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Abstract When do the visual rays associated with triplets of
point correspondences converge, that is, intersect in a com-
mon point? Classical models of trinocular geometry based
on the fundamental matrices and trifocal tensor associated
with the corresponding cameras only provide partial answers
to this fundamental question, in large part because of under-
lying, but seldom explicit, general configuration assumptions.
This paper uses elementary tools from projective line ge-
ometry to provide necessary and sufficient geometric and
analytical conditions for convergence in terms of transversals
to triplets of visual rays, without any such assumptions. In
turn, this yields a novel and simple minimal parameteriza-
tion of trinocular geometry for cameras with non-collinear or
collinear pinholes, which can be used to construct a practical
and efficient method for trinocular geometry parameter esti-
mation. We present numerical experiments using synthetic
and real data.
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Fig. 1 Left: Visual rays associated with three (correct) correspondences.
Right: Degenerate epipolar constraints associated with three coplanar,
but non-intersecting rays lying in the trifocal plane τ (as in the rest of
this presentation, the image planes are omitted for clarity in this part of
the figure). See text for details.

1 Introduction

The images of points recorded by multiple cameras may only
match when the corresponding visual rays converge—that is,
intersect in a common point (Figure 1, left). For two views,
this condition is captured by the bilinear epipolar constraint
and the corresponding fundamental matrix Longuet-Higgins
(1981); Luong and Faugeras (1996). Three images can be
characterized by both the pairwise epipolar constraints asso-
ciated with any two of the pictures, and a set of trilinearities
associated with all three views and parameterized by the
associated trifocal tensor Hartley (1997); Shashua (1995);
Spetsakis and Aloimonos (1990); Weng et al. (1992). For
cameras with non-collinear pinholes, at least, the rays associ-
ated with three image points that satisfy the corresponding
epipolar constraints almost always converge: The only excep-
tion is when the points have been matched incorrectly, and
all lie in the trifocal plane spanned by the three pinholes (Fig-
ure 1, right). Interestingly, Hartley and Zisserman state that
the fundamental matrices associated with three cameras with
non-collinear pinholes determine the corresponding trifocal
tensor (Hartley and Zisserman, 2000, Result 14.5), while
Faugeras and Mourrain (1995) and Ponce et al. (2005), for
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example, note that the rays associated with three points only
satisfying certain (and different) subsets of the trilinearities
alone must intersect. These claims contradict each other,
since rays that satisfy epipolar constraints do not always con-
verge, but they are true under some general configuration
assumptions, rarely made explicit. It is thus worth clarifying
these assumptions, and understanding exactly how much the
trifocal constraints add to the epipolar ones for point cor-
respondences. This is the problem addressed in this paper,
using elementary projective line geometry. In particular, our
analysis shows that exploiting both the epipolar constraints
and one or two of the trinocular ones, depending on whether
the camera pinholes are collinear or not, always guarantees
the convergence of the corresponding visual rays. Our analy-
sis also provides, in both cases, a novel and simple minimal
parameterization of trinocular geometry.

1.1 Related Work

Geometric constraints involving multiple perspective views
of the same point (Figure 1, left) have been studied in com-
puter vision since the seminal work of Longuet-Higgins, who
proposed in 1981 the essential matrix as a bilinear model of
epipolar constraints between two calibrated cameras Longuet-
Higgins (1981). Its uncalibrated counterpart, the fundamental
matrix, was introduced by Luong and Faugeras (1996). The
trilinear constraints associated with three views of a straight
line were discovered by Spetsakis and Aloimonos (1990) and
by Weng et al. (1992). The uncalibrated case was tackled
by Shashua (1995) and by Hartley (1997), who coined the
term trifocal tensor. The quadrifocal tensor was introduced
by Triggs (1995), and Faugeras and Mourrain (1995) gave a
simple characterization of all multilinear constraints associ-
ated with multiple perspective images of a point. The usual
formulation of the trilinear constraints associated with three
images of the same point are asymmetric, one of the images
playing a priviledged role. A simple and symmetric formu-
lation based on line geometry was introduced in Ponce et al.
(2005). A few minimal parameterizations of trinocular geom-
etry are also available Canterakis (2000); Papadopoulo and
Faugeras (1998); Ressl (2002); Torr and Zisserman (1997).

From a historical point of view, it is worth noting, like
Forsyth and Ponce (2003a), that epipolar constraints were
already known by photogrammeters long before they were
(re)discovered by Longuet-Higgins (1981), as witnessed by
the 1966 Manual of Photogrammetry Thompson et al. (1966),
but that this book does not mention trilinear constraints, al-
though it discusses higher-order trinocular scale-restraint
condition equations: To be more precise, the three funda-
mental condition equations of analytical photogrammetry are
identified in the 1966 edition of the Manual of Photogram-
metry Thompson et al. (1966) as the collinearity equations
(the image point yi, the scene point x, and the pinhole ci of

Figure 1 (left) must belong to the same line ξi for i = 1, 2, 3),
the coplanarity equations (the epipolar constraints that ex-
press the fact that the lines ξ1, ξ2 and ξ3 intersect pairwise, or
equivalently, are pairwise coplanar), and the scale-restraint
equations (the points where the rays associated with three
images of the same point are the closest in space must have
the same depth) Thompson et al. (1966).

