $\widehat{\operatorname{Big}}_{\mathbb{R}}(X)$ the cone of all big adelic \mathbb{R}-Cartier divisors. It is an open cone in $\widehat{\operatorname{Div}}_{\mathbb{R}}(X)$.
2.2.6. Recall that an adelic vector bundle on $\operatorname{Spec} K$ is defined as any data of the form $\bar{E}=\left(E,\left(\|\cdot\|_{v}\right)_{v \in M_{K}}\right)$, where E is a vector space of finite rank over K, and for any $v \in M_{K},\|\cdot\|_{v}$ is a norm on $E \otimes_{K} K_{v}$, which is ultrametric if v is non-archimedean. We also require that, for all but a finite number of places $v \in M_{K}$, the norm $\|\cdot\|_{v}$ arises from a common integral model of E, or equivalently, there exists a basis $\left(e_{i}\right)_{i=1}^{r}$ of E over K such that, for all but a finite number of $v \in M_{K}$, one has

$$
\forall\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in K_{v}^{r},\left\|\lambda_{1} e_{1}+\cdots+\lambda_{r} e_{r}\right\|_{v}=\max \left(\left|\lambda_{1}\right|_{v}, \ldots,\left|\lambda_{r}\right|_{v}\right)
$$

We refer the readers to $[\mathbf{1 8}, \S 3]$ for more details. If $\bar{D}=\left(D,\left(g_{v}\right)_{v \in M_{K}}\right)$ is an adelic \mathbb{R}-Cartier divisor on X, then

$$
\overline{H^{0}(D)}:=\left(H^{0}(D),\left(\|\cdot\|_{g_{v}}\right)_{v \in M_{K}}\right)
$$

is an adelic vector bundle on $\operatorname{Spec} K$ (see [14, Corollary 5.14]).
A variant of the arithmetic volume function has been introduced by Yuan $[\mathbf{3 4}]$ (see also $[\mathbf{2 9}, \S 4.3]$), where he replaces $\log \# \widehat{H}^{0}(n \bar{D})$ in the formula (9) by the Euler-Poincaré characteristic of $\overline{H^{0}(n D)}$:

$$
\begin{equation*}
\widehat{\operatorname{vol}}_{\chi}(\bar{D}):=\limsup _{n \rightarrow+\infty} \frac{\chi\left(\overline{H^{0}(n D)}\right)}{n^{d+1} /(d+1)!} \tag{10}
\end{equation*}
$$

This function is called the χ-volume function.
2.2.7. We assume that the K-scheme X admits at least a regular rational point so that the theory of Newton-Okounkov bodies can apply (see §2.1.5). Let \bar{D} be an adelic \mathbb{R}-Cartier divisor on X such that D is big. Then the family

$$
V_{\bullet}(\bar{D}):=\left(\overline{H^{0}(n D)}\right)_{n \in \mathbb{N}}
$$

forms an adelically normed graded linear series in the sense of [9]. By using the filtration by minima, we have constructed a concave and upper semicontinuous function $G_{\bar{D}}$ on $\Delta(D)$ such that

$$
\begin{equation*}
(d+1)!\widehat{\operatorname{vol}}(\bar{D})=\int_{\Delta(D)} \max \left(G_{\bar{D}}(x), 0\right) \mathrm{d} x \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
(d+1)!\widehat{\operatorname{vol}}_{\chi}(\bar{D})=\int_{\Delta(D)} G_{\bar{D}}(x) \mathrm{d} x \tag{12}
\end{equation*}
$$

This function is positively homogeneous in the following sense: for any $\bar{D} \in$ $\widehat{\operatorname{Big}}_{\mathbb{R}}(X)$ and any $\lambda>0$ one has

$$
\forall x \in \Delta(D), G_{\lambda \bar{D}}(\lambda x)=\lambda G_{\bar{D}}(x)
$$

Moreover, if \bar{D}_{1} and \bar{D}_{2} are two adelic \mathbb{R}-Cartier divisors on X, then for any $(x, y) \in \Delta\left(D_{1}\right) \times \Delta\left(D_{2}\right)$ one has

$$
G_{\bar{D}_{1}+\bar{D}_{2}}(x+y) \geqslant G_{\bar{D}_{1}}(x)+G_{\bar{D}_{2}}(y)
$$

