ON ISOPERIMETRIC INEQUALITY IN ARAKELOV GEOMETRY

deduce a strong Brunn-Minkowski inequality in the Arakelov geometry setting.

Introduction

The isoperimetric inequality in Euclidean geometry asserts that, for any convex body ∆ in R d , one has [START_REF] Abbes | Théorème de Hilbert-Samuel "arithmétique[END_REF] vol(∂∆)

d d d vol(B) vol(∆) d-1 ,
where B denotes the closed unit ball in R d . From the point of view of convex geometry, the isoperimetric inequality can be deduced from the Brunn-Minkowski inequality: for two Borel subsets A 1 and A 2 in R d , one has

(2) vol(A 0 + A 1 ) 1/d vol(A 0 ) 1/d + vol(A 1 ) 1/d , where

A 0 + A 1 := {x + y | x ∈ A 0 , y ∈ A 1 }
is the Minkowski sum of A 0 and A 1 . The proof consists of taking A 0 = ∆ and A 1 = εB in (2) with ε > 0 and let ε tend to 0. We refer the readers to [START_REF] Osserman | The isoperimetric inequality[END_REF] for a presentation on the history of the isoperimetric inequality and to the page 1190 of loc. cit. for more details on how to deduce (1) from [START_REF] Alesker | A remarkable measure preserving diffeomorphism between two convex bodies in R n[END_REF]. The same method actually leads to a lower bound for the mixed volume of convex bodies:

(3)

vol d-1,1 (∆ 0 , ∆ 1 ) d vol(∆ 0 ) d-1 • vol(∆ 1 ),
where ∆ 0 and ∆ 1 are two convex bodies in R d and vol d-1,1 (∆ 0 , ∆ 1 ) is the mixed volume of index (d -1, 1) of them, which is equal to lim ε→0+ vol(∆ 0 + ε∆ 1 ) -vol(∆ 0 ) εd .

We refer the readers to the work of Minkowski [START_REF] Minkowski | Theorie der konvexen Körpern, insbesonder der Begründung ihres Oberflächenbegriffs[END_REF] for the notion of mixed volumes in convex geometry. See [8, §7.29] for more details. Note that (3) is one of the inequalities of Alexandrov-Fenchel type for mixed volumes, which is actually equivalent to Brunn-Minkowski inequality (see for example [32, §7.2] for a proof). Note that the above inequalities in convex geometry are similar to some inequalities of intersection numbers in algebraic geometry. By using toric varieties, Teissier [START_REF] Teissier | Du théorème de l'index de Hodge aux inégalités isopérimétriques[END_REF] and Khovanskii (see [12, §4.27]) have given proofs of Alexandrov-Fenchel inequality by using the Hodge index theorem.

In the arithmetic geometry setting, Bertrand [6, §1.2] has established a lower bound for the height function on an arithmetic variety, and interpreted it as an arithmetic analogue of the isoperimetric inequality. In [START_REF] Chen | Differentiability of the arithmetic volume function[END_REF], the author has proposed the notion of positive intersection product in Arakelov geometry and proved an analogue of the isoperimetric inequality in the form of (3), by using the arithmetic Brunn-Minkowski inequality established by Yuan [START_REF]On volumes of arithmetic line bundles[END_REF].

The purpose of this article is to propose a refinement of the arithmetic isoperimetric inequality and Brunn-Minkowski inequality as follows.

Theorem 1.1. -Let K be a number field and X be a geometrically integral projective scheme of dimension d 1 over Spec K. If D 0 and D 1 are adelic arithmetic R-Cartier divisors on X which are nef and big, then one has Moreover, if (D i ) n i=1 is a family of nef and big adelic arithmetic R-Cartier divisors, then one has [START_REF]Berkovich -Spectral theory and analytic geometry over non-Archimedean fields[END_REF] vol(D

1 + • • • + D n ) vol(D 1 + • • • + D n ) ϕ(D 1 , . . . , D n ) -1 n i=1 vol(D i ) vol(D i ) ,
where

(6) ϕ(D 1 , . . . , D n ) := d + 1 -d vol(D 1 ) 1/d + • • • + vol(D n ) 1/d vol(D 1 + • • • + D n ) 1/d .
Compared to the direct arithmetic analogue of Brunn-Minkowski inequality (see [START_REF]On volumes of arithmetic line bundles[END_REF]Theorem B]), the inequality [START_REF] Gromov | Convex sets and Kähler manifolds[END_REF] distinguishes the contribution of the geometric structure of the R-Cartier divisors D 1 , . . . , D n . In the above theorem, vol( . ) and vol(•) denote respectively the volume function of R-Cartier divisors and the arithmetic volume function of adelic arithmetic R-Cartier divisors (see [START_REF]Adelic divisors on arithmetic varieties[END_REF]). Recall that for an adelic arithmetic R-Cartier divisor D on X one has

vol(D) := lim n→+∞ dim K (H 0 (X, nD)) n d /d! and vol(D) := lim n→+∞ log # H 0 (X, nD) n d+1 /(d + 1)! , where H 0 (X, nD) = {s ∈ K(X) × : div(s) + D 0} ∪ {0}, and 
H 0 (X, nD) = {s ∈ H 0 (X, nD) : s sup 1}
If D is a nef adelic arithmetic R-Cartier divisor, then vol(D) and vol(D) can be expressed as (arithmetic) intersection numbers:

vol(D) = (D d ), vol(D) = (D d+1 ).
In the particular case where d = 2 (namely X is an arithmetic surface), the inequality (4) becomes a strong form of the arithmetic Hodge index inequality

