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ON ISOPERIMETRIC INEQUALITY IN ARAKELOV
GEOMETRY

Huayi Chen

Abstract. — We establish an isoperimetric inequality in an integral form
and deduce a strong Brunn-Minkowski inequality in the Arakelov geometry
setting.
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1. Introduction

The isoperimetric inequality in Euclidean geometry asserts that, for any
convex body ∆ in Rd, one has

(1) vol(∂∆)d > dd vol(B) vol(∆)d−1,

where B denotes the closed unit ball in Rd. From the point of view of
convex geometry, the isoperimetric inequality can be deduced from the Brunn-
Minkowski inequality: for two Borel subsets A1 and A2 in Rd, one has

(2) vol(A0 +A1)1/d > vol(A0)1/d + vol(A1)1/d,

where
A0 +A1 := {x+ y |x ∈ A0, y ∈ A1}
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is the Minkowski sum of A0 and A1. The proof consists of taking A0 = ∆ and
A1 = εB in (2) with ε > 0 and let ε tend to 0. We refer the readers to [30] for
a presentation on the history of the isoperimetric inequality and to the page
1190 of loc. cit. for more details on how to deduce (1) from (2). The same
method actually leads to a lower bound for the mixed volume of convex bodies:

(3) vold−1,1(∆0,∆1)d > vol(∆0)d−1 · vol(∆1),

where ∆0 and ∆1 are two convex bodies in Rd and vold−1,1(∆0,∆1) is the
mixed volume of index (d− 1, 1) of them, which is equal to

lim
ε→0+

vol(∆0 + ε∆1)− vol(∆0)

εd
.

We refer the readers to the work of Minkowski [27] for the notion of mixed
volumes in convex geometry. See [8, §7.29] for more details.

Note that (3) is one of the inequalities of Alexandrov-Fenchel type for mixed
volumes, which is actually equivalent to Brunn-Minkowski inequality (see for
example [32, §7.2] for a proof). Note that the above inequalities in convex
geometry are similar to some inequalities of intersection numbers in algebraic
geometry. By using toric varieties, Teissier [33] and Khovanskii (see [12, §4.27])
have given proofs of Alexandrov-Fenchel inequality by using the Hodge index
theorem.

In the arithmetic geometry setting, Bertrand [6, §1.2] has established a lower
bound for the height function on an arithmetic variety, and interpreted it as
an arithmetic analogue of the isoperimetric inequality. In [13], the author has
proposed the notion of positive intersection product in Arakelov geometry and
proved an analogue of the isoperimetric inequality in the form of (3), by using
the arithmetic Brunn-Minkowski inequality established by Yuan [35].

The purpose of this article is to propose a refinement of the arithmetic
isoperimetric inequality and Brunn-Minkowski inequality as follows.

Theorem 1.1. — Let K be a number field and X be a geometrically integral
projective scheme of dimension d > 1 over SpecK. If D0 and D1 are adelic
arithmetic R-Cartier divisors on X which are nef and big, then one has

(4) (d+ 1)(D
d
0 ·D1) > d

(vol(D1)

vol(D0)

)1/d
v̂ol(D0) +

vol(D0)

vol(D1)
v̂ol(D1).

Moreover, if (Di)
n
i=1 is a family of nef and big adelic arithmetic R-Cartier

divisors, then one has

(5)
v̂ol(D1 + · · ·+Dn)

vol(D1 + · · ·+Dn)
> ϕ(D1, . . . , Dn)−1

n∑
i=1

v̂ol(Di)

vol(Di)
,
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where

(6) ϕ(D1, . . . , Dn) := d+ 1− dvol(D1)1/d + · · ·+ vol(Dn)1/d

vol(D1 + · · ·+Dn)1/d
.

Compared to the direct arithmetic analogue of Brunn-Minkowski inequality
(see [35, Theorem B]), the inequality (19) distinguishes the contribution of
the geometric structure of the R-Cartier divisors D1, . . . , Dn. In the above
theorem, vol(.) and v̂ol(·) denote respectively the volume function of R-Cartier
divisors and the arithmetic volume function of adelic arithmetic R-Cartier
divisors (see [29]). Recall that for an adelic arithmetic R-Cartier divisor D on
X one has

vol(D) := lim
n→+∞

dimK(H0(X,nD))

nd/d!

and

v̂ol(D) := lim
n→+∞

log #Ĥ0(X,nD)

nd+1/(d+ 1)!
,

where H0(X,nD) = {s ∈ K(X)× : div(s) +D > 0} ∪ {0}, and

Ĥ0(X,nD) = {s ∈ H0(X,nD) : ‖s‖sup 6 1}

If D is a nef adelic arithmetic R-Cartier divisor, then vol(D) and v̂ol(D) can
be expressed as (arithmetic) intersection numbers:

vol(D) = (Dd), v̂ol(D) = (Dd+1).