The trifocal constraints are explicitly discussed in the
latest (2004) edition of the Manual of Photogrammetry Mc-
Glone (2004), with the aim to express the fact that the three
rays ξ1, ξ2, and ξ3 converge. However, the direct derivation
of trifocal constraints for point correspondences typically
amounts to writing that all 4 × 4 minors of some k × 4

matrix are zero, thus guaranteeing that the three lines in-
tersect Faugeras and Mourrain (1995); Ponce et al. (2005):
The 9 × 4 matrix used by Faugeras and Mourrain (1995)
is obtained by stacking linear combinations of rows of the
projection matrices associated with three cameras, whereas
the 12× 9 matrix of Ponce et al. (2005) is obtained by stack-
ing the join matrices that will be defined in Section 2.2.1
associated with three visual rays.

These determinants are then rewritten as linear combina-
tions of reduced minors that are bilinear or trilinear functions
of the image point coordinates (Appendix I gives the corre-
sponding derivation for the case of Ponce et al. (2005) for
completeness). The whole difficulty lies in selecting an ap-
propriate subset of reduced minors that will always guarantee
that the rays intersect. We have already observed that the
bilinear epipolar constraints, alone, are not sufficient. As fur-
ther discussed in Appendix II, we are not aware of any fixed
set of four trilinearities that, alone, guarantee convergence
in all cases. This suggests seeking instead appropriate com-
binations of bilinear and trilinear constraints, which is the
approach taken in this presentation.

1.2 Problem Statement and Proposed Approach

As noted earlier, the goal of this paper is to understand exactly
how much the trifocal constraints add to the epipolar ones
for point correspondences. Since both types of constraints
model incidence relationships among the light rays joining
the cameras’ pinholes to observed points, we address this
problem using the tools of projective geometry Veblen and
Young (1910) in general, and line geometry Pottmann and
Wallner (2001) in particular. As noted earlier, the trifocal
tensor was originally invented to characterize the fact that
three image lines δ1, δ2, and δ3 are the projections of the
same scene line δ Shashua (1995); Spetsakis and Aloimonos
(1990); Weng et al. (1992) (Figure 1, left). The trilinearities
associated with three image points y1, y2, and y3 were then
obtained by constructing lines δ1, δ2, and δ3 passing through
these points, and whose preimage is a line δ passing through
the corresponding scene point x. By construction, this line
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Fig. 2 Top: The possible configurations of three pairwise-coplanar
distinct lines, classified according to the way they intersect. The three
given lines are shown in black; the planes where two of them intersect
are shown in green; and the points where two of the lines intersect are
shown in red. Bottom: Transversals to the three lines, shown in blue,
and forming (1) a line bundle; (2) a degenerate congruence; and (3) a
line field.

is a transversal to the three rays ξ1, ξ2, and ξ3, that is, it
intersects them. It is therefore not surprising that much of the
presentation will be dedicated to the characterization of the
set of transversals to a triplet of lines.

In particular, we have already seen that the fact that three
lines intersect pairwise is necessary, but not sufficient for
these lines to intersect. We will show in the rest of this pre-
sentation that a necessary and sufficient condition for three
lines to converge is in fact that they be pairwise coplanar
and admit a well defined family of transversals. We will also
give a simple geometric and analytical characterization of
these transversals under various assumptions. When applied
to camera systems, it will provide in turn a new and simple
minimal parameterization of trinocular geometry.

Contributions The main contributions of this paper can be
summarized as follows:

•We give a new geometric characterization of triplets of con-
verging lines in terms of transversals to these lines (Proposi-
tion 1).
•We provide a novel and simple analytical characterization
of triplets of converging lines (Lemma 3 and Proposition 2),
that does not rely on the assumptions of general configuration
implicit in Ponce et al. (2005).
•We show by applying these results to camera geometry that
the three epipolar constraints and one of the trifocal ones
(two if the pinholes are collinear) are necessary and sufficient
for the corresponding optical rays to converge (Propositions 3
and 4).
•We introduce a new analytical parameterization of epipolar
and trifocal constraints, leading to a minimal parameteriza-
tion of trinocular geometry (Propositions 5 and 6).

•We present an algorithm for estimating trifocal geometry
parameters. Our approach minimizes the distance of image
points to epipolar and “trinocular” lines, and can be used
to reconstruct camera matrices efficiently (not requiring the
introduction of auxiliary variables, contrary to bundle adjust-
ment).

The rest of this presentation is organized as follows: Sec-
tion 2.1 characterizes the manner in which three lines may
intersect (or not) each other in geometric terms. This char-
acterization is translated into analytical terms in Section 2.2
using the tools of elementary analytical projective geometry,
notably Plücker coordinates and the join matrix Pottmann
and Wallner (2001); Veblen and Young (1910). It is then ap-
plied to the specific case of epipolar and trifocal constraints
in Section 3, where it used to derive a new minimal parame-
terization of trinocular geometry (see Canterakis (2000); Pa-
padopoulo and Faugeras (1998); Torr and Zisserman (1997)).
An algortihm for recovering the coresponding parameters
from at least six point correspondences observed in three
images is presented in Section 4, where it is compared to
competing methods on both synthetic and real data. We con-
clude with a brief discussion in Section 5. Formal proofs and
technical details are given in three appendices.

A preliminary version of this paper appeared in Ponce and
Hebert (2014), without appendices and the full experimen-
tal evaluation of Section 4. A few technical improvements
to Ponce and Hebert (2014) also include:

• The minimal parameterizations given in Propositions 5 and
6 are based on new sets of constraints, which are generally
less susceptible to degeneracies (see Appendix III).
• The “trinocular lines” used in the practical implementation
are guaranteed to be well defined and transversal to the epipo-
lar lines applying an appropriate homography of P3 (see the
discussion in Section 4).