2(D 0 • D 1 ) deg(D 1 ) deg(D 0 ) vol(D 0 ) + deg(D 0 ) deg(D 1 ) vol(D 1 ),
established in [START_REF]Inégalité d'indice de Hodge en géométrie et arithmétique : une approche probabiliste[END_REF]Theorem 6.14], generalizing previous works of Faltings [START_REF] Faltings | Calculus on arithmetic surfaces[END_REF] and Hriljac [START_REF] Hriljac | Heights and Arakelov's intersection theory[END_REF]. Similarly to [START_REF]Inégalité d'indice de Hodge en géométrie et arithmétique : une approche probabiliste[END_REF], we also use the interpretation of the arithmetic volume of a big adelic arithmetic R-Cartier divisor D as the integral of a concave function on the Okounkov body ∆(D) of the R-Cartier divisor D, which is a convex body in R d . However the proof of Theorem 1.1 follows a strategy which is different from the way indicated in [START_REF]Inégalité d'indice de Hodge en géométrie et arithmétique : une approche probabiliste[END_REF], where the author has introduced for any couple 

(∆ 1 , ∆ 2 ) of convex bodies in R d a number ρ(∆ 1 , ∆ 2 ) (called
vol(D 1 + D 2 ) vol(∆(D 1 ) + ∆(D 2 )) ρ(∆(D 1 ), ∆(D 2 )) -1 vol(D 1 ) vol(∆(D 1 )) + vol(D 2 ) vol(∆(D 2 ))
for any couple (D 1 , D 2 ) of big and nef adelic arithmetic R-Cartier divisors on X, and been suggested that the estimation of the correlation index ρ(∆(D 1 ), ∆(D 2 )) should lead to more concrete inequalities of the form of [START_REF] Gromov | Convex sets and Kähler manifolds[END_REF]. However, the main point in this approach is to construct a suitable correlation structure between two random variables which are uniformly distributed in ∆(D 1 ) and ∆(D 2 ) such that the sum of the random variables is as uniform as possible in the Minkowski sum ∆(D 1 ) + ∆(D 2 ). We can for exemple deduce from a work of Bobkov and Madiman [START_REF] Bobkov | Reverse Brunn-Minkowski and reverse entropy power inequalities for convex measures[END_REF] the following uniform upper bound (where we choose independent random variables) (see [START_REF]Inégalité d'indice de Hodge en géométrie et arithmétique : une approche probabiliste[END_REF]Proposition 2.9])

ρ(∆(D 1 ), ∆(D 2 )) 2d d .
This upper bound is larger than ϕ(D 1 , D 2 ), which is clearly bounded from above by d + 1 by the classical Brunn-Minkowski inequality. The strategy of this article is inspired by the works of Knothe [START_REF] Knothe | Contributions to the theory of convex bodies[END_REF] and Brenier [START_REF] Brenier | Décomposition polaire et réarrangement monotone des champs de vecteurs[END_REF][START_REF]Polar factorization and monotone rearrangement of vector-valued functions[END_REF] on measure preserving diffeomorphism between two convex bodies (see also the works of Gromov [START_REF] Gromov | Convex sets and Kähler manifolds[END_REF], Alesker, Dar and Milman [START_REF] Alesker | A remarkable measure preserving diffeomorphism between two convex bodies in R n[END_REF] for more developments of this method and for applications in Alexandrov-Fenchel type inequalities in the convex geometry setting, and the memoire of Barthe [START_REF] Barthe | Autour de l'inégalité de Brunn-Minkowski[END_REF] for diverse applications of this method in functional inequalities). Given a couple (∆ 0 , ∆ 1 ) of convex bodies in R d , one can construct a C 1 diffeomorphism f : ∆ 0 → ∆ 1 which transports the uniform probability measure of ∆ 0 to that of ∆ 1 , namely the determinant of the Jacobian J f is constant on the interior of ∆ 0 . Such diffeomorphism is not unique: in the construction of Knothe, the Jacobian J f is upper triangle, while in the construction of Brenier, J f is symmetric and positive definite.

If Z 0 is a random variable which is uniformly distributed in ∆ 0 , then Z 1 := f (Z 0 ) is uniformly distributed in ∆ 1 . One may expect that the random variable Z 0 + Z 1 follows a probability law which is close to the uniform probability measure on ∆ 0 + ∆ 1 . In fact, the random variable Z 0 + Z 1 can also be expressed as Z 0 + f (Z 0 ). Its probability law identifies with the direct image of the uniform probability measure on ∆ 0 by the map Id +f , which admits Id +J f as its Jacobian, the determinant of which can be estimated in terms of the determinant of J f . In the case where Id +f is injective (for example the Knothe map), this lower bound leads to the following upper bound for the correlation index [START_REF] Bobkov | Reverse Brunn-Minkowski and reverse entropy power inequalities for convex measures[END_REF] ρ(∆ 0 , ∆ 1 ) vol

(∆ 0 + ∆ 1 ) (vol(∆ 0 ) 1/d + vol(∆ 1 ) 1/d ) d .
By this method we obtain a weaker version of the inequality [START_REF] Gromov | Convex sets and Kähler manifolds[END_REF] in the case where n = 2 by replacing ϕ(D 0 , D 1 ) -1 by

(vol(D 0 ) 1/d + vol(D 1 ) 1/d ) d vol(D 0 + D 1 ) .
This function is in general not bounded when D 0 and D 1 vary.

