
HAL Id: hal-01152352
https://hal.science/hal-01152352

Submitted on 16 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A dynamic programming method with lists for the
knapsack sharing problem

Vincent Boyer, Didier El Baz, Moussa Elkihel

To cite this version:
Vincent Boyer, Didier El Baz, Moussa Elkihel. A dynamic programming method with lists for
the knapsack sharing problem. Computers & Industrial Engineering, 2011, 61 (2), pp.274-278.
�10.1016/j.cie.2010.10.015�. �hal-01152352�

https://hal.science/hal-01152352
https://hal.archives-ouvertes.fr


A dynamic programming method with lists
for the knapsack sharing problem

V. Boyer, D. El Baz, M. Elkihel

CNRS; LAAS; 7 avenue du Colonel Roche, F-31077 Toulouse, France
Université de Toulouse; UPS; INSA; INP; ISAE; LAAS; F-31077 Toulouse, France

{vboyer, elbaz, elkihel}@laas.fr

Abstract

In this paper, we propose a method to solve exactly the knapsack sharing problem (KSP) by using dynamic
programming. The original problem (KSP ) is decomposed into a set of knapsack problems. Our method
is tested on correlated and uncorrelated instances from the literature. Computational results show that our
method is able to find an optimal solution of large instances within reasonable computing time and low
memory occupancy.

Keywords: knapsack sharing problem, combinatorial optimization, Max-min programming, dynamic
programming.

1. Introduction

The knapsack sharing problem (KSP) is a max-min
mathematical programming problem with a knapsack
constraint (see [4] to [6]). The KSP is NP-complete.
The KSP occurs when ressources have to be shared
or distributed fairly to several entities, e.g. distri-
bution of scarce resources like ammunition or gazo-
line among different military units (see [6]) or budget
shared between districts of a city (see [17]).
The KSP is composed of n items divided into m dif-
ferent classes. Each class Ni has a cardinality ni with∑
i∈M

ni = n and M = {1, 2, ...,m}. Each item j ∈ Ni

is associated with:

• a profit pij ,

• a weight wij ,

• a decision variable xij ∈ {0, 1}.

We wish to determine a subset of items to be included
in the knapsack of capacity C, so that the minimum

profit associated with the different class is maximised.
The KSP can be formulated as follows:

(KSP )


max min

i∈M

∑
j∈Ni

pij .xij

 = z(KSP ),

subject to
∑
i∈M

∑
j∈Ni

wij .xij ≤ C,

xij ∈ {0, 1} for i ∈M and j ∈ Ni,
(1.1)

where z(KSP ) denotes the optimal value of the prob-
lem (KSP ) and for i ∈M and j ∈ Ni, wij , pij and C
are positive integers. Furthermore, we assume that∑
i∈M

∑
j∈Ni

wij > C and max
i∈M,j∈Ni

{wij} ≤ C.

A common way to solve the KSP consists of its de-
composition into knapsack problems (see for exam-
ples [10] and [17]). Indeed, for a class i ∈ M, we
define the following problem:

Preprint submitted to Computers & Industrial Engineering October 27, 2010



(KPi(Ci))


max

∑
j∈Ni

pij .xij = z(KPi(Ci)),

s.t.
∑
j∈Ni

wij .xij ≤ Ci,

xij ∈ {0, 1} j ∈ Ni.
(1.2)

The objective is then to find (C∗1 , C
∗
2 , ..., C

∗
m) such

that ∑
i∈M

C∗i ≤ C,

and

min
i∈M
{z(KPi(C

∗
i ))} = z(KSP ),

where, for a problem P, z(P) represents its optimal
value. An upper bound and a lower bound of z(P)
will be denoted, respectively, by z(P) and z(P), re-
spectively.

Hifi et al. have proposed to solve the knapsack prob-
lems (KPi(Ci))i∈M via a dense dynamic program-
ming algorithm in [10] and [11]. Their method starts
with Ci = 0, i ∈ M, and increases regulary the ca-

pacities until
∑
i∈M

Ci > C.

In this article, we propose an algorithm for solv-
ing the KSP. Our algorithm is based on a dy-
namic programming procedure with dominance tech-
nique to solve the knapsack problems (KPi(Ci))i∈M.
Our algorithm starts by solving the problems

(KPi(Ci))i∈M with Ci ≥ C∗i , i ∈ M and
∑
i∈M

Ci ≥

C. At each step, we try to decrease the values of
(Ci)i∈M, towards (C∗i )i∈M. The use of lists permits
one to reduce the memory occupancy; the expected
benefit being the solution of large instances.