In the particular case where d = 2 (namely X is an arithmetic surface), the
inequality (4) becomes a strong form of the arithmetic Hodge index inequality

2(D0 ·D1) >
deg(D1)

deg(D0)
v̂ol(D0) +

deg(D0)

deg(D1)
v̂ol(D1),

established in [14, Theorem 6.14], generalizing previous works of Faltings
[16] and Hriljac [21]. Similarly to [14], we also use the interpretation of
the arithmetic volume of a big adelic arithmetic R-Cartier divisor D as the
integral of a concave function on the Okounkov body ∆(D) of the R-Cartier
divisor D, which is a convex body in Rd. However the proof of Theorem 1.1
follows a strategy which is different from the way indicated in [14], where the
author has introduced for any couple (∆1,∆2) of convex bodies in Rd a number
ρ(∆1,∆2) (called the correlation index of ∆1 and ∆2) which measures the
degree of uniformity in the Minkowski sum ∆1 +∆2 of the sum of two uniform
random variables valued in ∆1 and ∆2 respectively (for any convex body
∆ ⊂ Rd, a Borel probability measure on Rd is called the uniform distribution
on ∆ if it is absolutely continuous with respect to the Lebesgue measure, and
the corresponding Radon-Nikodym density is 1/ vol(∆), where vol(∆) is the
Lebesgue measure of ∆; a random variable valued in Rd is called uniformly
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distributed in ∆ if it follows this measure as its probability law). It has been
established the inequality

v̂ol(D1 +D2)

vol(∆(D1) + ∆(D2))
> ρ(∆(D1),∆(D2))−1

( v̂ol(D1)

vol(∆(D1))
+

v̂ol(D2)

vol(∆(D2))

)
for any couple (D1, D2) of big and nef adelic arithmetic R-Cartier divi-
sors on X, and been suggested that the estimation of the correlation index
ρ(∆(D1),∆(D2)) should lead to more concrete inequalities of the form of (19).
However, the main point in this approach is to construct a suitable correlation
structure between two random variables which are uniformly distributed in
∆(D1) and ∆(D2) such that the sum of the random variables is as uniform as
possible in the Minkowski sum ∆(D1) + ∆(D2). We can for exemple deduce
from a work of Bobkov and Madiman [7] the following uniform upper bound
(where we choose independent random variables) (see [14, Proposition 2.9])

ρ(∆(D1),∆(D2)) 6

(
2d

d

)
.

This upper bound is larger than ϕ(D1, D2), which is clearly bounded from
above by d+ 1 by the classical Brunn-Minkowski inequality.

The strategy of this article is inspired by the works of Knothe [25] and
Brenier [10, 11] on measure preserving diffeomorphism between two convex
bodies (see also the works of Gromov [19], Alesker, Dar and Milman [2] for
more developments of this method and for applications in Alexandrov-Fenchel
type inequalities in the convex geometry setting, and the memoire of Barthe
[3] for diverse applications of this method in functional inequalities). Given a
couple (∆0,∆1) of convex bodies in Rd, one can construct a C1 diffeomorphism
f : ∆0 → ∆1 which transports the uniform probability measure of ∆0 to that
of ∆1, namely the determinant of the Jacobian Jf is constant on the interior
of ∆0. Such diffeomorphism is not unique: in the construction of Knothe,
the Jacobian Jf is upper triangle, while in the construction of Brenier, Jf is
symmetric and positive definite.

If Z0 is a random variable which is uniformly distributed in ∆0, then Z1 :=
f(Z0) is uniformly distributed in ∆1. One may expect that the random variable
Z0 + Z1 follows a probability law which is close to the uniform probability
measure on ∆0 + ∆1. In fact, the random variable Z0 + Z1 can also be
expressed as Z0 + f(Z0). Its probability law identifies with the direct image
of the uniform probability measure on ∆0 by the map Id +f , which admits
Id +Jf as its Jacobian, the determinant of which can be estimated in terms
of the determinant of Jf . In the case where Id +f is injective (for example
the Knothe map), this lower bound leads to the following upper bound for the
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correlation index

(7) ρ(∆0,∆1) 6
vol(∆0 + ∆1)

(vol(∆0)1/d + vol(∆1)1/d)d
.

By this method we obtain a weaker version of the inequality (19) in the case
where n = 2 by replacing ϕ(D0, D1)−1 by

(vol(D0)1/d + vol(D1)1/d)d

vol(D0 +D1)
.

This function is in general not bounded when D0 and D1 vary.
The main idea of the article is to use an infinitesimal variant of the above

argument. Instead of considering the map Id +f : ∆0 → ∆0 + ∆1, we consider
Id +εf : ∆0 + ε∆1 for ε > 0 sufficiently small, and use it to establish an
isoperimetric inequality in an integral form (see Theorem 3.1). By this method
we obtain the strong form of the arithmetic isoperimetric inequality as in (4)
and then deduce the arithmetic relative Brunn-Minkowski inequality (5). Note
that this does not signify that we improve the inequality (7) by replacing the
right hand side of the inequality by

d+ 1− dvol(∆0)d/1 + vol(∆1)1/d

vol(∆0 + ∆1)1/d
.

For example, it remains an open question to determine if the correlation index
ρ(∆0,∆1) is always bounded from above by d+ 1.