We refer the readers to $[\mathbf{9}, \S 2.4]$ for more details, see also $[\mathbf{1 4}, \S 3.6$ and $\S 6.2]$ for the super-additivity of the filtration by minima.
2.2.8. The arithmetic volume function is differentiable on the cone of big adelic \mathbb{R}-Cartier divisors. More precisely, if \bar{D} and \bar{E} are adelic \mathbb{R}-Cartier divisors on X, where \bar{D} is big, then the limit

$$
\left\langle\bar{D}^{d}\right\rangle \cdot \bar{E}:=\lim _{t \rightarrow 0} \frac{\widehat{\operatorname{vol}}(\bar{D}+t \bar{E})-\widehat{\operatorname{vol}}(\bar{D})}{(d+1) t}
$$

exists in \mathbb{R}, and defines a linear form on $\bar{E} \in \widehat{\operatorname{Div}}(X)$. This result has firstly been proved in the case where D and E are Cartier divisors (cf. [13]), and then be extended to the general case of adelic \mathbb{R}-Cartier divisors by Ikoma [22] (the normality hypothesis on the arithmetic variety in the differentiability theorem in loc. cit. is not necessary since the arithmetic volume function is invariant by pull-back to a birational modification).
2.2.9. Let $\bar{D}=\left(D,\left(g_{v}\right)_{v \in M_{K}}\right)$ be an adelic \mathbb{R}-Cartier divisor on X. We say that \bar{D} is relatively nef if the \mathbb{R}-Cartier divisor D is nef and all v-Green functions g_{v} are plurisubharmonic. In the case where v is non-archimedean, the plurisubharmonicity of g_{v} signifies that the Green function g_{v} is a uniform limit of v-Green functions of D arising from relatively nef integral models. We refer the readers to $[\mathbf{2 9}, \S \S 2.1-2.2, \S 4.4]$ for more details.

The arithmetic intersection number has been defined in $[\mathbf{2 9}, \S 4.5]$ for relatively nef adelic \mathbb{R}-Cartier divisors. It is a $(d+1)$-linear form on the cone of such adelic \mathbb{R}-Cartier divisors. If $\bar{D}_{0}, \ldots, \bar{D}_{d}$ is a family of relatively nef adelic \mathbb{R}-Cartier divisors, we use the expression $\bar{D}_{0} \cdots \bar{D}_{d}$ to denote the intersection number of the adelic \mathbb{R}-Cartier divisors $\bar{D}_{0}, \ldots, \bar{D}_{d}$.

If \bar{D} is a relatively nef adelic \mathbb{R}-Cartier divisor, one can identify the arithmetic self-intersection number $\bar{D}^{(d+1)}$ with the χ-volume function. This follows from the arithmetic Hilbert-Samuel theorem $[\mathbf{1 , 3 1}]$ and the continuity of the arithmetic intersection number on the relatively nef cone. In particular, we deduce from (12) that, if \bar{D} is an adelic \mathbb{R}-Cartier divisor which is relatively nef, then one has

$$
\begin{equation*}
(d+1)!\left(\bar{D}^{d+1}\right)=\int_{\Delta(D)} G_{\bar{D}}(x) \mathrm{d} x \tag{13}
\end{equation*}
$$

2.2.10. Given an adelic \mathbb{R}-Cartier divisor \bar{D} on X, one can define a height function $h_{\bar{D}}$ on the set of all closed points of X. In particular, when x is a closed point of X which does not lie in the support of D, the height $h_{\bar{D}}(x)$ is the Arakelov degree of the restriction of \bar{D} on x. The adelic \mathbb{R}-Cartier divisor \bar{D} is said to be nef if it is relatively nef and if the height function $h_{\bar{D}}$ is non-negative (see $[\mathbf{2 9}, \S 4.4]$). If \bar{D} is nef, one has (see [22, Proposition 3.11])

$$
\begin{equation*}
\left\langle\bar{D}^{d}\right\rangle \cdot \bar{D}=\left(\bar{D}^{(d+1)}\right)=\widehat{\operatorname{vol}}(\bar{D}) \tag{14}
\end{equation*}
$$

The comparison between (11) and (13) shows that, if \bar{D} is nef, then the function $G_{\bar{D}}$ is non-negative almost everywhere on $\Delta(D)$, and hence is non-negative since it is upper semicontinuous.

3. Relative isoperimetric inequality

The purpose of this section is to establish an integral form of isoperimetric inequality and apply it to the study of the arithmetic volume function. Throughout the section, we fix an integer $d \geqslant 1$.
3.1. Integral isoperimetric inequality. - Let Δ_{0} and Δ_{1} be two convex bodies in \mathbb{R}^{d}. For any $\varepsilon \in[0,1]$, let S_{ε} be the Minkowski sum

$$
\Delta_{0}+\varepsilon \Delta_{1}:=\left\{x+\varepsilon y: x \in \Delta_{0}, y \in \Delta_{1}\right\}
$$