The main idea of the article is to use an infinitesimal variant of the above argument. Instead of considering the map Id +f : ∆ 0 → ∆ 0 + ∆ 1 , we consider Id +εf : ∆ 0 + ε∆ 1 for ε > 0 sufficiently small, and use it to establish an isoperimetric inequality in an integral form (see Theorem 3.1). By this method we obtain the strong form of the arithmetic isoperimetric inequality as in (4) and then deduce the arithmetic relative Brunn-Minkowski inequality [START_REF]Berkovich -Spectral theory and analytic geometry over non-Archimedean fields[END_REF]. Note that this does not signify that we improve the inequality (7) by replacing the right hand side of the inequality by

d + 1 -d vol(∆ 0 ) d/1 + vol(∆ 1 ) 1/d vol(∆ 0 + ∆ 1 ) 1/d .
For example, it remains an open question to determine if the correlation index ρ(∆ 0 , ∆ 1 ) is always bounded from above by d + 1.

Finally, I would like to cite several refinements of the Brunn-Minkowski inequality in convex geometry, where the results are also expressed in a relative form similarly to (5), either with respect to an orthogonal projection in a hyperplane [START_REF] Hernández Cifre | Refinements of the Brunn-Minkowski inequality[END_REF] or in terms of a comparison between the volume and the mixed volume [START_REF] Fradelizi | Some inequalities about mixed volumes[END_REF] in the style of Bergstrom's inequality [START_REF] Bergström | A triangle-inequality for matrices[END_REF]. It is not excluded that the method presented in this article will bring new ideas to the researches in these directions.

The article is organized as follows. In the second section, we recall the notation and basic facts about adelic arithmetic R-Cartier divisors. In the third section, we prove a relative version of isoperimetric inequality in convex geometry and deduce the arithmetic isoperimetric inequality (4). In the fourth and last section, we proved the relative arithmetic Brunn-Minkowski inequality (5).

Reminder on adelic divisors

Throughout the article, K denotes a field. Let X be a geometrically integral projective scheme over K and d be its Krull dimension.

2.1. R-Cartier divisors. -In this subsection, we recall some notions and facts about R-Cartier divisors on a projective variety.

2.1.1. Denote by Div(X) the group of all Cartier divisors on X and by Div + (X) the sub-semigroup of Div(X) of all effective divisors. Let Div(X) R be the vector space Div(X) ⊗ Z R, the elements of which are called R-Cartier divisors. An R-Cartier divisor D is said to be effective if it belongs to the positive cone generated by effective Cartier divisors on X. By abuse of notation, we still use the expression D 0 to denote the effectivity of an R-Cartier divisor D.

2.1.2.

Let D be an R-Cartier divisor on X. We denote by H 0 (D) the set

{f ∈ K(X) × | (f ) + D 0} ∪ {0},
where K(X) is the field of all rational functions on X, and (f ) denotes the principal divisor associated to the rational function f . This is a K-vector subspace of finite rank of K(X). We denote by h 0 (D) its rank over K. Recall that the volume of D is defined as

vol(D) := lim sup n→+∞ h 0 (nD) n d /d! .
If vol(D) > 0, then the R-Cartier divisor D is said to be big. The big R-Cartier divisors form an open cone in Div(X) R , denoted by Big R (X).

2.1.3.

A Cartier divisor D is said to be ample if the associated invertible sheaf O(D) is ample. An R-Cartier divisor is said to be ample if it belongs to the open cone Amp R (X) in Div(X) R generated by ample Cartier divisors. The closure of the ample cone is denote by Nef R (X). The R-Cartier divisors which belong to Nef R (X) are said to be nef.

2.1.4.

Recall that the function of self-intersection number D → (D d ) is a homogeneous polynomial of degree d on the vector space Div(X) R . Its polar form

(D 1 , . . . , D d ) ∈ Div(X) d R -→ (D 1 • • • D d )
is the function of intersection number. Note that the volume of a nef R-Cartier divisor D coincides with the self-intersection number of D. In particular, the volume function is a homogeneous polynomial of degree d on the nef cone.

2.1.5. Let D be an R-Cartier divisor on X. We call linear system of D any K-vector subspace of H 0 (D). We call graded linear series of D any N-graded

sub-K-algebra of V • (D) := n∈N H 0 (nD). If V • = n∈N V n is a graded linear series of D, its volume is defined as vol(V • ) := lim sup n→∞ dim K (V n ) n d /d! .
Therefore the volume of the total graded linear series V • (D) is equal to the volume of the R-Cartier divisor D. Following [26, Definition 2.9], we say that a graded linear series V • of an R-Cartier divisor D contains an ample R-Cartier divisor if there exists an ample R-Cartier divisor A such that V • (A) ⊂ V • (see also [START_REF]Inégalité d'indice de Hodge en géométrie et arithmétique : une approche probabiliste[END_REF]Remark 3.2] for some equivalent forms of it). This condition implies that the volume of V • is > 0.

We assume that X contains at least a regular rational point. By the works of Lazarsfeld and Mustaţǎ [START_REF] Lazarsfeld | Convex bodies associated to linear series[END_REF] and Kaveh and Khovanskii [START_REF] Kaveh | Algebraic equations and convex bodies[END_REF][START_REF] Kaveh | Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory[END_REF], to each graded linear series V • of some R-Cartier divisor, which contains an ample R-Cartier divisor, we can attach a convex body ∆(V • ) (called the Newton-Okounkov body of V • ), upon the choice (which we will fix throughout the article) of a regular rational point of X and a regular sequence in the local ring of the scheme X on this point, such that

vol(∆(V • )) = d! vol(V • ),
where vol(∆(V • )) denotes the Lebesgue measure of the convex body ∆(V • ). We refer the readers to [26, Theorem 2.13] for more details.