Finally, I would like to cite several refinements of the Brunn-Minkowski
inequality in convex geometry, where the results are also expressed in a relative
form similarly to (5), either with respect to an orthogonal projection in a
hyperplane [20] or in terms of a comparison between the volume and the mixed
volume [17] in the style of Bergstrom’s inequality [4]. It is not excluded that
the method presented in this article will bring new ideas to the researches in
these directions.

The article is organized as follows. In the second section, we recall the
notation and basic facts about adelic arithmetic R-Cartier divisors. In the
third section, we prove a relative version of isoperimetric inequality in convex
geometry and deduce the arithmetic isoperimetric inequality (4). In the fourth
and last section, we proved the relative arithmetic Brunn-Minkowski inequality
(5).

Acknowledgements. — I would like to thank Omid Amini, June Huh,
Raphaël Rossignol for discussions.
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2. Reminder on adelic divisors

Throughout the article, K denotes a field. Let X be a geometrically integral
projective scheme over K and d be its Krull dimension.

2.1. R-Cartier divisors. — In this subsection, we recall some notions and
facts about R-Cartier divisors on a projective variety.

2.1.1. Denote by Div(X) the group of all Cartier divisors on X and by
Div+(X) the sub-semigroup of Div(X) of all effective divisors. Let Div(X)R
be the vector space Div(X) ⊗Z R, the elements of which are called R-Cartier
divisors. An R-Cartier divisor D is said to be effective if it belongs to the
positive cone generated by effective Cartier divisors on X. By abuse of nota-
tion, we still use the expression D > 0 to denote the effectivity of an R-Cartier
divisor D.

2.1.2. Let D be an R-Cartier divisor on X. We denote by H0(D) the set

{f ∈ K(X)× | (f) +D > 0} ∪ {0},

where K(X) is the field of all rational functions on X, and (f) denotes the
principal divisor associated to the rational function f . This is a K-vector
subspace of finite rank of K(X). We denote by h0(D) its rank over K. Recall
that the volume of D is defined as

vol(D) := lim sup
n→+∞

h0(nD)

nd/d!
.

If vol(D) > 0, then the R-Cartier divisor D is said to be big. The big R-Cartier
divisors form an open cone in Div(X)R, denoted by BigR(X).

2.1.3. A Cartier divisor D is said to be ample if the associated invertible sheaf
O(D) is ample. An R-Cartier divisor is said to be ample if it belongs to the
open cone AmpR(X) in Div(X)R generated by ample Cartier divisors. The
closure of the ample cone is denote by NefR(X). The R-Cartier divisors which
belong to NefR(X) are said to be nef.

2.1.4. Recall that the function of self-intersection number D 7→ (Dd) is a
homogeneous polynomial of degree d on the vector space Div(X)R. Its polar
form

(D1, . . . , Dd) ∈ Div(X)dR 7−→ (D1 · · ·Dd)

is the function of intersection number. Note that the volume of a nef R-Cartier
divisor D coincides with the self-intersection number of D. In particular, the
volume function is a homogeneous polynomial of degree d on the nef cone.
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2.1.5. Let D be an R-Cartier divisor on X. We call linear system of D any
K-vector subspace of H0(D). We call graded linear series of D any N-graded
sub-K-algebra of V•(D) :=

⊕
n∈NH

0(nD). If V• =
⊕

n∈N Vn is a graded linear
series of D, its volume is defined as

vol(V•) := lim sup
n→∞

dimK(Vn)

nd/d!
.

Therefore the volume of the total graded linear series V•(D) is equal to the
volume of the R-Cartier divisor D.

Following [26, Definition 2.9], we say that a graded linear series V• of an R-
Cartier divisor D contains an ample R-Cartier divisor if there exists an ample
R-Cartier divisor A such that V•(A) ⊂ V• (see also [14, Remark 3.2] for some
equivalent forms of it). This condition implies that the volume of V• is > 0.

We assume that X contains at least a regular rational point. By the works
of Lazarsfeld and Mustaţǎ [26] and Kaveh and Khovanskii [24, 23], to each
graded linear series V• of some R-Cartier divisor, which contains an ample
R-Cartier divisor, we can attach a convex body ∆(V•) (called the Newton-
Okounkov body of V•), upon the choice (which we will fix throughout the
article) of a regular rational point of X and a regular sequence in the local
ring of the scheme X on this point, such that

vol(∆(V•)) = d! vol(V•),

where vol(∆(V•)) denotes the Lebesgue measure of the convex body ∆(V•).
We refer the readers to [26, Theorem 2.13] for more details.

2.1.6. Let V• and V ′• be two graded linear series of two R-Cartier divisors D
and D′ respectively. Let W• be a graded linear series of D +D′ such that

∀n ∈ N, {fg | f ∈ Vn, g ∈ V ′n} ⊂Wn.

Assume that the graded linear series V• and V ′• contain ample R-Cartier divi-
sors, then also is the graded linear series W•. Moreover, one has

∆(V•) + ∆(V ′• ) ⊂ ∆(W•).