Without loss of generality, we consider in the sequel
that the items in a class i ∈ M are sorted according
to decreasing ratios

pij

wij
, j ∈ Ni.

In the second section, we present the dynamic pro-
gramming algorithm used to solve the problems
(KPi)i∈M. Section 3 deals with the algoritm we
propose for the KSP. Computational results are dis-
played and analyzed in section 4. Some conclusions
and perspectives are presented in section 5.

2. Basic dynamic programming procedure

In order to solve the problems (KPi(Ci))i∈M, we use
a dynamic programming algorithm with dominance
(see [1] - [3] and [7]).

Lists construction

We recall that i ∈ M denotes the index of the ith

class of (KSP ).

A list Lik is associated with each step k ∈ Ni:

Lik =

(w, p) | w =
k∑

j=1

wij .xij ≤ Ci and

p =

k∑
j=1

pij .xij , xij ∈ {0, 1}, j ∈ {1, 2, ..., k}

 .

(2.1)

The algorithm begins with the lists Li0 = {(0, 0)}.
At each step k ∈ Ni, the new list Lik is obtained as
follows:

Lik = Li(k−1) ∪
{

(w + wik, p + pik) | (w, p) ∈ Li(k−1),
w + wik ≤ Ci} .

Notation:

For simplicty of presentation the above equation will
also be written as follows in the sequel.

Lik = Li(k−1) ⊕ {(wik, pik)}.

The states (w, p) in a list are sorted according to the
decreasing value of p.

From the dynamic programming principle, domi-
nated states, i.e. states (w, p) such that there exists
a state (w′, p′) with w′ ≤ w and p′ ≥ p, are removed
from the list.

State elimination via upper bounds

In order to shrink lists Lik, k ∈ Ni, an upper bound
z(w, p), associated with state (w, p) ∈ Lik, is com-
puted. For this purpose, we solve exactly the fol-
lowing linear continuous knapsack problem via the
Martello & Toth’s algorithm (see [8]):

2



(LP
(w,p)
i (Ci))



max p +

ni∑
j=k+1

pij .xij ,

s.t.

ni∑
j=k+1

wij .xij ≤ Ci − w,

xij ∈ [0, 1], j ∈ {k + 1, ..., ni}.
(2.2)

Let z(w, p) =
⌊
z(LP

(w,p)
i (Ci))

⌋
.

If z(w, p) ≤ z(KSP ), then the states (w, p) can be
discarded.
We shall have:

Lik := Li(k−1) ⊕ {(wik, pik)} − Dik − Bik,

where:

• Dik represents the list of dominated states in
Li(k−1) ⊕ {(wik, pik)},

• Bik represents the list of states in Li(k−1) ⊕
{(wik, pik)} to be eliminated via upper bounds.

In the sequel, this phase is the so-called NextList
phase.
Fixing variables
The following two methods are used to fix variables
of the problem (KPi).

Variable reduction technique 1
Let i ∈M, k ∈ Ni and (w, p) ∈ Lik.
If p > z(KSP ), where z(KSP ) is an upper bound
of (KSP ) obtained by the solution of the linear con-
tinuous relaxation of (KSP ), then all free variables
xij, j ∈ {k + 1, ..., ni}, can be fixed at 0 for the state
(w, p).

Indeed, as z(KSP ) ≤ z(KSP ), when p > z(KSP )
we can stop the exploration of this state because it
will not give a better optimal value for (KSP ).
The second method to fix variables uses information
provided by the solution of (LP

(w,p)
i (Ci)) associated

to a state (w, p) ∈ Lik, k ∈ Ni. We use the following
rule to fix the free variables of a state (w, p).

Variable reduction technique 2 (see [16])
Let i ∈M, k ∈ Ni and (w, p) ∈ Lik.

Let d be the index of the critical variable of

(LP
(w,p)
i (Ci)), i.e.:

d−1∑
j=k+1

wij ≤ Ci − w and

d∑
j=k+1

wij > Ci − w.

If for j ∈ {k + 1, ...d− 1, d + 1, ..., ni}, we have⌊
z(LP

(w,p)
i (Ci))−

∣∣∣∣pij − wij .
pid
wid

∣∣∣∣⌋ ≤ z(KSP ),

where z(KSP ) is a lower bound of (KSP ), then xij

can be fixed to 1 if j < d and to 0 otherwise. The
computation of z(KSP ) is detailed in the next Sec-
tion.