2.1.6. Let V • and V • be two graded linear series of two R-Cartier divisors D and D respectively. Let W • be a graded linear series of D + D such that

∀ n ∈ N, {f g | f ∈ V n , g ∈ V n } ⊂ W n .
Assume that the graded linear series V • and V • contain ample R-Cartier divisors, then also is the graded linear series W • . Moreover, one has

∆(V • ) + ∆(V • ) ⊂ ∆(W • ).
Therefore the Brunn-Minkowski theorem (in classical convex geometry setting) leads to [START_REF] Bonnesen | Theorie der konvexen Körper[END_REF] vol

(W • ) 1/d vol(V • ) 1/d + vol(V • ) 1/d . 2.2. Adelic R-Cartier divisors.
-In this subsection, we recall some notions and facts about adelic R-Cartier divisors. The references are [START_REF] Gaudron | Pentes de fibrés vectoriels adéliques sur un corps globale[END_REF][START_REF]Adelic divisors on arithmetic varieties[END_REF].

We assume that K is a number field. Let M K be the set of all places of K. For any place v ∈ M K , let | . | v be the absolute value on K in the equivalence class v which extends either the usual absolute value on Q or some p-adic absolute value (such that |p| v = p -1 ), where p is a prime number. Denote by K v the completion of the field K with respect to the topology corresponding to the place v, on which the absolute value | . | v extends in a unique way.

2.2.1. Let X be a geometrically integral K-scheme. For any v ∈ M K , let X an v be the Berkovich analytic space associated to the K v -scheme

X v := X ⊗ K K v .
As a set, it can be realized as the colimit of the functor from the category of all valued extensions of K v (namely fields extensions of K v equipped with absolute values extending | . | v ) to that of sets, which sends any valued extension

K v /K v to the set of all K v -points of X v valued in K v .
We denote by j v : X an v → X v the map which sends any element x ∈ X an v to its underlying point in X v . The most coarse topology on X an v which makes the map j v continuous is called the Zariski topology on X an v . Berkovich [START_REF]Berkovich -Spectral theory and analytic geometry over non-Archimedean fields[END_REF] defines another topology on X an v which is finer than the Zariski topology. If U is a Zariski open subset of X v and f is a regular function on U , then for each point x ∈ U an := j -1 v (U ), the regular function f defines by reduction an element f (x) in the residue field of j v (x). Note that, by the construction of the Berkovich analytique space X an v , this residue field is equipped with an absolute value (depending on x) which extends | . | v . We denote by |f | v (x) the absolute value of f (x). Thus we obtain a real-valued function |f | v on j -1 v (U ). The Berkovich topology is then defined as the most coarse topology which makes continuous the map j v and all functions of the form |f | v (where f is a regular function on some Zariski open subset of X v ). The set X an v equipped with the Berkovich topology is separated and compact. 2.2.2. Let v be a place of K. We denote by C 0 X an v the sheaf of continuous realvalued functions on the topological space X an v (equipped with the Berkovich topology). For any Berkovich open subset V of X an v , denote by C 0 (V ) the set of all sections of C 0 X an v over V . It is a vector space over R. Let C 0 (X an v ) be the colimit of the vector spaces C 0 (U an ), where U runs over the (filtered) ordered set of all non-empty Zariski open subsets of X v . Note that any nonempty Zariski open subset of X an v is dense in X an v for the Berkovich topology (see [START_REF]Berkovich -Spectral theory and analytic geometry over non-Archimedean fields[END_REF]Proposition 3.4.5]). Therefore, for any non-empty Zariski open subset U of X v , the natural map C 0 (U an ) → C 0 (X an v ) is injective. If an element in C 0 (X an v ) belongs to the image of this map, we say that it extends to a continuous function on U an .

If f is a rational function on X an v , then it identifies with a regular function on some non-empty Zariski open subset U of X v . Therefore the function |f | v determines an element in C 0 (X an v ). If f is non-zero, by possibly shrinking the Zariski open set U , we may assume that f (x) = 0 for any x ∈ U . Therefore the continuous function log |f | v on U an also determines an element C 0 (X an v ), which we still denote by log |f | v by abuse of notation. Thus we obtain an additive map from K(X v ) × (where K(X v ) denotes the field of all rational functions on X v ) to C 0 (X v ), which induces an R-linear homomorphism from

K(X v ) × R := K(X v ) × ⊗ Z R to C 0 (X an v ). 2.2.3.
Let D be an R-Cartier divisor on X. For any v ∈ M K , it induces by extension of fields an R-Cartier divisor D v on X v . We say that an element

f ∈ K(X v ) × R defines D v locally on a Zariski open subset U of X v if one can write D v as λ 1 D 1 + • • • + λ n D n ,
where D 1 , . . . , D n are Cartier divisors on X v , and there exist elements

f 1 , . . . , f n of K(X v ) × such that f i defines D i on U and that f = f λ 1 1 • • • f λn n . We call v-Green function of D any element g v ∈ C 0 (X an v ) such that, for any element f ∈ K(X v ) ×
R which defines D v locally on a Zariski open subset U , the element g v + log |f | v extends to a continuous function on U an . Note that for each element s ∈ H 0 (D), the element |s| v e -gv ∈ C 0 (X v ) extends to a continuous function on X an v (see [29, Proposition 2.1.3], see also [14, Remark 4.2]). Attention, our choice of normalization for the Green function is different from that in [START_REF]Adelic divisors on arithmetic varieties[END_REF]. Moreover, the map s -→ s gv,sup := sup

x∈X an v |s| v (x)e -gv(x)
is a norm on H 0 (D), which extends naturally to a norm on H 0 (D) ⊗ K K v .