Therefore the Brunn-Minkowski theorem (in classical convex geometry setting)
leads to

(8) vol(W•)
1/d > vol(V•)

1/d + vol(V ′• )1/d.

2.2. Adelic R-Cartier divisors. — In this subsection, we recall some no-
tions and facts about adelic R-Cartier divisors. The references are [18, 29].
We assume that K is a number field. LetMK be the set of all places of K. For
any place v ∈MK , let |.|v be the absolute value on K in the equivalence class
v which extends either the usual absolute value on Q or some p-adic absolute
value (such that |p|v = p−1), where p is a prime number. Denote by Kv the
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completion of the field K with respect to the topology corresponding to the
place v, on which the absolute value |.|v extends in a unique way.

2.2.1. Let X be a geometrically integral K-scheme. For any v ∈MK , let Xan
v

be the Berkovich analytic space associated to the Kv-scheme Xv := X ⊗K Kv.
As a set, it can be realized as the colimit of the functor from the category of all
valued extensions ofKv (namely fields extensions ofKv equipped with absolute
values extending |.|v) to that of sets, which sends any valued extension K ′v/Kv

to the set of all Kv-points of Xv valued in K ′v. We denote by jv : Xan
v → Xv

the map which sends any element x ∈ Xan
v to its underlying point in Xv. The

most coarse topology on Xan
v which makes the map jv continuous is called the

Zariski topology on Xan
v .

Berkovich [5] defines another topology on Xan
v which is finer than the Zariski

topology. If U is a Zariski open subset of Xv and f is a regular function on
U , then for each point x ∈ Uan := j−1

v (U), the regular function f defines
by reduction an element f(x) in the residue field of jv(x). Note that, by
the construction of the Berkovich analytique space Xan

v , this residue field is
equipped with an absolute value (depending on x) which extends |.|v. We
denote by |f |v(x) the absolute value of f(x). Thus we obtain a real-valued
function |f |v on j−1

v (U). The Berkovich topology is then defined as the most
coarse topology which makes continuous the map jv and all functions of the
form |f |v (where f is a regular function on some Zariski open subset of Xv).
The set Xan

v equipped with the Berkovich topology is separated and compact.

2.2.2. Let v be a place of K. We denote by C0
Xan

v
the sheaf of continuous real-

valued functions on the topological space Xan
v (equipped with the Berkovich

topology). For any Berkovich open subset V of Xan
v , denote by C0(V ) the

set of all sections of C0
Xan

v
over V . It is a vector space over R. Let Ĉ0(Xan

v )

be the colimit of the vector spaces C0(Uan), where U runs over the (filtered)
ordered set of all non-empty Zariski open subsets of Xv. Note that any non-
empty Zariski open subset of Xan

v is dense in Xan
v for the Berkovich topology

(see [5, Proposition 3.4.5]). Therefore, for any non-empty Zariski open subset
U of Xv, the natural map C0(Uan) → Ĉ0(Xan

v ) is injective. If an element
in Ĉ0(Xan

v ) belongs to the image of this map, we say that it extends to a
continuous function on Uan.

If f is a rational function on Xan
v , then it identifies with a regular function

on some non-empty Zariski open subset U of Xv. Therefore the function |f |v
determines an element in Ĉ0(Xan

v ). If f is non-zero, by possibly shrinking the
Zariski open set U , we may assume that f(x) 6= 0 for any x ∈ U . Therefore
the continuous function log |f |v on Uan also determines an element Ĉ0(Xan

v ),
which we still denote by log |f |v by abuse of notation. Thus we obtain an
additive map from K(Xv)

× (where K(Xv) denotes the field of all rational
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functions on Xv) to Ĉ0(Xv), which induces an R-linear homomorphism from
K(Xv)

×
R := K(Xv)

× ⊗Z R to Ĉ0(Xan
v ).

2.2.3. Let D be an R-Cartier divisor on X. For any v ∈ MK , it induces by
extension of fields an R-Cartier divisor Dv on Xv. We say that an element
f ∈ K(Xv)

×
R defines Dv locally on a Zariski open subset U of Xv if one can

write Dv as
λ1D1 + · · ·+ λnDn,

where D1, . . . , Dn are Cartier divisors on Xv, and there exist elements
f1, . . . , fn of K(Xv)

× such that fi defines Di on U and that f = fλ11 · · · fλnn .
We call v-Green function of D any element gv ∈ Ĉ0(Xan

v ) such that, for any
element f ∈ K(Xv)

×
R which defines Dv locally on a Zariski open subset U ,

the element gv + log |f |v extends to a continuous function on Uan. Note that
for each element s ∈ H0(D), the element |s|ve−gv ∈ Ĉ0(Xv) extends to a
continuous function on Xan

v (see [29, Proposition 2.1.3], see also [14, Remark
4.2]). Attention, our choice of normalization for the Green function is different
from that in [29]. Moreover, the map

s 7−→ ‖s‖gv ,sup := sup
x∈Xan

v

|s|v(x)e−gv(x)

is a norm on H0(D), which extends naturally to a norm on H0(D)⊗K Kv.