2 Converging Triplets of Lines

2.1 Geometric Point of View

All lines considered from now on are assumed to be different
from each other. A transversal to some family of lines is a
line intersecting every element of this family. We prove in
this section the following main result.

Proposition 1 A necessary and sufficient condition for three
lines to converge is that they be pairwise coplanar, and that
they admit a transversal not contained in the planes defined
by any two of them.

To prove Proposition 1, we need two intermediate results.
In projective geometry, two straight lines are either skew to
each other or coplanar, in which case they intersect in exactly
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Fig. 3 Top: The possible configurations of three distinct, non-pairwise-
coplanar lines, classified according to the way they intersect. Bottom:
Transversals to the three lines, forming (4) two pencils of lines having
one of the input lines (in black) in common (5) two pencils of lines
having one line (in red) in common; and (6) a non-degenerate regulus.
See text for details.

one point. Our first lemma enumerates the possible incidence
relationships among three lines.

Lemma 1 Three distinct lines can be found in exactly six
configurations (Figures 2 and 3, top): (1) the three lines
are not all coplanar and intersect in exactly one point; (2)
they are coplanar and intersect in exactly one point; (3) they
are coplanar and intersect pairwise in three different points;
(4) exactly two pairs of them are coplanar (or, equivalently,
intersect); (5) exactly two of them are coplanar; or (6) they
are pairwise skew.

The proof is by enumeration. Lemma 1 has an immediate,
important corrolary—that is, when three lines are pairwise
coplanar, either they are not coplanar and intersect in one
point (case 1); they are coplanar and intersect in one point
(case 2); or they are coplanar, and intersect pairwise in three
different points (case 3). In particular, epipolar constraints are
satisfied for triplets of (incorrect) correspondences associated
with images of points in the trifocal plane containing the
pinholes of three non-collinear cameras.

To go further, it is useful to introduce a notion of linear
(in)dependence among lines. The geometric definition of
independence of lines matches the usual algebraic definition
of linear independence, in which, given a coordinate system,
a necessary and sufficient for k lines to be linearly dependent
is that some nontrivial linear combination of their Plücker
coordinate vectors (Section 2.2.1) be the zero vector of R6.
Geometrically, the lines linearly dependent on three skew
lines form a regulus Veblen and Young (1910). A regulus is
either a line field, formed by all lines in a plane; a line bundle,
formed by all lines passing through some point; the union of
all lines belonging to two flat pencils lying in different planes
but sharing one line; or a non-degenerate regulus formed by

one of the two sets of lines ruling a hyperboloid of one sheet
or a hyperbolic paraboloid. Armed with these definitions, we
obtain an important corollary of Lemma 1.

Lemma 2 Three distinct lines always admit an infinity of
transversals, that can be found in exactly six configurations
(Figures 2 and 3, bottom): (1) the transversals form a bundle
of lines; (2) they form a degenerate congruence consisting of
a line field and of a bundle of lines; (3) they form a line field;
(4) they form two pencils of lines having one of the input lines
in common; (5) they form two pencils of lines having a line
passing through the intersection of two of the input lines in
common; or (6) they form a non-degenerate regulus, with the
three input lines in the same ruling, and the transversals in
the other one.

Lemma 2 should not come as a surprise since the transver-
sals to three given lines satisfy three linear constraints and
thus form in general a rank-3 family (the degenerate con-
gruence is a rank-4 exception Veblen and Young (1910)).
Without additional assumptions, not much more can be said
in general, since Lemma 2 tells us that any three distinct
lines admit an infinity of transversals. When the lines are,
in addition, pairwise coplanar, cases 4 to 6 in Lemmma 2
are eliminated, and we obtain Proposition 1 as an immediate
corollary of this lemma.

2.2 The Analytical Point of View

2.2.1 Preliminaries

To translate the geometric results of the previous section into
analytical ones, it is necessary to recall a few basic facts
about projective geometry in general, and line geometry in
particular. Readers familiar with Plücker coordinates, the join
operator, etc., may safely proceed to Section 2.2.2. Given
some choice of coordinate system for some two-dimensional
projective space P2, points and lines in P2 can be identified
with their homogeneous coordinate vectors in R3. In addition,
if x and y are two distinct points on a line ξ in P2, we have
ξ = x×y. A necessary and sufficient condition for a point x
to lie on a line ξ is ξ ·x = 0, and two lines intersect in exactly
one point or coincide. A necessary and sufficient conditions
for three lines to intersect is that they be linearly dependent,
or Det(ξ1, ξ2, ξ3) = 0.

In three dimensions, given any choice of coordinate sys-
tem for a three-dimensional projective space P3, we can
identify any line in P3 with its Plücker coordinate vector
ξ = (u;v) in R6, where u and v are vectors of R3, and we
use a semicolon to indicate that the coordinates of u and v
have been stacked onto each other to form a vector in R6.
In addition, if x and y are two distinct points on some line
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ξ = (u;v) in P3, we have

u =

x4y1 − x1y4x4y2 − x2y4
x4y3 − x3y4

 , and v =

x2y3 − x3y2x3y1 − x1y3
x1y2 − x2y1

 . (1)

A Plücker coordinate vector is only defined up to scale, and
its u and v components are by construction orthogonal to
each other—this is sometimes known as the Klein constraint
u · v = 0. Let us consider the symmetric bilinear form
R6×R6 → R associating with two elements λ = (a; b) and
µ = (c;d) of R6 the scalar (λ|µ) = a·d+b·c. A necessary
and sufficient for a nonzero vector ξ in R6 to represent a line
is that (ξ|ξ) = 0, and a necessary and sufficient condition
for two lines λ and µ to be coplanar (or, equivalently, to
intersect) is that (λ|µ) = 0.