2.2.4.

In the case where v is a non-archimedean place of K, a typical example of v-Green function is that arising from an integral model. Let D be an R-Cartier divisor on X. An integral model of (X, D) consists of a projective and flat O K -scheme X such that X K = X, and an R-Cartier divisor D on X such that D| X = D, where O K denotes the ring of all algebraic integers in K.

Let x be a point in X an v and κ(x) be the residue field of j v (x). Then κ(x) is naturally equipped with an absolute value which extends the absolute value | . | v on K v . Let κ(x) • be the valuation ring of κ(x). Then the valuative criterion of properness leads to a unique morphism Spec κ(x) • → X which extends the Kmorphism Spec κ(x) → X determined by the point x. In the case where j v (x) is outside of Supp(D v ), the pull-back of D by the morphism Spec κ(x) • → X is well defined, and is proportional to the divisor on Spec κ(x) • corresponding to the closed point of Spec κ(x) • . We denote by g (X ,D),v (x) this ratio. Note that the element in C 0 (X an v ) determined by the map g (X ,D),v is a v-Green function of D (see [29, Proposition 2.1.4]), called the v-Green function associated to the integral model (X , D).

2.2.5.

By adelic R-Cartier divisor on X, we refer to any data D of the form (D, (g v ) v∈M K ), where D is an R-Cartier divisor on X and each g v is a v-Green function of D. We also require that there exists an integral model (X , D) of (X, D) such that g v = g (X ,D),v for all but a finite number of v ∈ M K .

If D 1 = (D 1 , (g 1,v ) v∈M K ) and D 2 = (D 2 , (g 2,v ) v∈M K ) are two adelic R-Cartier divisors, λ and µ are two real numbers, then

λD 1 + µD 2 := (λD 1 + µD 2 , (λg 1,v + µg 2,v ) v∈M K )
is an adelic R-Cartier divisor. Therefore the set Div R (X) of all adelic R-Cartier divisors forms a vector space over R.

If D is an adelic R-Cartier divisor on X, the set

H 0 (D) := {s ∈ H 0 (D) : ∀ v ∈ M K , s gv,sup 1}
is finite (see §2.2.3 for the definition of . gv,sup ). The arithmetic volume of D is defined as (see [START_REF] Moriwaki | Continuity of volumes on arithmetic varieties[END_REF] and [29, §4.3]) ( 9)

vol(D) := lim sup n→+∞ log # H 0 (nD) n d+1 /(d + 1)! .
The adelic R-Cartier divisor D is said to be big if vol(D) > 0. We denote by Big R (X) the cone of all big adelic R-Cartier divisors.

It is an open cone in Div R (X).

2.2.6.

Recall that an adelic vector bundle on Spec K is defined as any data of the form E = (E, ( . v ) v∈M K ), where E is a vector space of finite rank over K, and for any v ∈ M K , . v is a norm on E ⊗ K K v , which is ultrametric if v is non-archimedean. We also require that, for all but a finite number of places v ∈ M K , the norm . v arises from a common integral model of E, or equivalently, there exists a basis (e i ) r i=1 of E over K such that, for all but a finite number of v ∈ M K , one has

∀ (λ 1 , . . . , λ r ) ∈ K r v , λ 1 e 1 + • • • + λ r e r v = max(|λ 1 | v , . . . , |λ r | v ).
We refer the readers to [18, §3] for more details. If D = (D, (g v ) v∈M K ) is an adelic R-Cartier divisor on X, then

H 0 (D) := (H 0 (D), ( . gv ) v∈M K )
is an adelic vector bundle on Spec K (see [START_REF]Inégalité d'indice de Hodge en géométrie et arithmétique : une approche probabiliste[END_REF]Corollary 5.14]).

A variant of the arithmetic volume function has been introduced by Yuan [START_REF] Yuan | Big line bundles over arithmetic varieties[END_REF] (see also [29, §4.3]), where he replaces log # H 0 (nD) in the formula ( 9) by the Euler-Poincaré characteristic of H 0 (nD):

(10) vol χ (D) := lim sup n→+∞ χ(H 0 (nD)) n d+1 /(d + 1)! .
This function is called the χ-volume function.

2.2.7. We assume that the K-scheme X admits at least a regular rational point so that the theory of Newton-Okounkov bodies can apply (see §2.1.5).

Let D be an adelic R-Cartier divisor on X such that D is big. Then the family

V • (D) := (H 0 (nD)) n∈N
forms an adelically normed graded linear series in the sense of [START_REF] Boucksom | Okounkov bodies of filtered linear series[END_REF]. By using the filtration by minima, we have constructed a concave and upper semicontinuous function

G D on ∆(D) such that (11) (d + 1)! vol(D) = ∆(D)
max(G D (x), 0) dx, and ( 12)

(d + 1)! vol χ (D) = ∆(D) G D (x) dx.
This function is positively homogeneous in the following sense: for any D ∈ Big R (X) and any λ > 0 one has

∀ x ∈ ∆(D), G λD (λx) = λG D (x).
Moreover, if D 1 and D 2 are two adelic R-Cartier divisors on X, then for any (x, y) ∈ ∆(D 1 ) × ∆(D 2 ) one has

G D 1 +D 2 (x + y) G D 1 (x) + G D 2 (y).
We refer the readers to [9, §2.4] for more details, see also [14, §3.6 and §6.2] for the super-additivity of the filtration by minima.