3. An algorithm for the KSP

In this section, we show how the dynamic program-
ming method presented in the above Section can be
used to find an optimal solution of (KSP ).

For simplicity of notation, z(KSP ) is denoted by z
in the sequel.

3.1. The main procedure DPKSP

The principle of our algorithm can be presented
brievly as follows.

- A first lower bound of (KSP ), z, is computed with
the greedy heuristic the so-called GreedyKSP (see
Alg. 1).

- At each step k of the dynamic programming
method:

• the lists (Lik)i∈M, k≤ni are computed via the
procedure NextList presented in the above Sec-
tion,

• then, we try to reduce the free variables associ-
ated with each state in (Lik)i∈M, k≤ni

,

• finally, the lower bound z and the capacities
(Ci)i∈M, respectively, are updated via the pro-
cedures UpdateZ and UpdateC, respectively de-
scribed below.

3



- The dynamic programming phase is stopped when
all the lists (Lini)i∈M have been computed. These
lists are used by the procedure FindOptimalValue to
find an optimal solution for the (KSP ).

Alg. 1 : GreedyKSP
For i from 1 to m do

pi := 0, wi := 0 and ki := 1
end do
STOP:=0
while STOP=0 do

d := argmin{p1, p2, ..., pm}
if kd ≤ nd then

if wd + wdkd
≤ C, then

xdkd
is fixed to 1

pd := pd + pdkd

wd := wd + wdkd

end if
kd := kd + 1

else
STOP:=1

end if
end while
z = min{p1, p2, ..., pm}.

The main procedure, DPKSP, to solve the KSP is
given in Alg. 2. The procedures UpdateZ, UpdateC
and FindOptimalValue are detailed in the next sub-
sections.

Alg. 2 : DPKSP
Initialisation:
z := z(KSP ) := GreedyKSP
z(KSP ) := bz(CKSP )c
For i from 1 to m do
Li0 := {(0, 0)}

end for
k := 1
(Ci)i∈M := UpdateC(z, (Li0)i∈M)

Dynamic programming:
STOP:=0
while STOP=0 do

STOP:=1
For i from 1 to m do

If(k ≤ ni)

STOP:=0;
Lik := NextList(KPi,Li(k−1))
For each state (w, p) ∈ Lik do

Try to fix the free variables
end for

end if
end for
z := UpdateZ (z, (Ci)i∈M, (Lik)i∈M)
(Ci)i∈M := UpdateC(z, (Lik)i∈M)
k := k + 1

end while

Finding z∗:
z(KSP ) := FindOptimalV alue (z, (Lini)i∈M)

3.2. The procedure UpdateC

In this subsection, we present how the values of
(Ci)i∈M are updated. For this purpose, we compute
the minimum values of the capacities (Ci)i∈M result-
ing from an improvement of the current lower bound
z, of the KSP.
For i ∈ M, and k ∈ Ni ∪ {0}, the following linear
problem is associated with a state (w, p) ∈ Lik:

(minWi((w, p), z))



minw +

ni∑
j=k+1

wij .xij ,

s.t. p +

ni∑
j=k+1

pij .xij ≥ z + 1,

xij ∈ [0, 1], j ∈ {k + 1, ..., ni}.
(3.1)

Let us define:

minCi(Lik, z) =

⌊
min

(w,p)∈Lik

{z(minWi((w, p), z))}
⌋
.

If we want to improve the best lower bound, z, then
we must have, for i ∈M:∑

j∈Ni

wij .xij ≤ C −
∑

i′∈M−{i}

minCi′(Li′k, z),

with

xij ∈ {0, 1}, for j ∈ Ni.

For i ∈M, the initial value of Ci is given by

4



Ci = C −
∑

i′∈M−{i}

minCi′(Li′0, z).

At each step k of DPKSP, we try to improve the value
of Ci with Alg. 3.

Alg. 3 : UpdateC
For i from 1 to m do

Ci := C −
∑

i′∈M−{i}

minCi′(Li′k, z)

end for

3.3. The procedure UpdateZ

Rather than updating the lower bound z, with the
GreedyKSP heuristic, which is time consuming, we
make use of all the lists (Lik)i∈M at step k in order
to try to improve more efficiently this bound.
Indeed, for each state in the list, a local greedy heuris-
tic can be used in order to select a particular state.
The selected state of each list is then combined with
other states so as to try to improve z. The details
of the heuristic are given in procedure UpdateZ (see
Alg. 4).