Let us denote the basis points of some arbitrary pro-
jective coordinate system by x0 to x4, with coordinates
x0 = (0, 0, 0, 1)T , x1 = (1, 0, 0, 0)T , x2 = (0, 1, 0, 0)T ,
x3 = (0, 0, 1, 0)T , and x4 = (1, 1, 1, 1)T . Points x0 to
x3 are called the fundamental points. The point x4 is the
unit point. Let us also define four fundamental planes pj
(j = 0, 1, 2, 3) whose coordinate vectors are the same as
those of the fundamental points. The unique line joining two
distinct points is called the join of these points and it is de-
noted by x ∨ y. Likewise, the unique plane defined by a line
ξ = (u;v) and some point x not lying on this line is called
the join of ξ and x, and it is denoted by ξ ∨x. Algebraically,
we have ξ∨x = [ξ∨]x, where [ξ∨] is the join matrix defined
by

[ξ∨] =

[
[u×] v

−vT 0

]
. (2)

A necessary and sufficient condition for a point x to lie on a
line ξ is that ξ ∨ x = 0.

2.2.2 Back to Transversals

Let us translate some of the geometric incidence constraints
derived in the previous section into algebraic ones. We as-
sume that some projective coordinate system is given, and
identify points, planes, and lines with their homogeneous
coordinate vectors. Let us consider three distinct lines ξj =

(ξ1j , . . . , ξ6j)
T (j = 1, 2, 3), and define

Dijk =

ξi1 ξi2 ξi3
ξj1 ξj2 ξj3
ξk1 ξk2 ξk3

(3)

to be the 3× 3 minor of the 6× 3 matrix [ξ1, ξ2, ξ3] corre-
sponding to its rows i, j, and k. A necessary and sufficient
condition for this matrix to have rank 2, and thus for the three
lines to form a flat pencil (Section 2.1), is that all the minors
T0 = D456, T1 = D234, T2 = D315, and T3 = D126 be
equal to zero.

Lemma 3 Given some integer j in {0, 1, 2, 3}, a necessary
and sufficient condition for ξ1, ξ2, and ξ3 to admit a transver-
sal passing through xj is that Tj = 0.

Proof Let us prove the result in the case j = 0. The proofs
for the other cases are similar. A necessary and sufficient
condition for a line δ = (u;v) to pass through x0 is that
v = 0 (this follows from the form of the join matrix). Thus a
necessary and sufficient condition for the existence of a line
δ passing through x0 and intersecting the lines ξj = (uj ;vj)

is that there exists a vector u 6= 0 such that (ξj |δ) = vj ·
u = 0 for j = 1, 2, 3, or, equivalently, that the determinant
T0 = D456 = |v1,v2,v3| be zero.

Combining Proposition 2 and Lemma 3 now yields the
following important result.

Proposition 2 A necessary and sufficient condition for three
lines ξ1, ξ2, and ξ3 to converge is that (ξi|ξj) = 0 for all
i 6= j in {1, 2, 3}, and that Tj = 0 for all j in {0, 1, 2, 3}.

Proof The condition is clearly necessary. To show that is is
sufficient, note that since the three lines are pairwise coplanar,
they either intersect in exactly one point (cases 1 and 2 of
Lemma 2), or are all coplanar, intersecting pairwise in three
distinct points, with all their transversals in the same plane
(case 3). But the latter case is ruled out by Lemma 3 and the
condition Tj = 0 for j = 0, 1, 2, 3 since the fundamental
points xj are by construction not all coplanar, and at least
one of them (and thus the corresponding transversal) does
not lie in the plane containing the three lines.

3 Converging Triplets of Visual Rays

3.1 Bilinearities or Trilinearities?

Let us now turn our attention from general systems of lines
to the visual rays associated with three cameras. As noted
earlier, it follows from Lemma 1 that the epipolar constraints
alone do not ensure that the corresponding viewing rays
intersect (Figure 1, right). On the other hand, the only cases
where they do not are 1) if the pinholes are not collinear,
when the corresponding rays lie in the trifocal plane 2) if the
pinholes are collinear, when the visual rays lie in any plane
containing the line joining the pinholes. (Figure 4).

As shown in Appendix II (Proposition A), and contrary to
the claim of (Ponce et al., 2005, Appendix), the trilinear con-
ditions Tj = 0 (j = 0, 1, 2, 3) associated with three visual
rays do not guarantee, on their own, that the rays intersect:
In fact, one can always construct a two-dimensional family
of triplets of non-intersecting visual rays passing through
three given non-collinear pinholes and satisfying these con-
straints. More generally, we are not aware of any fixed set of
four trilinearities can that can always be chosen to ensure the
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c
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β
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Fig. 4 Degenerate epipolar constraints associated with three images
when the three pinholes are collinear and the rays are coplanar but don’t
intersect in a common point.

convergence of the corresponding visual rays, which in turns
appears to contradict (Faugeras and Mourrain, 1995, Sec.
4.2.2) (also the discussion in Heyden and Astrom (1997)).
This apparent contradiction stems from the fact that both
Faugeras and Mourrain Faugeras and Mourrain (1995) and
Ponce et al. Ponce et al. (2005) characterize the convergence
of visual rays by the vanishing of certain trilinear reduced mi-
nors of a k×4 matrix, and have to (implicitly at times) resort
to general configuration assumptions to select a representa-
tive set of minors. Characterizing the convergence of triplets
of lines directly in terms of both binocular and trinocular
constraints, as in Proposition 2, avoids this difficulty.