2.2.4. In the case where v is a non-archimedean place of K, a typical example
of v-Green function is that arising from an integral model. Let D be an R-
Cartier divisor on X. An integral model of (X,D) consists of a projective and
flat OK-scheme X such that XK = X, and an R-Cartier divisor D on X
such that D |X = D, where OK denotes the ring of all algebraic integers in K.

Let x be a point in Xan
v and κ(x) be the residue field of jv(x). Then κ(x) is

naturally equipped with an absolute value which extends the absolute value |.|v
on Kv. Let κ(x)◦ be the valuation ring of κ(x). Then the valuative criterion of
properness leads to a unique morphism Specκ(x)◦ →X which extends the K-
morphism Specκ(x)→ X determined by the point x. In the case where jv(x)
is outside of Supp(Dv), the pull-back of D by the morphism Specκ(x)◦ →X is
well defined, and is proportional to the divisor on Specκ(x)◦ corresponding to
the closed point of Specκ(x)◦. We denote by g(X ,D),v(x) this ratio. Note that
the element in Ĉ0(Xan

v ) determined by the map g(X ,D),v is a v-Green function
of D (see [29, Proposition 2.1.4]), called the v-Green function associated to
the integral model (X ,D).

2.2.5. By adelic R-Cartier divisor on X, we refer to any data D of the form
(D, (gv)v∈MK

), where D is an R-Cartier divisor on X and each gv is a v-Green
function of D. We also require that there exists an integral model (X ,D) of
(X,D) such that gv = g(X ,D),v for all but a finite number of v ∈MK .
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If D1 = (D1, (g1,v)v∈MK
) and D2 = (D2, (g2,v)v∈MK

) are two adelic R-
Cartier divisors, λ and µ are two real numbers, then

λD1 + µD2 := (λD1 + µD2, (λg1,v + µg2,v)v∈MK
)

is an adelic R-Cartier divisor. Therefore the set D̂ivR(X) of all adelic R-Cartier
divisors forms a vector space over R.

If D is an adelic R-Cartier divisor on X, the set

Ĥ0(D) := {s ∈ H0(D) : ∀ v ∈MK , ‖s‖gv ,sup 6 1}

is finite (see §2.2.3 for the definition of ‖.‖gv ,sup). The arithmetic volume of D
is defined as (see [28] and [29, §4.3])

(9) v̂ol(D) := lim sup
n→+∞

log #Ĥ0(nD)

nd+1/(d+ 1)!
.

The adelic R-Cartier divisor D is said to be big if v̂ol(D) > 0. We denote by
B̂igR(X) the cone of all big adelic R-Cartier divisors. It is an open cone in
D̂ivR(X).

2.2.6. Recall that an adelic vector bundle on SpecK is defined as any data of
the form E = (E, (‖.‖v)v∈MK

), where E is a vector space of finite rank over
K, and for any v ∈ MK , ‖.‖v is a norm on E ⊗K Kv, which is ultrametric
if v is non-archimedean. We also require that, for all but a finite number of
places v ∈ MK , the norm ‖.‖v arises from a common integral model of E, or
equivalently, there exists a basis (ei)

r
i=1 of E over K such that, for all but a

finite number of v ∈MK , one has

∀ (λ1, . . . , λr) ∈ Kr
v , ‖λ1e1 + · · ·+ λrer‖v = max(|λ1|v, . . . , |λr|v).

We refer the readers to [18, §3] for more details. If D = (D, (gv)v∈MK
) is an

adelic R-Cartier divisor on X, then

H0(D) := (H0(D), (‖.‖gv)v∈MK
)

is an adelic vector bundle on SpecK (see [14, Corollary 5.14]).
A variant of the arithmetic volume function has been introduced by Yuan

[34] (see also [29, §4.3]), where he replaces log #Ĥ0(nD) in the formula (9)
by the Euler-Poincaré characteristic of H0(nD):

(10) v̂olχ(D) := lim sup
n→+∞

χ(H0(nD))

nd+1/(d+ 1)!
.

This function is called the χ-volume function.
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2.2.7. We assume that the K-scheme X admits at least a regular rational
point so that the theory of Newton-Okounkov bodies can apply (see §2.1.5).
Let D be an adelic R-Cartier divisor on X such that D is big. Then the family

V•(D) := (H0(nD))n∈N

forms an adelically normed graded linear series in the sense of [9]. By using the
filtration by minima, we have constructed a concave and upper semicontinuous
function GD on ∆(D) such that

(11) (d+ 1)! v̂ol(D) =

∫
∆(D)

max(GD(x), 0) dx,

and

(12) (d+ 1)! v̂olχ(D) =

∫
∆(D)

GD(x) dx.

This function is positively homogeneous in the following sense: for any D ∈
B̂igR(X) and any λ > 0 one has

∀x ∈ ∆(D), GλD(λx) = λGD(x).

Moreover, if D1 and D2 are two adelic R-Cartier divisors on X, then for any
(x, y) ∈ ∆(D1)×∆(D2) one has

GD1+D2
(x+ y) > GD1

(x) +GD2
(y).