Alg. 4 : UpdateZ
For i ∈M do L′ik = ∅
Greedy like step:
For i from 1 to m do

For (w, p) ∈ Lik do
W := w and P := p
For j from k + 1 to ni do

If P ≥ z(KSP ) + 1 then
exit the loop for

end if
If W + wij ≤ Ci then

W := W + wij and P := P + pij
end if

end for
If P ≥ z(KSP ) + 1 then
L′ik := L′ik ∪ {(W,P )}

end if
end for

end for
Selected states:
For i from 1 to m do

Choose (Wi, Pi) ∈ L′ik such that
Wi := min

(W,P )∈L′
ik

{W}

end for
Updating z(KSP ):

If
∑
i∈M

Wi ≤ C then

z(KSP ) := min
i∈M
{Pi}

end if

3.4. The procedure FindOptimalValue

In the end of the dynamic programming phase, all
the lists (Lini)i∈M, are available. In this section, we

show how these lists are combined in O

(∑
i∈M

Ci

)
in order to find the optimal value of (KSP ).
The states (w, p) in a list are sorted according to the
decreasing value of p. Due to the dominance princi-
ple, they are also sorted according to the decreasing
value of w. Thus, if we want to check if a given
bound z ≥ z is feasible, then we have to take in each
list Lini

,i ∈M, the state (wi, pi) which satisfies:

wi = min {w | p ≥ z, (w, p) ∈ Lini} . (3.2)

If
∑
i∈M

wi ≤ C, then we have found a better feasi-

ble bound for (KSP ), i.e. z′ = min
i∈M
{pi} ≥ z ≥ z.

Furthermore, all the states (w, p) ∈ Lini
such that

p < pi can be discarded. Otherwise, all the states
(w, p) ∈ Lini

such that p > pi (and w > wi) can be
removed as they will not provide a better solution.
Indeed, in this case, we have the following inequali-
ties:

z(KSP ) < z ≤ pi, i ∈M.

Therefore, we have to decrease the value of the bound
z and check if this new bound is feasible.
Alg. 5 presents the procedure FindOptimalValue.

Alg. 5 : FindOptimalValue
Initialization:
For i from 1 to m do

Let (wi, pi) be the first states in Lini

end do

5



z := min
i∈M
{pi}

z(KSP ) := z(KSP )
Checking feasibility:
While z > z(KSP ) do

For i from 1 to m do
Find (wi, pi) ∈ Lini such that
wi := min {w | p ≥ z, (w, p) ∈ Lini

}
end for
If
∑
i∈M

wi ≤ C then

z(KSP ) := z
Exit the procedure

Else
For i from 1 to m do
Lini := Lini − {(w, p) ∈ Lini | p > pi}

end for
z := min

i∈M
max

(w,p)∈Lini

{p | p < z}

end if
end while

We note that all the lists are considered only once in
this procedure.

4. Computational experiments

The procedure DPKSP has been written in C and
computational experiments have been carried out on
an Intel Core 2 Duo T7500 (2.2 GHz).
We have used the set of problems of Hifi (see [12],
see also [13]) with 168 uncorrelated instances and 72
strongly correlated instances; each group of problems
contains four instances. The problems are detailed in
Tables 1 and 2. All the optimal values are known for
these instances.
The average processing time for the four instances
of each group of problems is given in Tables 3 and
4. The tables show that DPKSP is able to solve
large instances (up to 20000 variables and 50 classes)
within reasonable computing time. In the correlated
case, an optimal solution is obtained in less than 13
minutes. The processing time is less than 1.5 minutes
in the uncorrelated case.
We note that our method is efficient when the num-
ber m of classes is relatively small (between 2 and
5 classes). This result can be explained by the fact

that in this case we have to fill a limited number
of knapsacks. The comparison with the results pro-
vided by Hifi et al. in [10] and [11] shows the in-
terest of our approach particulary in this context for
both correlated and uncorrelated problems; indeed,
the processing times of Hifi’s algorithm tends to be
important for these instances.