It is also a convex body in \mathbb{R}^{d}.
Theorem 3.1. - Let G_{0} and G_{1} be two Borel functions on Δ_{1} and Δ_{2} respectively. We assume that they are integrable with respect to the Lebesgue measure. Suppose given, for any $\varepsilon \in[0,1]$, a non-negative function H_{ε} on S_{ε} such that

$$
\begin{equation*}
\forall(x, y) \in \Delta_{0} \times \Delta_{1}, H_{\varepsilon}(x+\varepsilon y) \geqslant G_{0}(x)+\varepsilon G_{1}(y) \tag{15}
\end{equation*}
$$

Then the following inequality holds

$$
\begin{align*}
& \liminf _{\varepsilon \rightarrow 0+} \frac{\int_{S_{\varepsilon}} H_{\varepsilon}(z) \mathrm{d} z-\int_{\Delta_{0}} G_{0}(x) \mathrm{d} x}{\varepsilon} \\
& \quad \geqslant d\left(\frac{\operatorname{vol}\left(\Delta_{1}\right)}{\operatorname{vol}\left(\Delta_{0}\right)}\right)^{1 / d} \int_{\Delta_{0}} G_{0}(x) \mathrm{d} x+\frac{\operatorname{vol}\left(\Delta_{0}\right)}{\operatorname{vol}\left(\Delta_{1}\right)} \int_{\Delta_{1}} G_{1}(y) \mathrm{d} y \tag{16}
\end{align*}
$$

Proof. - The key point of the proof is to choose a suitable map $f: \Delta_{0} \rightarrow \Delta_{1}$ as an auxiliary tool to relate Δ_{0}, Δ_{1} and S_{ε}. We consider the Knothe map $f: \Delta_{0} \rightarrow \Delta_{1}$ which is a homeomorphism and is of class C^{1} on Δ_{0}°, whose Jacobian $D f$ is upper triangle with a positive diagonal everywhere on Δ_{0}°, and such that $\operatorname{det}(D f)$ is constant (and which is equal to $\left.\operatorname{vol}\left(\Delta_{1}\right) / \operatorname{vol}\left(\Delta_{0}\right)\right)$. We refer the readers to $[\mathbf{2 5}]$ and $[\mathbf{3}, \S 2.2 .1]$ for details on the construction of this map. We just point out that we can write the map f in the form

$$
f\left(x_{1}, \ldots, x_{d}\right)=\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{1}, x_{2}\right), \ldots, f_{d}\left(x_{1}, \ldots, x_{d}\right)\right)
$$

where for each $k \in\{1, \ldots, d\}, f_{k}$ is a function from \mathbb{R}^{k} to \mathbb{R} which is increasing in the variable x_{k} when other coordinates $\left(x_{1}, \ldots, x_{k-1}\right)$ are fixed. Moreover, this monotonicity is strict on the interval of all points $x_{k} \in \mathbb{R}$ such that $\left(x_{1}, \ldots, x_{k}\right)$ lies in the projection of Δ_{0} by taking the first k coordinates.

For any $\varepsilon \in[0,1]$, let $F_{\varepsilon}:=\operatorname{Id}+\varepsilon f: \Delta_{0} \rightarrow S_{\varepsilon}$ which sends $x \in \Delta_{0}$ to $x+\varepsilon f(x)$. Note that the map F_{ε} has the same monotonicity property as f. In particular, the map F_{ε} is injective. Therefore one has

$$
\int_{S_{\varepsilon}} H_{\varepsilon}(z) \mathrm{d} z \geqslant \int_{F_{\varepsilon}\left(\Delta_{0}\right)} H_{\varepsilon}(z) \mathrm{d} z=\int_{\Delta_{0}^{0}} H_{\varepsilon}\left(F_{\varepsilon}(x)\right)\left|\operatorname{det}\left(D F_{\varepsilon}\right)(x)\right| \mathrm{d} x .
$$

Note that one has $D F_{\varepsilon}=\operatorname{Id}+\varepsilon D f$ on Δ_{0}°. Since $D f$ is upper triangle with a positive diagonal, one has

$$
\left|\operatorname{det}\left(D F_{\varepsilon}\right)\right|=\operatorname{det}(\operatorname{Id}+\varepsilon D f) \geqslant\left(1+\varepsilon\left(\frac{\operatorname{vol}\left(\Delta_{1}\right)}{\operatorname{vol}\left(\Delta_{0}\right)}\right)^{1 / d}\right)^{d}
$$

Hence we obtain

$$
\int_{S_{\varepsilon}} H_{\varepsilon}(z) \mathrm{d} z \geqslant\left(1+\varepsilon\left(\frac{\operatorname{vol}\left(\Delta_{1}\right)}{\operatorname{vol}\left(\Delta_{0}\right)}\right)^{1 / d}\right)^{d} \int_{\Delta_{0}} H_{\varepsilon}\left(F_{\varepsilon}(x)\right) \mathrm{d} x
$$