We refer the readers to [9, §2.4] for more details, see also [14, §3.6 and §6.2]
for the super-additivity of the filtration by minima.

2.2.8. The arithmetic volume function is differentiable on the cone of big adelic
R-Cartier divisors. More precisely, if D and E are adelic R-Cartier divisors on
X, where D is big, then the limit

〈Dd〉 · E := lim
t→0

v̂ol(D + tE)− v̂ol(D)

(d+ 1)t

exists in R, and defines a linear form on E ∈ D̂iv(X). This result has firstly
been proved in the case where D and E are Cartier divisors (cf. [13]), and then
be extended to the general case of adelic R-Cartier divisors by Ikoma [22] (the
normality hypothesis on the arithmetic variety in the differentiability theorem
in loc. cit. is not necessary since the arithmetic volume function is invariant
by pull-back to a birational modification).
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2.2.9. Let D = (D, (gv)v∈MK
) be an adelic R-Cartier divisor on X. We say

that D is relatively nef if the R-Cartier divisor D is nef and all v-Green
functions gv are plurisubharmonic. In the case where v is non-archimedean,
the plurisubharmonicity of gv signifies that the Green function gv is a uniform
limit of v-Green functions of D arising from relatively nef integral models. We
refer the readers to [29, §§2.1-2.2, §4.4] for more details.

The arithmetic intersection number has been defined in [29, §4.5] for rela-
tively nef adelic R-Cartier divisors. It is a (d + 1)-linear form on the cone of
such adelic R-Cartier divisors. If D0, . . . , Dd is a family of relatively nef adelic
R-Cartier divisors, we use the expression D0 · · ·Dd to denote the intersection
number of the adelic R-Cartier divisors D0, . . . , Dd.

If D is a relatively nef adelic R-Cartier divisor, one can identify the arith-
metic self-intersection numberD(d+1) with the χ-volume function. This follows
from the arithmetic Hilbert-Samuel theorem [1, 31] and the continuity of the
arithmetic intersection number on the relatively nef cone. In particular, we
deduce from (12) that, if D is an adelic R-Cartier divisor which is relatively
nef, then one has

(13) (d+ 1)! (D
d+1

) =

∫
∆(D)

GD(x) dx.

2.2.10. Given an adelic R-Cartier divisor D on X, one can define a height
function hD on the set of all closed points of X. In particular, when x is a
closed point ofX which does not lie in the support ofD, the height hD(x) is the
Arakelov degree of the restriction of D on x. The adelic R-Cartier divisor D is
said to be nef if it is relatively nef and if the height function hD is non-negative
(see [29, §4.4]). If D is nef, one has (see [22, Proposition 3.11])

(14) 〈Dd〉 ·D = (D
(d+1)

) = v̂ol(D).

The comparison between (11) and (13) shows that, ifD is nef, then the function
GD is non-negative almost everywhere on ∆(D), and hence is non-negative
since it is upper semicontinuous.

3. Relative isoperimetric inequality

The purpose of this section is to establish an integral form of isoperimet-
ric inequality and apply it to the study of the arithmetic volume function.
Throughout the section, we fix an integer d > 1.

3.1. Integral isoperimetric inequality. — Let ∆0 and ∆1 be two convex
bodies in Rd. For any ε ∈ [0, 1], let Sε be the Minkowski sum

∆0 + ε∆1 := {x+ εy : x ∈ ∆0, y ∈ ∆1}.
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It is also a convex body in Rd.

Theorem 3.1. — Let G0 and G1 be two Borel functions on ∆1 and ∆2 re-
spectively. We assume that they are integrable with respect to the Lebesgue
measure. Suppose given, for any ε ∈ [0, 1], a non-negative function Hε on Sε
such that

(15) ∀ (x, y) ∈ ∆0 ×∆1, Hε(x+ εy) > G0(x) + εG1(y).

Then the following inequality holds

lim inf
ε→0+

∫
Sε
Hε(z) dz −

∫
∆0
G0(x) dx

ε

> d
(vol(∆1)

vol(∆0)

)1/d
∫

∆0

G0(x) dx+
vol(∆0)

vol(∆1)

∫
∆1

G1(y) dy.

(16)

Proof. — The key point of the proof is to choose a suitable map f : ∆0 → ∆1

as an auxiliary tool to relate ∆0, ∆1 and Sε. We consider the Knothe map
f : ∆0 → ∆1 which is a homeomorphism and is of class C1 on ∆◦0, whose
Jacobian Df is upper triangle with a positive diagonal everywhere on ∆◦0, and
such that det(Df) is constant (and which is equal to vol(∆1)/ vol(∆0)). We
refer the readers to [25] and [3, §2.2.1] for details on the construction of this
map. We just point out that we can write the map f in the form

f(x1, . . . , xd) = (f1(x1), f2(x1, x2), . . . , fd(x1, . . . , xd)),

where for each k ∈ {1, . . . , d}, fk is a function from Rk to R which is increasing
in the variable xk when other coordinates (x1, . . . , xk−1) are fixed. Moreover,
this monotonicity is strict on the interval of all points xk ∈ R such that
(x1, . . . , xk) lies in the projection of ∆0 by taking the first k coordinates.