The memory occupancy is presented in Tables 5 and
6. Note that the vector x associated to each state is
encoded as a bit string of 32 bits. These tables com-
pare DPKSP with the algorithm of Hifi whose space
complexity is O(n.C). We see that the approach
of Hifi needs for some instances a large amount of
memory (up to 638.42Mo) contrarily to our method
(< 7Mo). Indeed, the space complexity of the dy-
namic programming algorithm with lists for a kna-
sack problem of n variables with the capacity C is
O(min{2n+1, nC}) (see [15]). The space complexity

of DPKSP is O

(
m∑
i=1

min{2ni+1, ni.Ci}

)
. Thus it

is bounded by O(n.C). DPKSP is able to solve large
problems with limited memory occupancy.

5. Conclusions and perspectives

In this paper, we have proposed a method to solve the
KSP with a dynamic programming list algorithm.

The original problem (KSP ) is decomposed into a
set of knapsack problems. The initial value of the
knapsack capacity is obtained via an overestimation.
This value is updated and decreased throughout the
solution process.

Computational results show that best results were
obtained when the number of classes is relatively
small. They show also that DPKSP is able to solve
large instances within reasonable computing time and
small memory occupancy. Moreover, our method use
less memory than previous methods in the literature.

We think that very good results can be obtained with
our method for instances with bigger capacities and a
great number of classes (in the problems considered,
capacities are generated so that they are equal to the
half sum of all item weights, as a consequence, the
bigger the weights, the bigger the capacity is).

6



In future work, it would also be interesting to con-
sider a multi method that combines the advantages
of our approach with the one of Hifi et al.
In order to decrease the processing time, parallel im-
plementation of DPKSP could be considered. In-
deed, the computations on knapsack sub-problems
are independant and could be done in parallel.

6. Aknowledgement

The authors would like to thank the reviewers for
their helpful comments contributing to improve the
presentation of the paper.

References

References

[1] R. Bellman, “Dynamic Programming”, Prince-
ton University Press, Princeton, NJ, 1957.

[2] V. Boyer, D. El Baz & M. Elkihel, “Heuristics
for the 0-1 multidimensional knapsack problem”,
European Journal of Operational Research, Vol.
199, Issue 3, pp658-664, 2009.

[3] V. Boyer, D. El Baz & M. Elkihel,“Solution of
multidimensional knapsack problems via cooper-
ation of dynamic programming and branch and
bound”, European Journal of Industrial Engi-
neering, Vol. 4, N. 4, pp434-449, 2010.

[4] J.R. Brown, “Bounded knapsack sharing”,
Mathematical Programming, Vol. 67, pp343-
382, 1994.

[5] J.R. Brown, “Solving knapsack sharing with
general tradeoff functions”, Mathematical Pro-
gramming, Vol. 51, pp55-73, 1991.

[6] J.R. Brown, “The knapsack sharing problem”,
Operations Research, Vol. 27, pp341-355, 1979.

[7] D. El Baz & M. Elkihel, “Load balancing meth-
ods and parallel dynamic programming algo-
rithm using dominance technique applied to the
0-1 knapsack problem”, Journal of Parallel and
Distributed Computing, Vol. 65, pp74-84, 2005.

[8] S. Martello & P. Toth, “An upper bound for the
zero-one knapsack problem and a branch and
bound algorithm”, European Journal of Oper-
ations Research, Vol. 1, pp169-175, 1977.

[9] P.C. Gilmore & R.E. Gomory, “The theory and
computation of knapsack functions”, Operations
Research, Vol. 13, pp879-919, 1966.

[10] M. Hifi & S. Sadfi, “The Knapsack Sharing Prob-
lem: An Exact Algorithm”, Journal of Combi-
natorial Optimization, Vol. 6, pp35-54, 2002.

[11] M. Hifi, H. M’Halla & S. Sadfi, “An exact
algorithm for the knapsack sharing problem”,
Computers and Operations Research, Vol. 32,
pp1311-1324, 2005.

[12] M. Hifi, Library of instances, ftp://
cermsem.univ-paris1.fr/pub/CERMSEM/hifi/
KSP.

[13] D. El Baz, V. Boyer, Library of in-
stances for knapsack sharing problems,
http://www.laas.fr/CDA/23-31298-Knapsack-
sharing-problems.php

[14] T. Kuno, H. Konno &E. Zemel, “A linear-time
algorithm for solving continuous maximin knap-
sack problems”, Operations Research Letters,
Vol. 10, pp23-26, 1991.