3.2 Bilinearities and Trilinearities

By definition, for any choice of projective coordinate sys-
tem, the four fundamental points xj (j = 0, 1, 2, 3) are not
coplanar. When the three pinholes are not collinear, it is thus
always possible to choose a projective coordinate system
such that one of the fundamental points, say x0, does not lie
in the trifocal plane, and we obtain the following immediate
corollary of Proposition 2.

Proposition 3 Gven three cameras with non-collinear pin-
holes c1, c2, and c3, and any projective coordinate system
such thatx0 does not belong to the trifocal plane, a necessary
and sufficient for the three rays ξj = cj ∨ yj (j = 1, 2, 3) to
converge is that is that (ξi|ξj) = 0 for all i 6= j in {1, 2, 3},
and T0 = 0.

When the three pinholes are collinear (but of course dis-
tinct), the three cameras admit a single pencil of epipolar
planes, and three rays in epipolar correspondence are in fact
always coplanar (Figure 4). The trifocal constraints are nec-
essary in this case to ensure that the three lines intersect
in exactly one point. Note that, given three cameras with
collinear pinholes, one can always choose a projective coor-
dinate system such that the two fundamental points x0 and

β

π0

c2

c3

β

x0

c1

2

Fig. 5 For collinear pinholes, there exists a single scene plane π0 in the
pencil passing through the baseline β that containts x0 and for which
the condition T0 = 0 is ambiguous.

xj (for any j in {1, 2, 3}) and the baseline joining the three
pinholes are not coplanar. The following result characterizes
the fact that visual rays intersect in this setting.

Proposition 4 Given three cameras with collinear pinholes
c1, c2, and c3, and any projective coordinate system such that
the fundamental points x0 and x1 and the baseline β joining
the pinholes are not coplanar, a necessary and sufficient
condition for the three rays ξj = cj ∨ yj (j = 1, 2, 3) to
intersect is that is that (ξi|ξj) = 0 for all i 6= j in {1, 2, 3},
and T0 = Tj = 0 for some j 6= 0.

Proof The condition is clearly necessary. Because of the
epipolar constraints, the three rays must be coplanar, and
either intersect in three distinct points with all their transver-
sals in the same plane, intersect in a single point, or coincide
with the baseline. Unless the point x0 lies in the plane π0

that contains the rays (Figure 5), the first case is ruled out
by the condition T0 = 0. If x0 lies in π0, xj does not (by
construction), and the first case is ruled out by Tj = 0.

3.3 Epipolar and trinocular constraints

3.3.1 Non-Collinear Pinholes

We assume in this section that the three pinholes are not
aligned. In this case, we can always choose a projective
coordinate system such that the three fundamental points
distinct from x0 are the three camera centers—that is, cj =

xj for j = 1, 2, 3, and x0 does not lie in the trifocal plane.
With our choice of coordinate system, and the notation

yj = (y1j , y2j , y3j , y4j)
T , the three epipolar constraints can

be written as

(x1 ∨ y1|x2 ∨ y2) = 0

(x1 ∨ y1|x3 ∨ y3) = 0

(x2 ∨ y2|x3 ∨ y3) = 0

⇐⇒
y41y32 = y31y42
y41y23 = y21y43
y42y13 = y12y43

. (4)

Given these constraints, we know from Proposition 2 that
a necessary and sufficient conditions for the three visual
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rays to intersect is that T0 = 0 (the other three trilinearities
are trivially satisfied with our choice of coordinate system),
which is easily rewritten in our case as

y21y32y13 = y31y12y23. (5)

Note that y4j = 0 if and only if yj lies in p0, which is
also the trifocal plane in our case. As expected, it follows
immediately from Eqs. (4) and (5) that, unless y41 = y42 =

y43 = 0, that is, the observed point lies in the trifocal plane,
the epipolar constraints imply the trifocal ones. We now
need to translate Eqs. (4-5) to the corresponding equations
in image coordinates. Let us denote by Πj (j = 1, 2, 3) the
4 × 3 matrix formed by the coordinate vectors of the basis
points for the retinal plane of camera number j. The position
of an image point with coordinate vector uj in that basis is
thus yj = Πjuj . Let us denote by πT

ij the ith row of the
matrix Πj , and use superscripts to index coordinates, i.e., for
k = 1, 2, 3, πk

ij denotes the kth coordinate of πij .

Proposition 5 Given three cameras with non-collinear pin-
holes and hypothetical point correspondences u1, u2, and
u3, a necessary and sufficient condition for the three corre-
sponding rays to converge is that

uT
1 F12u2 = 0

uT
1 F13u3 = 0

uT
2 F23u3 = 0

where
F12 = π41π

T
32 − π31π

T
42

F13 = π41π
T
23 − π21π

T
43

F23 = π42π
T
13 − π12π

T
43

, and

(6)
(π21·u1)(π32·u2)(π13·u3) = (π31·u1)(π12·u2)(π23·u3).

(7)
Moreover, for generic image reference frames (see Ap-

pendix III Lemma A), we can assume thatπ1 = (π21;π31;π41),
π2 = (π12;π32;π42), and π3 = (π13;π23;π43), satisfy
the 6 homogeneous constraints

π3
21 = 0,

π3
31 = π3

41,

π3
32 = 0,

π3
12 = π3

42,

π3
13 = 0,

π3
23 = π3

43.
(8)

and are thus defined by three groups of 7 coefficients, each
one uniquely determined up to a separate scale. This is a
minimal, 18dof parameterization of trinocular geometry.