Now by the super-additivity assumption (15), one has

$$
H_{\varepsilon}\left(F_{\varepsilon}(x)\right)=H_{\varepsilon}(x+\varepsilon f(x)) \geqslant G_{0}(x)+\varepsilon G_{1}(f(x))
$$

Therefore

$$
\int_{S_{\varepsilon}} H_{\varepsilon}(z) \mathrm{d} z \geqslant\left(1+\varepsilon\left(\frac{\operatorname{vol}\left(\Delta_{1}\right)}{\operatorname{vol}\left(\Delta_{0}\right)}\right)^{1 / d}\right)^{d}\left(\int_{\Delta_{0}} G_{0}(x) \mathrm{d} x+\varepsilon \int_{\Delta_{0}} G_{1}(f(x)) \mathrm{d} x\right)
$$

Since f is a homeomorphism between Δ_{0} and Δ_{1}, and $\operatorname{det}(D f)=$ $\operatorname{vol}\left(\Delta_{1}\right) / \operatorname{vol}\left(\Delta_{0}\right)$ is constant, one has

$$
\int_{\Delta_{0}} G_{1}(f(x)) \mathrm{d} x=\frac{\operatorname{vol}\left(\Delta_{0}\right)}{\operatorname{vol}\left(\Delta_{1}\right)} \int_{\Delta_{1}} G_{1}(y) \mathrm{d} y
$$

Combining with the above inequality, we obtain that

$$
\frac{1}{\varepsilon}\left(\int_{S_{\varepsilon}} H_{\varepsilon}(z) \mathrm{d} z-\int_{\Delta_{0}} G_{0}(x) \mathrm{d} x\right)
$$

is bounded from below by
$\frac{1}{\varepsilon}\left[\left(\operatorname{vol}\left(\Delta_{0}\right)^{\frac{1}{d}}+\varepsilon \operatorname{vol}\left(\Delta_{1}\right)^{\frac{1}{d}}\right)^{d}\left(\frac{\int_{\Delta_{0}} G_{0}(x) \mathrm{d} x}{\operatorname{vol}\left(\Delta_{0}\right)}+\varepsilon \frac{\int_{\Delta_{1}} G_{1}(y) \mathrm{d} y}{\operatorname{vol}\left(\Delta_{1}\right)}\right)-\int_{\Delta_{0}} G_{0}(x) \mathrm{d} x\right]$.
By taking the inf limit when ε tends to $0+$, we obtain the lower bound as announced in the theorem.

Remark 3.2. - The inequality (16) can be considered as a natural generalization of the classical isoperimetric inequality. In fact, if we take G_{0} and G_{1} to be the constant function of value 1 on Δ_{0} and Δ_{1} respectively, and let $H_{\varepsilon}(z)=1+\varepsilon$ for any $\varepsilon \in[0,1]$ and any $z \in S_{\varepsilon}$. Then these functions verify the conditions of Theorem 3.1. Moreover, one has

$$
\int_{S_{\varepsilon}} H_{\varepsilon}(z) \mathrm{d} z=(1+\varepsilon) \operatorname{vol}\left(S_{\varepsilon}\right)
$$

Hence

$$
\lim _{\varepsilon \rightarrow 0+} \frac{\int_{S_{\varepsilon}} H_{\varepsilon}(z) \mathrm{d} z-\int_{\Delta_{0}} G_{0}(x) \mathrm{d} x}{\varepsilon}=d \operatorname{vol}_{d-1,1}\left(\Delta_{0}, \Delta_{1}\right)+\operatorname{vol}\left(\Delta_{0}\right)
$$

where $\operatorname{vol}_{d-1,1}\left(\Delta_{0}, \Delta_{1}\right)$ is the mixed volume of index $(d-1,1)$ of Δ_{0} and Δ_{1}. Therefore the inequality (16) leads to

$$
\operatorname{vol}_{d-1,1}\left(\Delta_{0}, \Delta_{1}\right) \geqslant \operatorname{vol}\left(\Delta_{0}\right)^{(d-1) / d} \cdot \operatorname{vol}\left(\Delta_{1}\right)^{1 / d}
$$

which is the isoperimetric inequality in convex geometry.
3.2. Strong arithmetic isoperimetric inequality. - Let K be a number field and X be an geometrically integral projective scheme of Krull dimension $d \geqslant 1$ over $\operatorname{Spec} K$. The purpose of this subsection is to establish the following theorem.