[15] S. Martello & P. Toth, “Knapsack Problems: Al-
gorithms and Computer Implementation”, John
Wiley & Sons, New York, 1990.

[16] G.L. Nemhauser, L.A. Wolsey, “Integer and
Combinatorial Optimization”, Wiley, New York,
1988.

[17] T. Yamada, M. Futakawa & S. Kataoka, “Some
exact algorithms for the knapsack sharing prob-
lem”, European Journal of Operational Re-
search, Vol. 106, pp177-183, 1998.

[18] T. Yamada & M. Futakawa, “Heuristic and
reduction algorithms for the knapsack sharing
problem”, Computers and Operations Research,
Vol. 24, pp961-967, 1997.

7



Table 1: Uncorrelated instances

Group n m Instances 1 ≤ x ≤ 4
Am.x 1000 2 to 50 A02.x, A05.x, A10.x,

A20.x, A30.x, A40.x,
A50.x

Bm.x 2500 2 to 50 B02.x, B05.x, B10.x,
B20.x, B30.x, B40.x,
B50.x

Cm.x 5000 2 to 50 C02.x, C05.x, C10.x,
C20.x, C30.x, C40.x,
C50.x

Dm.x 7500 2 to 50 D02.x, D05.x, D10.x,
D20.x, D30.x, D40.x,
D50.x

Em.x 10000 2 to 50 E02.x, E05.x, E10.x,
E20.x, E30.x, E40.x,
E50.x

Fm.x 20000 2 to 50 F02.x, F05.x, F10.x,
F20.x, F30.x, F40.x,
F50.x

Table 2: Correlated instances

Group n m Instances 1 ≤ x ≤ 4
AmC.x 1000 2 to 10 A02C.x, A05C.x,

A10C.x
BmC.x 2500 2 to 10 B02C.x, B05C.x,

B10C.x
CmC.x 5000 2 to 10 C02C.x, C05C.x,

C10C.x
DmC.x 7500 2 to 10 D02C.x, D05C.x,

D10C.x
EmC.x 10000 2 to 10 E02C.x, E05C.x,

E10C.x
FmC.x 20000 2 to 10 F02C.x, F05C.x,

F10C.x

Table 3: Uncorrelated instances: time processing (s.)

Inst. t. Inst. t. Inst. t.
A02.x 0.02 C02.x 0.21 E02.x 3.02
A05.x 0.15 C05.x 1.96 E05.x 5.55
A10.x 0.14 C10.x 4.02 E10.x 15.24
A20.x 0.06 C20.x 4.55 E20.x 18.38
A30.x 0.01 C30.x 2.53 E30.x 13.27
A40.x 0.00 C40.x 0.85 E40.x 13.24
A50.x 0.01 C50.x 0.66 E50.x 15.26
B02.x 0.16 D02.x 0.66 F02.x 3.00
B05.x 0.69 D05.x 4.39 F05.x 35.16
B10.x 1.20 D10.x 6.94 F10.x 46.31
B20.x 0.69 D20.x 10.83 F20.x 68.89
B30.x 0.01 D30.x 8.22 F30.x 67.21
B40.x 0.01 D40.x 7.02 F40.x 78.46
B50.x 0.01 D50.x 4.02 F50.x 78.86

Table 4: Correlated instances: time processing (s.)

Inst. t. Inst. t. Inst. t.
A02C.x 1.18 C02C.x 18.48 E02C.x 59.44
A05C.x 1.32 C05C.x 26.25 E05C.x 149.29
A10C.x 1.72 C10C.x 33.28 E10C.x 164.33
B02C.x 9.61 D02C.x 53.40 F02C.x 642.84
B05C.x 10.08 D05C.x 53.61 F05C.x 724.81
B10C.x 9.63 D10C.x 98.14 F10C.x 598.05

Table 5: Uncorrelated instances: memory occupancy
(Mo)

Instance DPKSP ALGO (HIFI)
Am.x <0.01 1.59
Bm.x 0.05 9.95
Cm.x 0.11 38.15
Dm.x 0.33 89.4
Em.x 0.41 158.79
Fm.x 1.01 636.95

8



Table 6: Correlated instances: memory occupancy
(Mo)

Instance DPKSP ALGO (Hifi)
AmC.x 0.10 1.60
BmC.x 0.30 9.97
CmC.x 0.68 39.76
DmC.x 1.26 89.60
EmC.x 1.96 159.23
FmC.x 6.21 638.42

9