Proof Equations (6) and (7) are obtained immediately by
substitution in Eqs. (4) and (5). Together, they provide a
24dof parameterization of the trifocal geometry by the three
vectors πj = (π1j ;π2j ;π3j) (j = 1, 2, 3), each defined up
to scale in R9 by 8 independent parameters. Locating the
camera pinholes at the fundamental points xj (j = 1, 2, 3)
freezes 9 of the 15 degrees of freedom of the projective
ambiguity of projective structure from motion. It is possible
to exploit the remaining 6 degrees of freedom, and to impose
the constraints of Eq. (8) on the vectors πj .

Indeed, the general form of a projective transformQmap-
ping the three fundamental points xj onto themselves has 7
coefficients defined up to scale. Applying such a transform

to the matrices Πj (j = 1, 2, 3) defined in some arbitrary
projective coordinate system, and writing that the matrices
QΠj must satisfy the constraints of Eq. (8) yields a system of
6 homogeneous equations in the 7 nonzero entries ofQ. Note
that we can generate many different sets of homogeneous
constraints by choosing different sets of entries of the vectors
π1, π2, and π3. It can be shown that there is always some
choice for which the system defining Q admits a unique solu-
tion defined up to scale, and that this solution is nonsingular,
thus defining a valid change of coordinates. Details of the
proof can be found in Appendix III (Lemma A). Together,
Eqs. (6), (7) and (8) provide us with a minimal, 18dof param-
eterization of the trinocular geometry by the three vectors
π1, π2 and π3 now each defined up to scale in R9 by only 6
independent parameters.

To the best of our knowledge, the minimal parameteri-
zation of trinocular geometry proposed by Papadopoulo and
Faugeras Papadopoulo and Faugeras (1998) is the only other
one known so far to be one-to-one and parametric (other mini-
mal ones, e.g., Canterakis (2000); Torr and Zisserman (1997),
impose algebraic constraints). Contrary to Papadopoulo and
Faugeras (1998), our parameterization does not require the
use of a computer algebra system to impose rank constraints
(see Papadopoulo and Faugeras (1998) for details). In addi-
tion, our parameterization is symmetric, none of the cameras
playing a priviledged role.

Let us close this section by noting that Eq. (7) has an in-
teresting geometric interpretation: Any point with coordinate
vector u1 in the first image that matches points with coordi-
nate vectors u2 and u3 in the other two, must satisfy (7) and
thus belong to the “trinocular line” (our terminology):

τ 1 = [(π32 ·u2)(π13 ·u3)]π21− [(π12 ·u2)(π23 ·u3)]π31.

(9)
This should not come as a surprise since classical trifocal
geometry is defined in terms of line correspondences, and
Eq. (7) merely expresses the fact that the image point y1

lies on the projection τ 1 of the line τ 0 passing through x0

that intersects the rays passing through the other two image
points, y2 and y3. What is less well known is that the lines
τ 1 belong to the pencil generated by the lines π21 and π31,
which intersect at the point z1 = π21 × π31 of the first
image, i.e., the projection of x0 (and indeed, the line τ 1 is
not defined if either u2 or u3 are images of x0). The same
reasoning applies to the other two images.

3.3.2 Collinear Pinholes

Let us now assume that the three pinholes are collinear (as
noted in McGlone (2004), this case may be important in
practice, in aerial photography for example). Let us position
the two pinholes c1, c2 in x1 and x2, and the third pinhole,
c3, in x1 + x2. We are free to do this since this amounts to
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choosing c1 and c2 as the fundamental points of the baseline
joining the three pinholes, and c3 as its unit point. From
Eq. (4):

y41y32 = y31y42, y41y33 = y31y43, y42y33 = y32y43,

(10)
and write T0 = 0 and T3 = 0 respectively as

y31y32(y23 − y13) + y33(y31y12 − y21y32) = 0,

y41y42(y23 − y13) + y43(y41y12 − y21y42) = 0.
(11)

The other two minors T1 and T2 are zero with our choice of
coordinate system.

We can rewrite as before Eqs. (10) and (11) in terms of
the rows of the matrices Πj (j = 1, 2, 3). Given the special
role of y23 − y13 in Eq. (11), it is convenient to introduce
the vector ω3 = π23 − π13, and we obtain the following
characterization of the trinocular geometry.

Proposition 6 Given three cameras with collinear pinholes
and hypothetical point correspondences u1, u2, and u3, a
necessary and sufficient condition for the three corresponding
rays to converge is that

uT
1 F12u2 = 0

uT
1 F13u3 = 0

uT
2 F23u3 = 0

where
F12 = π41π

T
32 − π31π

T
42

F13 = π41π
T
33 − π31π

T
43

F23 = π42π
T
33 − π32π

T
43

, (12)

0 = (π31 · u1)(π32 · u2)(ω3 · u3)+

(π33 · u3)[(π31 · u1)(π12 · u2)− (π21 · u1)(π32 · u2)],

0 = (π41 · u1)(π42 · u2)(ω3 · u3)+

(π43 · u3)[(π41 · u1)(π12 · u2)− (π21 · u1)(π42 · u2)].
(13)

Moreover, for generic image reference frames (see Appendix
III Lemma B) we can assume that π1 = (π21;π31;π41),
π2 = (π12;π32;π42) and π3 = (ω3;π33;π43) satisfy the
8 homogeneous constraints

π3
21 = 0,

π3
31 = 0

π3
12 = 0,

π3
42 = 0,

ω1
3 = ω2

3 = ω3
3 = π3

33 = π3
43 (14)

and are thus defined by three groups of, respectively, 6, 6,
and 7 independent coefficients, each uniquely determined up
to a separate scale, for a total of 16 independent parameters.
This is a minimal, 16dof trinocular parameterization.