Theorem 3.3. - Let \bar{D}_{0} and \bar{D}_{1} be two adelic \mathbb{R}-Cartier divisors on X which are nef and such that D_{0} and D_{1} are big. Then one has

$$
\begin{equation*}
(d+1) \bar{D}_{0}^{d} \cdot \bar{D}_{1} \geqslant d\left(\frac{\operatorname{vol}\left(D_{1}\right)}{\operatorname{vol}\left(D_{0}\right)}\right)^{1 / d} \widehat{\operatorname{vol}}\left(\bar{D}_{0}\right)+\left(\frac{\operatorname{vol}\left(D_{0}\right)}{\operatorname{vol}\left(D_{1}\right)}\right) \widehat{\operatorname{vol}}\left(\bar{D}_{1}\right) \tag{17}
\end{equation*}
$$

Proof. - The two sides of the inequality are invariant by any birational modification. Hence we may assume without loss of generality that the scheme X contains at least a regular rational point and hence can apply the method of Newton-Okounkov bodies and concave transform resumed in §2.1.5 and §2.2.7. For each $\varepsilon \in[0,1]$, let \bar{E}_{ε} be the adelic \mathbb{R}-Cartier divisor $\bar{D}_{0}+\varepsilon \bar{D}_{1}$ and $\Delta\left(E_{\varepsilon}\right)$ be the Newton-Okounkov body of E_{ε}. Recall that one has

$$
\Delta\left(E_{\varepsilon}\right) \supset S_{\varepsilon}:=\Delta\left(D_{0}\right)+\varepsilon \Delta\left(D_{1}\right)
$$

One can construct, for any $\varepsilon \in[0,1]$ a non-negative concave function $G_{\bar{E}_{\varepsilon}}$ on $\Delta\left(E_{\varepsilon}\right)$, such that (see $\S \S 2.2 .7-2.2 .10$)

$$
(d+1)!\widehat{\operatorname{vol}}\left(\bar{E}_{\varepsilon}\right)=\int_{\Delta\left(E_{\varepsilon}\right)} G_{\bar{E}_{\varepsilon}}(z) \mathrm{d} z \geqslant \int_{S_{\varepsilon}} G_{\bar{E}_{\varepsilon}}(z) \mathrm{d} z
$$

Moreover, for any $x \in \Delta\left(D_{0}\right)$ and any $y \in \Delta\left(D_{1}\right)$ one has

$$
G_{\bar{E}_{\varepsilon}}(x+\varepsilon y) \geqslant G_{\bar{D}_{0}}(x)+\varepsilon G_{\bar{D}_{1}}(y) .
$$

Therefore Theorem 3.1 leads to

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0+} \frac{\widehat{\operatorname{vol}}\left(\bar{E}_{\varepsilon}\right)-\widehat{\operatorname{vol}}\left(\bar{D}_{0}\right)}{\varepsilon}=(d+1)\left(\bar{D}_{0}^{d} \cdot \bar{D}_{1}\right) \\
& \quad \geqslant d\left(\frac{\operatorname{vol}\left(D_{1}\right)}{\operatorname{vol}\left(D_{0}\right)}\right)^{1 / d} \widehat{\operatorname{vol}}\left(\bar{D}_{0}\right)+\frac{\operatorname{vol}\left(D_{0}\right)}{\operatorname{vol}\left(D_{1}\right)} \widehat{\operatorname{vol}}\left(\bar{D}_{1}\right)
\end{aligned}
$$

as claimed in the theorem.
By the inequality between arithmetical and geometric means, we deduce from Theorem 3.3 an arithmetic isoperimetric inequality in a similar form to the classical one.

Corollary 3.4. - With the notation and the hypotheses of the previous theorem, one has

$$
\begin{equation*}
\left(\bar{D}_{0}^{d} \cdot \bar{D}_{1}\right) \geqslant \widehat{\operatorname{vol}}\left(\bar{D}_{0}\right)^{d /(d+1)} \cdot \widehat{\operatorname{vol}}\left(\bar{D}_{1}\right)^{1 /(d+1)} \tag{18}
\end{equation*}
$$

The comparison between the inequalities (17) and (18) shows that, Theorem 3.3 can be considered as a refinement of the isoperimetric inequality where we take into account the information of X relatively to the arithmetic curve Spec K. The same method can also be applied to the functional setting, which leads to the following relative form of the isoperimetric inequality in algebraic geometry. We refer the readers to $[\mathbf{1 5}, \S 8]$ for the construction of the concave transform in the function field setting.

Theorem 3.5. - Let k be a field, C be a regular projective curve over $\operatorname{Spec} k$, and $\pi: X \rightarrow C$ be a flat and projective k-morphism of relative dimension $d \geqslant 1$. If L and M are two nef and big line bundles on X, then one has

$$
(d+1)\left(c_{1}(L)^{d} \cdot c_{1}(M)\right) \geqslant d\left(\frac{c_{1}\left(M_{\eta}\right)^{d}}{c_{1}\left(L_{\eta}\right)^{d}}\right)^{1 / d} c_{1}(L)^{d+1}+\left(\frac{c_{1}\left(L_{\eta}\right)^{d}}{c_{1}\left(M_{\eta}\right)^{d}}\right) c_{1}(M)^{d+1}
$$

where η is the generic point of C, and L_{η} and M_{η} are respectively the restrictions of L and M on the generic fiber of π.