For any ε ∈ [0, 1], let Fε := Id +εf : ∆0 → Sε which sends x ∈ ∆0 to
x+ εf(x). Note that the map Fε has the same monotonicity property as f . In
particular, the map Fε is injective. Therefore one has∫

Sε

Hε(z) dz >
∫
Fε(∆0)

Hε(z) dz =

∫
∆◦

0

Hε(Fε(x))|det(DFε)(x)|dx.

Note that one has DFε = Id +εDf on ∆◦0. Since Df is upper triangle with a
positive diagonal, one has

| det(DFε)| = det(Id +εDf) >
(

1 + ε
(vol(∆1)

vol(∆0)

)1/d)d
.

Hence we obtain∫
Sε

Hε(z) dz >
(

1 + ε
(vol(∆1)

vol(∆0)

)1/d)d ∫
∆0

Hε(Fε(x)) dx.
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Now by the super-additivity assumption (15), one has

Hε(Fε(x)) = Hε(x+ εf(x)) > G0(x) + εG1(f(x)).

Therefore∫
Sε

Hε(z) dz >
(

1 + ε
(vol(∆1)

vol(∆0)

)1/d)d(∫
∆0

G0(x) dx+ ε

∫
∆0

G1(f(x)) dx
)
.

Since f is a homeomorphism between ∆0 and ∆1, and det(Df) =
vol(∆1)/ vol(∆0) is constant, one has∫

∆0

G1(f(x)) dx =
vol(∆0)

vol(∆1)

∫
∆1

G1(y) dy.

Combining with the above inequality, we obtain that

1

ε

(∫
Sε

Hε(z) dz −
∫

∆0

G0(x) dx
)

is bounded from below by

1

ε

[(
vol(∆0)

1
d +ε vol(∆1)

1
d
)d(∫∆0

G0(x) dx

vol(∆0)
+ε

∫
∆1
G1(y) dy

vol(∆1)

)
−
∫

∆0

G0(x) dx

]
.

By taking the inf limit when ε tends to 0+, we obtain the lower bound as
announced in the theorem.

Remark 3.2. — The inequality (16) can be considered as a natural gener-
alization of the classical isoperimetric inequality. In fact, if we take G0 and
G1 to be the constant function of value 1 on ∆0 and ∆1 respectively, and let
Hε(z) = 1 + ε for any ε ∈ [0, 1] and any z ∈ Sε. Then these functions verify
the conditions of Theorem 3.1. Moreover, one has∫

Sε

Hε(z) dz = (1 + ε) vol(Sε).

Hence

lim
ε→0+

∫
Sε
Hε(z) dz −

∫
∆0
G0(x) dx

ε
= d vold−1,1(∆0,∆1) + vol(∆0),

where vold−1,1(∆0,∆1) is the mixed volume of index (d− 1, 1) of ∆0 and ∆1.
Therefore the inequality (16) leads to

vold−1,1(∆0,∆1) > vol(∆0)(d−1)/d · vol(∆1)1/d,

which is the isoperimetric inequality in convex geometry.
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3.2. Strong arithmetic isoperimetric inequality. — Let K be a number
field and X be an geometrically integral projective scheme of Krull dimension
d > 1 over SpecK. The purpose of this subsection is to establish the following
theorem.

Theorem 3.3. — Let D0 and D1 be two adelic R-Cartier divisors on X which
are nef and such that D0 and D1 are big. Then one has

(17) (d+ 1)D
d
0 ·D1 > d

(vol(D1)

vol(D0)

)1/d
v̂ol(D0) +

(vol(D0)

vol(D1)

)
v̂ol(D1)

Proof. — The two sides of the inequality are invariant by any birational mod-
ification. Hence we may assume without loss of generality that the scheme X
contains at least a regular rational point and hence can apply the method of
Newton-Okounkov bodies and concave transform resumed in §2.1.5 and §2.2.7.
For each ε ∈ [0, 1], let Eε be the adelic R-Cartier divisor D0 + εD1 and ∆(Eε)
be the Newton-Okounkov body of Eε. Recall that one has

∆(Eε) ⊃ Sε := ∆(D0) + ε∆(D1).

One can construct, for any ε ∈ [0, 1] a non-negative concave function GEε
on

∆(Eε), such that (see §§2.2.7 – 2.2.10)

(d+ 1)! v̂ol(Eε) =

∫
∆(Eε)

GEε
(z) dz >

∫
Sε

GEε
(z) dz.

Moreover, for any x ∈ ∆(D0) and any y ∈ ∆(D1) one has

GEε
(x+ εy) > GD0

(x) + εGD1
(y).

Therefore Theorem 3.1 leads to

lim
ε→0+

v̂ol(Eε)− v̂ol(D0)

ε
= (d+ 1)(D

d
0 ·D1)

> d
(vol(D1)

vol(D0)

)1/d
v̂ol(D0) +

vol(D0)

vol(D1)
v̂ol(D1),

as claimed in the theorem.