2.2.8.

The arithmetic volume function is differentiable on the cone of big adelic R-Cartier divisors. More precisely, if D and E are adelic R-Cartier divisors on X, where D is big, then the limit

D d • E := lim t→0 vol(D + tE) -vol(D) (d + 1)t
exists in R, and defines a linear form on E ∈ Div(X). This result has firstly been proved in the case where D and E are Cartier divisors (cf. [START_REF] Chen | Differentiability of the arithmetic volume function[END_REF]), and then be extended to the general case of adelic R-Cartier divisors by Ikoma [START_REF] Ikoma | On the concavity of the arithmetic volumes[END_REF] (the normality hypothesis on the arithmetic variety in the differentiability theorem in loc. cit. is not necessary since the arithmetic volume function is invariant by pull-back to a birational modification).

2.2.9. Let D = (D, (g v ) v∈M K ) be an adelic R-Cartier divisor on X. We say that D is relatively nef if the R-Cartier divisor D is nef and all v-Green functions g v are plurisubharmonic. In the case where v is non-archimedean, the plurisubharmonicity of g v signifies that the Green function g v is a uniform limit of v-Green functions of D arising from relatively nef integral models. We refer the readers to [ If D is a relatively nef adelic R-Cartier divisor, one can identify the arithmetic self-intersection number D (d+1) with the χ-volume function. This follows from the arithmetic Hilbert-Samuel theorem [START_REF] Abbes | Théorème de Hilbert-Samuel "arithmétique[END_REF][START_REF]Métriques de sous-quotient et théorème de Hilbert-Samuel arithmétique pour les faisceaux cohérents[END_REF] and the continuity of the arithmetic intersection number on the relatively nef cone. In particular, we deduce from ( 12) that, if D is an adelic R-Cartier divisor which is relatively nef, then one has

(13) (d + 1)! (D d+1 ) = ∆(D) G D (x) dx.
2.2.10. Given an adelic R-Cartier divisor D on X, one can define a height function h D on the set of all closed points of X. In particular, when x is a closed point of X which does not lie in the support of D, the height h D (x) is the Arakelov degree of the restriction of D on x. The adelic R-Cartier divisor D is said to be nef if it is relatively nef and if the height function h D is non-negative (see [29, §4.4]). If D is nef, one has (see [START_REF] Ikoma | On the concavity of the arithmetic volumes[END_REF]Proposition 3.11])

D d • D = (D (d+1) ) = vol(D). (14) 
The comparison between [START_REF]Polar factorization and monotone rearrangement of vector-valued functions[END_REF] and [START_REF] Chen | Differentiability of the arithmetic volume function[END_REF] shows that, if D is nef, then the function G D is non-negative almost everywhere on ∆(D), and hence is non-negative since it is upper semicontinuous.

Relative isoperimetric inequality

The purpose of this section is to establish an integral form of isoperimetric inequality and apply it to the study of the arithmetic volume function. Throughout the section, we fix an integer d 1.

3.1. Integral isoperimetric inequality. -Let ∆ 0 and ∆ 1 be two convex bodies in R d . For any ε ∈ [0, 1], let S ε be the Minkowski sum

∆ 0 + ε∆ 1 := {x + εy : x ∈ ∆ 0 , y ∈ ∆ 1 }.
It is also a convex body in R d . Theorem 3.1. -Let G 0 and G 1 be two Borel functions on ∆ 1 and ∆ 2 respectively. We assume that they are integrable with respect to the Lebesgue measure. Suppose given, for any ε ∈ [0, 1], a non-negative function H ε on S ε such that

(15) ∀ (x, y) ∈ ∆ 0 × ∆ 1 , H ε (x + εy) G 0 (x) + εG 1 (y).
Then the following inequality holds

lim inf ε→0+ Sε H ε (z) dz -∆ 0 G 0 (x) dx ε d vol(∆ 1 ) vol(∆ 0 ) 1/d ∆ 0 G 0 (x) dx + vol(∆ 0 ) vol(∆ 1 ) ∆ 1 G 1 (y) dy. (16) 
Proof.

-The key point of the proof is to choose a suitable map f : ∆ 0 → ∆ 1 as an auxiliary tool to relate ∆ 0 , ∆ 1 and S ε . We consider the Knothe map f : ∆ 0 → ∆ 1 which is a homeomorphism and is of class C 1 on ∆ • 0 , whose Jacobian Df is upper triangle with a positive diagonal everywhere on ∆ • 0 , and such that det(Df ) is constant (and which is equal to vol(∆ 1 )/ vol(∆ 0 )). We refer the readers to [START_REF] Knothe | Contributions to the theory of convex bodies[END_REF] and [3, §2.2.1] for details on the construction of this map. We just point out that we can write the map f in the form f (x 1 , . . . , x d ) = (f 1 (x 1 ), f 2 (x 1 , x 2 ), . . . , f d (x 1 , . . . , x d )), where for each k ∈ {1, . . . , d}, f k is a function from R k to R which is increasing in the variable x k when other coordinates (x 1 , . . . , x k-1 ) are fixed. Moreover, this monotonicity is strict on the interval of all points x k ∈ R such that (x 1 , . . . , x k ) lies in the projection of ∆ 0 by taking the first k coordinates.