Proof Equations (12) and (13) are obtained immediately by
substitution in Eqs. (10) and (11). Together they provide a
24dof parameterization of the trifocal geometry by the three
vectors πj (j = 1, 2, 3), each defined up to scale in R9 by 8
independent parameters. Locating the camera pinholes in x1,
x2, and x1 + x2 freezes 7 of the 15 degrees of freedom of
the projective ambiguity of projective structure from motion.
Similar to the proof of Proposition 5, the remaining 8 degrees
of freedom can be used to impose the constraints of Eq. (14)
on the vectors πj (details can be found in Appendix III,

Lemma B). Together, Eqs. (12), (13) and (14) provide us with
a minimal, 16dof parameterization of the trinocular geometry
by the three vectors π1, π2 and π3 now each defined up to
scale in R9 by only 5, 5, and 6 independent parameters.

As in the case of non-collinear pinholes, the two trilinear
constraints (13) can be seen to express the geometric con-
dition that corresponding points in different images lie on
two “trinocular lines”. One can also verify that, in a fixed
image, these two sets of trinocular lines belong to the pencils
of lines through the projections of x0 and x3.

4 Implementation and Results

Propositions 5 and 6 can be used to estimate the trinocular
geometry, specifically the vectors πj associated with three
cameras, from at least six triplets of correspondences between
three images. In turn, this information can be used to recover
three-dimensional structure using triangulation.

We propose to minimize a “trinocular-epipolar” error,
given by the mean squared distance to the epipolar and
trinocular lines (9) for all of the image points (cf. below
for details). Initial values for the matricesΠj can be obtained
by estimating the projection matrices from six triplets of
matching points, using a projective model Carlsson (1995);
Quan (1995); Ponce et al. (1994). We have implemented this
method, for both non-collinear and collinear pinholes, and
compared it with bundle adjustment, and with a baseline that
considers only distances to epipolar lines, in order to measure
the contribution of trilinear constraints in practice. The next
sections contain our experimental results.

We wish to recall that bundle adjustment boils down to
the minimization of a “geometric distance error” Hartley
and Zisserman (2000), which measures the mean squared
distance of each given triplet to the nearest image points
which actually correspond, according to the current estimate
of the camera parameters1. For example, the contribution
of a triplet of image points u1,u2,u3, assuming estimated
parameters Π1, Π2, Π3 can be written as:

δ(u1,u2,u3 |Π1, Π2, Π3) =

min
(û1,û2,û3)

{d(u1, û1)2 + d(u2, û2)2 + d(u3, û3)2}

(15)
where (û1, û2, û3) are triplets that correspond forΠ1, Π2, Π3.
Despite being very natural, this error has the disadvantage
of not being directly computable from image data, since the
nearest corresponding triplet must be determined by solving
a separate optimization problem. Indeed, bundle adjustment
requires introducing a set of auxiliary variables that represent
the coordinates of the original unknown 3D points, which

1 In order to measure distances one must fix euclidean structures in
each image. Clearly, this is not an issue in practice.
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contribute to a total of at least 3n+ 18 degrees of freedom.
On the other hand, if we consider the “epipolar error” given
by

δe(u1,u2,u3 |Π1, Π2, Π3) =

3∑
i=1

d(ui, Ei,i+1(ui+1))2 + d(ui, Ei,i+2(ui+2))2,

(16)
where Eij(u) represents the epipolar line in the image i
corresponding to the point u in image j and addition is
done modulo 3, then δe can easily be computed from image
coordinates and camera parameters (for example using the
expressions in Propositions 5 and 6), so the overall mini-
mization problem only has 18 degrees of freedom (16 for
collinear pinholes). As we will see, the “trinocular-epipolar”
error defined in the next section can also be computed very
efficiently, and we will compare the effectiveness of these
three error functions using both synthetic and real data. As
it is the most meaningful error function, the geometric dis-
tance (15) will generally be used to evaluate the quality of
the solutions recovered using the different approaches.

Finally, we should point out that enforcing the constraints
for the minimal parameterizations (i.e., reducing the degrees
of freedom by imposing that the parameters Π satisfy (8)
and (14)) does not affect the accuracy of the reconstructions,
but often improves performance. In general, the magnitude
of this effect seems to be highly dependent on the dataset and
on the initial estimate of the configuration, so in our imple-
mentation we focused on comparing various error functions
and the quality of the reconstructions, rather than analyzing
the impact on efficiency of the minimal parameterizations.

4.1 Non-collinear pinholes

In the case of three cameras with non-collinear pinholes, we
define the trinocular-epipolar error as the average squared
distance between each image point, the three epipolar lines,
and one trinocular line (9), according to Proposition 5. More
precisely, the contribution of a triplet u1,u2,u3 is given by

δt(u1,u2,u3 |Π1, Π2, Π3) =

3∑
i=1

d(ui, Ei,i+1(ui+1))2 + d(ui, Ei,i+2(ui+2))2

+ d(ui, T
i+1,i+2
0 (ui+1,ui+2))2,

(17)

where addition is always modulo 3, and T i+1,i+2
0 (u,v) is the

trinocular line in the i-th image, as defined in (9). Note that
this error function can be easily computed from the expres-
sions in Proposition 5. As previously observed, T i+1,i+2

0 (u,v)

is actually a well-defined line if and only if x0 does not
project onto u or v in images j, k. We can guarantee this
condition by applying an appropriate homography of P3 that

brings x0 to project (using initial camera parameters) “very
far” from the given image data. In practice, we choose x0

to project at infinity in the three images (which is always
possible).