By the inequality between arithmetical and geometric means, we deduce
from Theorem 3.3 an arithmetic isoperimetric inequality in a similar form to
the classical one.

Corollary 3.4. — With the notation and the hypotheses of the previous the-
orem, one has

(18) (D
d
0 ·D1) > v̂ol(D0)d/(d+1) · v̂ol(D1)1/(d+1).
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The comparison between the inequalities (17) and (18) shows that, Theorem
3.3 can be considered as a refinement of the isoperimetric inequality where
we take into account the information of X relatively to the arithmetic curve
SpecK. The same method can also be applied to the functional setting, which
leads to the following relative form of the isoperimetric inequality in algebraic
geometry. We refer the readers to [15, §8] for the construction of the concave
transform in the function field setting.

Theorem 3.5. — Let k be a field, C be a regular projective curve over Spec k,
and π : X → C be a flat and projective k-morphism of relative dimension d > 1.
If L and M are two nef and big line bundles on X, then one has

(d+ 1)(c1(L)d · c1(M)) > d
(c1(Mη)

d

c1(Lη)d

)1/d
c1(L)d+1 +

( c1(Lη)
d

c1(Mη)d

)
c1(M)d+1,

where η is the generic point of C, and Lη and Mη are respectively the restric-
tions of L and M on the generic fiber of π.

4. Relative Brunn-Minkowski inequality

The purpose of this section is to establish the following relative form of
Brunn-Minkowski inequality in the arithmetic geometry setting.

Theorem 4.1. — Let K be a number field and X be a geometrically integral
projective scheme over SpecK. If D1, . . . , Dn are nef adelic R-Cartier divisors
on X such that D1, . . . , Dn are big, then one has

(19)
v̂ol(D1 + · · ·+Dn)

vol(D1 + · · ·+Dn)
> ϕ(D1, . . . , Dn)−1

n∑
i=1

v̂ol(Di)

vol(Di)
,

where

(20) ϕ(D1, . . . , Dn) := d+ 1− dvol(D1)1/d + · · ·+ vol(Dn)1/d

vol(D1 + · · ·+Dn)1/d
.

Proof. — Since D1, . . . , Dn are nef, one has

v̂ol(D1 + · · ·+Dn) = (D1 + · · ·+Dn)d+1 =

n∑
i=1

(D1 + · · ·+Dn)d ·Di.

By Theorem 3.3, one has

(d+ 1)
(
(D1 + · · ·+Dn) ·Di

)
> d
( vol(Di)

vol(D1 + · · ·+Dn)

)1/d
v̂ol(D1 + · · ·+Dn)

+
(vol(D1 + · · ·+Dn)

vol(Di)

)
v̂ol(Di).
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Therefore we obtain

(d+ 1)v̂ol(D1 + · · ·+Dn) > d
vol(D1)1/d + · · ·+ vol(Dn)1/d

vol(D1 + · · ·+Dn)1/d
v̂ol(D1 + · · ·+Dn)

+ vol(D1 + · · ·+Dn)
n∑
i=1

v̂ol(Di)

vol(Di)
,

which leads to (19).

By using the same argument, we deduce from Theorem 3.5 the following
relative Brunn-Minkowski inequality in the algebraic geometry setting.

Theorem 4.2. — Let k be a field, C be a regular projective curve over Spec k,
and π : X → C be a flat and projective k-morphism of relative dimension d > 1.
If L1, . . . , Ln is a family of nef and big line bundles on X, then one has

vol(L1 ⊗ · · · ⊗ Ln)

vol(L1,η ⊗ · · · ⊗ Ln,η)
> ϕ(L1,η, . . . , Ln,η)

−1
n∑
i=1

vol(Li)

vol(Li,η)
,

where η is the generic point of C, Li,η is the restrictions of Li on the generic
fiber of π, and

ϕ(L1,η, . . . , Ln,η) := d+ 1− dvol(L1,η)
1/d + · · ·+ vol(Ln,η)

1/d

vol(L1,η ⊗ · · · ⊗ Ln,η)1/d
.

Remark 4.3. — The infinitesimal argument in Theorem 3.3 is a key step for
the strong Brunn-Minkowski inequality (19). In fact, if we apply directly the
map of Knothe as in the proof of Theorem 3.1 with ε = 1, we obtain that, for
nef adelic R-Cartier divisors D1 and D2 such that D1 and D2 are big, one has

v̂ol(D1 +D2) >
(

1 +
(vol(D2)

vol(D1)

)1/d)d(
v̂ol(D1) +

vol(D1)

vol(D2)
v̂ol(D2)

)
,

which leads to

v̂ol(D1 +D2)

vol(D1 +D2)
>

(vol(D1)1/d + vol(D2)1/d)d

vol(D1 +D2)

( v̂ol(D1)

vol(D1)
+

v̂ol(D2)

vol(D2)

)
.

However, one has

ϕ(D1, D2) 6
vol(D1 +D2)

(vol(D1)1/d + vol(D2)1/d)d
,

and the inequality is in general strict.
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