For any ε ∈ [0, 1], let F ε := Id +εf : ∆ 0 → S ε which sends x ∈ ∆ 0 to x + εf (x). Note that the map F ε has the same monotonicity property as f . In particular, the map F ε is injective. Therefore one has

Sε H ε (z) dz Fε(∆ 0 ) H ε (z) dz = ∆ • 0 H ε (F ε (x))| det(DF ε )(x)| dx.
Note that one has DF ε = Id +εDf on ∆ • 0 . Since Df is upper triangle with a positive diagonal, one has

| det(DF ε )| = det(Id +εDf ) 1 + ε vol(∆ 1 ) vol(∆ 0 ) 1/d d .
Hence we obtain

Sε H ε (z) dz 1 + ε vol(∆ 1 ) vol(∆ 0 ) 1/d d ∆ 0 H ε (F ε (x)) dx.
Now by the super-additivity assumption [START_REF]Majorations explicites des fonctions de Hilbert-Samuel géométrique et arithmétique[END_REF], one has

H ε (F ε (x)) = H ε (x + εf (x)) G 0 (x) + εG 1 (f (x)).
Therefore

Sε H ε (z) dz 1 + ε vol(∆ 1 ) vol(∆ 0 ) 1/d d ∆ 0 G 0 (x) dx + ε ∆ 0 G 1 (f (x)) dx .
Since f is a homeomorphism between ∆ 0 and ∆ 1 , and det(Df ) = vol(∆ 1 )/ vol(∆ 0 ) is constant, one has

∆ 0 G 1 (f (x)) dx = vol(∆ 0 ) vol(∆ 1 ) ∆ 1 G 1 (y) dy.
Combining with the above inequality, we obtain that

1 ε Sε H ε (z) dz - ∆ 0 G 0 (x) dx
is bounded from below by

1 ε vol(∆ 0 ) 1 d +ε vol(∆ 1 ) 1 d d ∆ 0 G 0 (x) dx vol(∆ 0 ) +ε ∆ 1 G 1 (y) dy vol(∆ 1 ) - ∆ 0 G 0 (x) dx .
By taking the inf limit when ε tends to 0+, we obtain the lower bound as announced in the theorem.

Remark 3.2. -The inequality ( 16) can be considered as a natural generalization of the classical isoperimetric inequality. In fact, if we take G 0 and G 1 to be the constant function of value 1 on ∆ 0 and ∆ 1 respectively, and let H ε (z) = 1 + ε for any ε ∈ [0, 1] and any z ∈ S ε . Then these functions verify the conditions of Theorem 3.1. Moreover, one has

Sε H ε (z) dz = (1 + ε) vol(S ε ). Hence lim ε→0+ Sε H ε (z) dz -∆ 0 G 0 (x) dx ε = d vol d-1,1 (∆ 0 , ∆ 1 ) + vol(∆ 0 ), where vol d-1,1 (∆ 0 , ∆ 1 ) is the mixed volume of index (d -1, 1) of ∆ 0 and ∆ 1 .
Therefore the inequality (16) leads to

vol d-1,1 (∆ 0 , ∆ 1 ) vol(∆ 0 ) (d-1)/d • vol(∆ 1 ) 1/d ,
which is the isoperimetric inequality in convex geometry.

3.2.

Strong arithmetic isoperimetric inequality. -Let K be a number field and X be an geometrically integral projective scheme of Krull dimension d 1 over Spec K. The purpose of this subsection is to establish the following theorem.

Theorem 3.3. -Let D 0 and D 1 be two adelic R-Cartier divisors on X which are nef and such that D 0 and D 1 are big. Then one has

(17) (d + 1)D d 0 • D 1 d vol(D 1 ) vol(D 0 ) 1/d vol(D 0 ) + vol(D 0 ) vol(D 1 ) vol(D 1 )
Proof.

-The two sides of the inequality are invariant by any birational modification. Hence we may assume without loss of generality that the scheme X contains at least a regular rational point and hence can apply the method of Newton-Okounkov bodies and concave transform resumed in §2.1.5 and §2.2.7.

For each ε ∈ [0, 1], let E ε be the adelic R-Cartier divisor D 0 + εD 1 and ∆(E ε ) be the Newton-Okounkov body of E ε . Recall that one has

∆(E ε ) ⊃ S ε := ∆(D 0 ) + ε∆(D 1 ).
One can construct, for any ε ∈ [0, 1] a non-negative concave function G Eε on ∆(E ε ), such that (see § §2.2.7 -2.2.10)

(d + 1)! vol(E ε ) = ∆(Eε) G Eε (z) dz Sε G Eε (z) dz.
Moreover, for any x ∈ ∆(D 0 ) and any y ∈ ∆(D 1 ) one has

G Eε (x + εy) G D 0 (x) + εG D 1 (y).
Therefore Theorem 3.1 leads to

lim ε→0+ vol(E ε ) -vol(D 0 ) ε = (d + 1)(D d 0 • D 1 ) d vol(D 1 ) vol(D 0 ) 1/d vol(D 0 ) + vol(D 0 ) vol(D 1 ) vol(D 1 ),
as claimed in the theorem.

By the inequality between arithmetical and geometric means, we deduce from Theorem 3.3 an arithmetic isoperimetric inequality in a similar form to the classical one. The comparison between the inequalities ( 17) and [START_REF] Gaudron | Pentes de fibrés vectoriels adéliques sur un corps globale[END_REF] shows that, Theorem 3.3 can be considered as a refinement of the isoperimetric inequality where we take into account the information of X relatively to the arithmetic curve Spec K. The same method can also be applied to the functional setting, which leads to the following relative form of the isoperimetric inequality in algebraic geometry. We refer the readers to [15, §8] for the construction of the concave transform in the function field setting.