4. Relative Brunn-Minkowski inequality

The purpose of this section is to establish the following relative form of Brunn-Minkowski inequality in the arithmetic geometry setting.

Theorem 4.1. - Let K be a number field and X be a geometrically integral projective scheme over $\operatorname{Spec} K$. If $\bar{D}_{1}, \ldots, \bar{D}_{n}$ are nef adelic \mathbb{R}-Cartier divisors on X such that D_{1}, \ldots, D_{n} are big, then one has

$$
\begin{equation*}
\frac{\widehat{\operatorname{vol}}\left(\bar{D}_{1}+\cdots+\bar{D}_{n}\right)}{\operatorname{vol}\left(D_{1}+\cdots+D_{n}\right)} \geqslant \varphi\left(D_{1}, \ldots, D_{n}\right)^{-1} \sum_{i=1}^{n} \frac{\widehat{\operatorname{vol}}\left(\bar{D}_{i}\right)}{\operatorname{vol}\left(D_{i}\right)}, \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi\left(D_{1}, \ldots, D_{n}\right):=d+1-d \frac{\operatorname{vol}\left(D_{1}\right)^{1 / d}+\cdots+\operatorname{vol}\left(D_{n}\right)^{1 / d}}{\operatorname{vol}\left(D_{1}+\cdots+D_{n}\right)^{1 / d}} \tag{20}
\end{equation*}
$$

Proof. - Since $\bar{D}_{1}, \ldots, \bar{D}_{n}$ are nef, one has

$$
\widehat{\operatorname{vol}}\left(\bar{D}_{1}+\cdots+\bar{D}_{n}\right)=\left(\bar{D}_{1}+\cdots+\bar{D}_{n}\right)^{d+1}=\sum_{i=1}^{n}\left(\bar{D}_{1}+\cdots+\bar{D}_{n}\right)^{d} \cdot \bar{D}_{i} .
$$

By Theorem 3.3, one has

$$
\begin{aligned}
(d+1)\left(\left(\bar{D}_{1}+\cdots+\bar{D}_{n}\right) \cdot \bar{D}_{i}\right) \geqslant & d\left(\frac{\operatorname{vol}\left(D_{i}\right)}{\operatorname{vol}\left(D_{1}+\cdots+D_{n}\right)}\right)^{1 / d} \widehat{\operatorname{vol}\left(\bar{D}_{1}+\cdots+\bar{D}_{n}\right)} \\
& +\left(\frac{\operatorname{vol}\left(D_{1}+\cdots+D_{n}\right)}{\operatorname{vol}\left(D_{i}\right)}\right) \widehat{\operatorname{vol}}\left(\bar{D}_{i}\right) .
\end{aligned}
$$

Therefore we obtain

$$
\begin{aligned}
(d+1) \widehat{\operatorname{vol}\left(\bar{D}_{1}+\cdots+\bar{D}_{n}\right) \geqslant} \begin{aligned}
& \frac{\operatorname{vol}\left(D_{1}\right)^{1 / d}+\cdots+\operatorname{vol}\left(D_{n}\right)^{1 / d}}{\operatorname{vol}\left(D_{1}+\cdots+D_{n}\right)^{1 / d}} \widehat{\operatorname{vol}}\left(\bar{D}_{1}+\cdots+\bar{D}_{n}\right) \\
& +\operatorname{vol}\left(D_{1}+\cdots+D_{n}\right) \sum_{i=1}^{n} \frac{\widehat{\operatorname{vol}}\left(\bar{D}_{i}\right)}{\operatorname{vol}\left(D_{i}\right)}
\end{aligned},=\text {. }
\end{aligned}
$$

which leads to (19).
By using the same argument, we deduce from Theorem 3.5 the following relative Brunn-Minkowski inequality in the algebraic geometry setting.