Theorem 3.5. -Let k be a field, C be a regular projective curve over Spec k, and π : X → C be a flat and projective k-morphism of relative dimension d 1.

If L and M are two nef and big line bundles on X, then one has

(d + 1)(c 1 (L) d • c 1 (M )) d c 1 (M η ) d c 1 (L η ) d 1/d c 1 (L) d+1 + c 1 (L η ) d c 1 (M η ) d c 1 (M ) d+1 ,
where η is the generic point of C, and L η and M η are respectively the restrictions of L and M on the generic fiber of π.

Relative Brunn-Minkowski inequality

The purpose of this section is to establish the following relative form of Brunn-Minkowski inequality in the arithmetic geometry setting. 

vol(D 1 + • • • + D n ) = (D 1 + • • • + D n ) d+1 = n i=1 (D 1 + • • • + D n ) d • D i .
By Theorem 3.3, one has

(d + 1) (D 1 + • • • + D n ) • D i d vol(D i ) vol(D 1 + • • • + D n ) 1/d vol(D 1 + • • • + D n ) + vol(D 1 + • • • + D n ) vol(D i ) vol(D i ).
Therefore we obtain

(d + 1) vol(D 1 + • • • + D n ) d vol(D 1 ) 1/d + • • • + vol(D n ) 1/d vol(D 1 + • • • + D n ) 1/d vol(D 1 + • • • + D n ) + vol(D 1 + • • • + D n ) n i=1 vol(D i ) vol(D i ) ,
which leads to [START_REF] Gromov | Convex sets and Kähler manifolds[END_REF].

By using the same argument, we deduce from Theorem 3.5 the following relative Brunn-Minkowski inequality in the algebraic geometry setting. Theorem 4.2. -Let k be a field, C be a regular projective curve over Spec k, and π : X → C be a flat and projective k-morphism of relative dimension d 1.

If L 1 , . . . , L n is a family of nef and big line bundles on X, then one has

vol(L 1 ⊗ • • • ⊗ L n ) vol(L 1,η ⊗ • • • ⊗ L n,η ) ϕ(L 1,η , . . . , L n,η ) -1 n i=1 vol(L i ) vol(L i,η ) ,
where η is the generic point of C, L i,η is the restrictions of L i on the generic fiber of π, and 

  29, § §2.1-2.2, §4.4] for more details. The arithmetic intersection number has been defined in [29, §4.5] for relatively nef adelic R-Cartier divisors. It is a (d + 1)-linear form on the cone of such adelic R-Cartier divisors. If D 0 , . . . , D d is a family of relatively nef adelic R-Cartier divisors, we use the expression D 0 • • • D d to denote the intersection number of the adelic R-Cartier divisors D 0 , . . . , D d .

Corollary 3 . 4 .

 34 -With the notation and the hypotheses of the previous theorem, one has(18) (D d 0 • D 1 ) vol(D 0 ) d/(d+1) • vol(D 1 ) 1/(d+1) .

Theorem 4 . 1 .

 41 -Let K be a number field and X be a geometrically integral projective scheme over Spec K. If D 1 , . . . , D n are nef adelic R-Cartier divisors on X such that D 1 , . . . , D n are big, then one has

( 19 )

 19 vol(D 1 + • • • + D n ) vol(D 1 + • • • + D n ) ϕ(D 1 , . . . , D n ) -1 n i=1 vol(D i ) vol(D i ) , where(20)ϕ(D 1 , . . . , D n ) := d + 1 -d vol(D 1 ) 1/d + • • • + vol(D n ) 1/d vol(D 1 + • • • + D n ) 1/d .Proof. -Since D 1 , . . . , D n are nef, one has

ϕ(L 1

 1 ,η , . . . , L n,η ) := d + 1 -d vol(L 1,η ) 1/d + • • • + vol(L n,η ) 1/d vol(L 1,η ⊗ • • • ⊗ L n,η )1/d . Remark 4.3. -The infinitesimal argument in Theorem 3.3 is a key step for the strong Brunn-Minkowski inequality (19). In fact, if we apply directly the map of Knothe as in the proof of Theorem 3.1 with ε = 1, we obtain that, for nef adelic R-Cartier divisors D 1 and D 2 such that D 1 and D 2 are big, one has vol(D 1 + D 2 ) 1 + vol(D 2 ) vol(D 1 ) 1/d d vol(D 1 ) + vol(D 1 ) vol(D 2 ) vol(D 2 ) , which leads tovol(D 1 + D 2 ) vol(D 1 + D 2 ) (vol(D 1 ) 1/d + vol(D 2 ) 1/d ) d vol(D 1 + D 2 ) vol(D 1 ) vol(D 1 ) + vol(D 2 ) vol(D 2) .However, one hasϕ(D 1 , D 2 ) vol(D 1 + D 2 ) (vol(D 1 ) 1/d + vol(D 2 ) 1/d ) d ,and the inequality is in general strict.

  the correlation index of ∆ 1 and ∆ 2 ) which measures the degree of uniformity in the Minkowski sum ∆ 1 + ∆ 2 of the sum of two uniform random variables valued in ∆ 1 and ∆ 2 respectively (for any convex body ∆ ⊂ R d , a Borel probability measure on R d is called the uniform distribution on ∆ if it is absolutely continuous with respect to the Lebesgue measure, and the corresponding Radon-Nikodym density is 1/ vol(∆), where vol(∆) is the Lebesgue measure of ∆; a random variable valued in R d is called uniformly distributed in ∆ if it follows this measure as its probability law). It has been established the inequality
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