Theorem 4.2. - Let k be a field, C be a regular projective curve over $\operatorname{Spec} k$, and $\pi: X \rightarrow C$ be a flat and projective k-morphism of relative dimension $d \geqslant 1$. If L_{1}, \ldots, L_{n} is a family of nef and big line bundles on X, then one has

$$
\frac{\operatorname{vol}\left(L_{1} \otimes \cdots \otimes L_{n}\right)}{\operatorname{vol}\left(L_{1, \eta} \otimes \cdots \otimes L_{n, \eta}\right)} \geqslant \varphi\left(L_{1, \eta}, \ldots, L_{n, \eta}\right)^{-1} \sum_{i=1}^{n} \frac{\operatorname{vol}\left(L_{i}\right)}{\operatorname{vol}\left(L_{i, \eta}\right)}
$$

where η is the generic point of $C, L_{i, \eta}$ is the restrictions of L_{i} on the generic fiber of π, and

$$
\varphi\left(L_{1, \eta}, \ldots, L_{n, \eta}\right):=d+1-d \frac{\operatorname{vol}\left(L_{1, \eta}\right)^{1 / d}+\cdots+\operatorname{vol}\left(L_{n, \eta}\right)^{1 / d}}{\operatorname{vol}\left(L_{1, \eta} \otimes \cdots \otimes L_{n, \eta}\right)^{1 / d}}
$$

Remark 4.3. - The infinitesimal argument in Theorem 3.3 is a key step for the strong Brunn-Minkowski inequality (19). In fact, if we apply directly the map of Knothe as in the proof of Theorem 3.1 with $\varepsilon=1$, we obtain that, for nef adelic \mathbb{R}-Cartier divisors \bar{D}_{1} and \bar{D}_{2} such that D_{1} and D_{2} are big, one has

$$
\widehat{\operatorname{vol}}\left(\bar{D}_{1}+\bar{D}_{2}\right) \geqslant\left(1+\left(\frac{\operatorname{vol}\left(D_{2}\right)}{\operatorname{vol}\left(D_{1}\right)}\right)^{1 / d}\right)^{d}\left(\widehat{\operatorname{vol}}\left(\bar{D}_{1}\right)+\frac{\operatorname{vol}\left(D_{1}\right)}{\operatorname{vol}\left(D_{2}\right)} \widehat{\operatorname{vol}}\left(\bar{D}_{2}\right)\right)
$$

which leads to

$$
\frac{\widehat{\operatorname{vol}}\left(\bar{D}_{1}+\bar{D}_{2}\right)}{\operatorname{vol}\left(D_{1}+D_{2}\right)} \geqslant \frac{\left(\operatorname{vol}\left(D_{1}\right)^{1 / d}+\operatorname{vol}\left(D_{2}\right)^{1 / d}\right)^{d}}{\operatorname{vol}\left(D_{1}+D_{2}\right)}\left(\frac{\widehat{\operatorname{vol}}\left(\bar{D}_{1}\right)}{\operatorname{vol}\left(D_{1}\right)}+\frac{\widehat{\operatorname{vol}}\left(\bar{D}_{2}\right)}{\operatorname{vol}\left(D_{2}\right)}\right) .
$$

However, one has

$$
\varphi\left(D_{1}, D_{2}\right) \leqslant \frac{\operatorname{vol}\left(D_{1}+D_{2}\right)}{\left(\operatorname{vol}\left(D_{1}\right)^{1 / d}+\operatorname{vol}\left(D_{2}\right)^{1 / d}\right)^{d}}
$$

and the inequality is in general strict.

References

[1] A. Abbes \& T. Bouche - "Théorème de Hilbert-Samuel "arithmétique"", Université de Grenoble. Annales de l'Institut Fourier 45 (1995), no. 2, p. 375-401.
[2] S. Alesker, S. Dar \& V. Milman - "A remarkable measure preserving diffeomorphism between two convex bodies in $\mathbf{R}^{n ",}$, Geometriae Dedicata 74 (1999), no. 2, p. 201-212.
[3] F. Barthe - "Autour de l'inégalité de Brunn-Minkowski", Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série 612 (2003), no. 2, p. 127-178.
[4] H. Bergström - "A triangle-inequality for matrices", in Den 11te Skandinaviske Matematikerkongress, Trondheim, 1949, Johan Grundt Tanums Forlag, Oslo, 1952, p. 264-267.
[5] V. G. Berkovich - Spectral theory and analytic geometry over nonArchimedean fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, Providence, RI, 1990.
[6] D. Bertrand - "Minimal heights and polarizations on group varieties", Duke Mathematical Journal 80 (1995), no. 1, p. 223-250.
[7] S. Bobkov \& M. Madiman - "Reverse Brunn-Minkowski and reverse entropy power inequalities for convex measures", Journal of Functional Analysis 262 (2012), no. 7, p. 3309-3339.
[8] T. Bonnesen \& W. Fenchel - Theorie der konvexen Körper, Chelsea Publishing Co., Bronx, N.Y., 1971, Reissue of the 1948 reprint of the 1934 original.
[9] S. Boucksom \& H. Chen - "Okounkov bodies of filtered linear series", Compositio Mathematica 147 (2011), no. 4, p. 1205-1229.
[10] Y. BRENIER - "Décomposition polaire et réarrangement monotone des champs de vecteurs", Comptes Rendus des Séances de l'Académie des Sciences. Série I. Mathématique 305 (1987), no. 19, p. 805-808.
[11] _ "Polar factorization and monotone rearrangement of vector-valued functions", Communications on Pure and Applied Mathematics 44 (1991), no. 4, p. 375-417.
[12] Y. D. Burago \& V. A. Zalgaller - Geometric inequalities, Grundlehren der Mathematischen Wissenschaften, vol. 285, Springer-Verlag, Berlin, 1988, Translated from the Russian by A. B. Sosinskir̆, Springer Series in Soviet Mathematics.
[13] H. Chen - "Differentiability of the arithmetic volume function", Journal of the London Mathematical Society. Second Series 84 (2011), no. 2, p. 365-384.
[14] ___ "Inégalité d'indice de Hodge en géométrie et arithmétique : une approche probabiliste", preprint, 2015.
[15] arithmétique", Mathematische Zeitschrift 279 (2015), no. 1-2, p. 99-137.
[16] G. Faltings - "Calculus on arithmetic surfaces", Annals of Mathematics. Second Series 119 (1984), no. 2, p. 387-424.
[17] M. Fradelizi, A. Giannopoulos \& M. Meyer - "Some inequalities about mixed volumes", Israel Journal of Mathematics 135 (2003), p. 157-179.
[18] É. Gaudron - "Pentes de fibrés vectoriels adéliques sur un corps globale", Rendiconti del Seminario Matematico della Università di Padova 119 (2008), p. 21-95.
[19] M. Gromov - "Convex sets and Kähler manifolds", in Advances in differential geometry and topology, World Sci. Publ., Teaneck, NJ, 1990, p. 1-38.
[20] M. A. Hernández Cifre \& J. Yepes Nicolás - "Refinements of the BrunnMinkowski inequality", Journal of Convex Analysis 21 (2014), no. 3, p. 727-743.
[21] P. Hriljac - "Heights and Arakelov's intersection theory", American Journal of Mathematics 107 (1985), no. 1, p. 23-38.
[22] H. Iкома - "On the concavity of the arithmetic volumes", to appear in International Mathematics Research Notices, 2015.
[23] K. Kaveh \& A. G. Khovanskii - "Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory", Annals of Mathematics. Second Series 176 (2012), no. 2, p. 925-978.
[24] K. Kaveh \& A. Khovanskii - "Algebraic equations and convex bodies", in Perspectives in analysis, geometry, and topology, Progr. Math., vol. 296, Birkhäuser/Springer, New York, 2012, p. 263-282.
[25] H. Knothe - "Contributions to the theory of convex bodies", The Michigan Mathematical Journal 4 (1957), p. 39-52.
[26] R. Lazarsfeld \& M. Mustaţă - "Convex bodies associated to linear series", Annales Scientifiques de l'École Normale Supérieure. Quatrième Série 42 (2009), no. 5, p. 783-835.
[27] H. Minkowski - "Theorie der konvexen Körpern, insbesonder der Begründung ihres Oberflächenbegriffs", in Gesammelte Abhandlungen, vol. II, Teubner, Leipzip, 1903, p. 131-229.
[28] A. Moriwaki - "Continuity of volumes on arithmetic varieties", Journal of algebraic geometry 18 (2009), no. 3, p. 407-457.
[29] , "Adelic divisors on arithmetic varieties", to appear in Memoirs of the American Mathematical Society, 2014.
[30] R. Osserman - "The isoperimetric inequality", Bulletin of the American Mathematical Society 84 (1978), no. 6, p. 1182-1238.
[31] H. Randriambololona - "Métriques de sous-quotient et théorème de HilbertSamuel arithmétique pour les faisceaux cohérents", Journal für die Reine und Angewandte Mathematik 590 (2006), p. 67-88.
[32] R. Schneider - Convex bodies: the Brunn-Minkowski theory, expanded ed., Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014.
[33] B. Teissier - "Du théorème de l'index de Hodge aux inégalités isopérimétriques", Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences. Séries A et B 288 (1979), no. 4, p. A287-A289.
[34] X. Yuan - "Big line bundles over arithmetic varieties", Inventiones Mathematicae 173 (2007), no. 3, p. 603-649.
[35] , "On volumes of arithmetic line bundles", Compositio Mathematica 145 (2009), no. 6, p. 1447-1464.

May 16, 2015
Huayi Chen, Université Grenoble Alpes, Institut Fourier, F38000 Grenoble, France - E-mail: huayi.chen@ujf-grenoble.fr Url: www-fourier.ujf-grenoble.fr/~huayi