We first evaluate this approach on synthetic data, using
random camera matrices (simulating realistic extrinsic and
intrinsic parameters) and clouds of 20 random points (see
Figure 6), adding various amounts of Gaussian noise to the
projections. Our results are shown in Figure 7. We note that
the trinocular-epipolar error gives slightly better results than
the epipolar one, but bundle adjustment is the most accurate
(as one would expect since it actually minimizes the geomet-
ric distance error (15)). In other words, including the trilinear
constraint brings a slight improvement but does not seem to
be essential: indeed, we know that for non-collinear pinholes,
and three-dimensional points lying in general position, en-
forcing the epipolar constraints is sufficient for guaranteeing
correspondence. However, if we position the 3D points grad-
ually closer to the trifocal plane, we observe that the epipolar
error gives increasingly worse results, ultimately failing in
improving the initial reconstruction (Figure 8). In fact, when
the epipolar lines are close to being coincident, measuring
only epipolar distances can cause severe numerical instabili-
ties. On the other hand, using the trinocular-epipolar error and
bundle adjustment, the quality of the reconstruction seems to
be independent of the distance to the trifocal plane.2

We also evaluated the trinocular-epipolar approach on
real data, using three images from the “house dataset” (cour-
tesy of B. Boufama and R. Mohr). Figure 9 shows 38 corre-
spondences between the images from this dataset, and the
corresponding epipolar and trinocular lines, after camera
parameters were recovered using the trinocular-epipolar ap-
proach. Table 1 shows the average distances between the data
points and these lines. The mean distance to epipolar lines
is on the order of 1pixel, and comparable to that obtained by
classical techniques for estimating the fundamental matrix
from pairs of images on the same data (Forsyth and Ponce,
2003b, Ch. 8). Finally, Table 2 compares the results of the
different approaches, in terms of the geometric distance error.
In this case, we see that the reconstructions obtained using
the trinocular-epipolar and the epipolar approach are both
very accurate.

4.2 Collinear pinholes

For three cameras with collinear pinholes, the “trinocular-
epipolar” error is defined as the average squared distance
of each image point to the three epipolar lines and to two
“trinocular lines”, following Proposition 6:

2 We should point out that we could not place all the points exactly on
the trifocal plane, since the minimal reconstruction method we used for
initialization requires points to be in general position Carlsson (1995).
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(a) (b)

Fig. 6 Examples of synthetic data: non-collinear pinholes (left) and
collinear pinholes (right). The camera parameters defined random rota-
tions and translations for camera motions, and produced feasible image
sizes (around 500 pixels per dimension).
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Fig. 7 Non-collinear pinholes: quantitative results using synthetic
datasets (20 points) with different amounts of gaussian noise, in terms
of the geometric distance error. The different lines represent the error
of the initial approximation (Initial), and the errors of the solution re-
fined using the trinocular-epipolar (Tri-Epi), epipolar (Epi) and bundle
adjustment (Bundle) approach. The results are averaged over 10 runs.
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Fig. 8 Near-degenerate datasets: quantitative results using synthetic
datasets (20 points) with points lying near the trifocal plane, in terms of
the geometric distance error.

δt(u1,u2,u3 |Π1, Π2, Π3) =

3∑
i=1

d(ui, Ei,i+1(ui+1))
2 + d(ui, Ei,i+2(ui+2))

2

+ d(ui, T
i+1,i+2
A (ui+1,ui+2))

2 + d(ui, T
i+1,i+2
B (ui+1,ui+2))

2,

(18)

Epi12 Epi13 Tr1 Epi23 Epi21 Tr2 Epi31 Epi32 Tr3
0.81 0.81 1.03 0.94 0.78 0.79 0.75 0.86 1.28

Table 1 Average distances (in pixels) to epipolar and trinocular lines
for the house dataset (Figure 9). Here, “Epiij” refers to the distance be-
tween points in image i and the corresponding epipolar lines associated
with image j, and “Trj” refers to the distance between points in image
j and the corresponding trinocular line associated with the other two
images.

Fig. 9 Estimated epipolar and trinocular lines. Note that the two fami-
lies of epipolar lines associated with an image typically contain (near)
degenerate pairs (such as the pair shown in the first image): these can
be disambiguated using trilinearities.

Tri-Epi Epi Bundle adj
0.73 0.73 0.72

Table 2 Quantitative comparison between different approaches for the
house data-set (Figure 9), in terms of the geometric distance error
(measured in pixels).

where T i+1,i+2
A (u,v) and T i+1,i+2

B (u,v) are the trinocular
lines in the i-th image, defined by the trilinear constraints in
(13). Once again, the trinocular lines are well defined if and
only if x0 and x3 do not project onto the given image points:
in order to satisfy this condition, we select two points which
project very far from the image data, and apply a homography
of P3 which maps x0 and x3 to these points.

Figure 7 shows the results of our experiments using syn-
thetic data (20 points with various amounts of Gaussian noise
added to the projections). We see that in this case the epipo-
lar error fails in recovering the correct parameters, while the
trinocular-epipolar error is able to achieve essentially opti-
mal solutions. Indeed, we know that in the collinear case the
epipolar constraints are never sufficient to guarantee corre-
spondence.

Finally, we evaluate our approach on real data, using
three pictures taken from collinear viewpoints (allowing ro-
tations about the camera’s axis) and matching points using
SIFT descriptors (Figure 11). Table 3 shows the average dis-
tances between the data points and the epipolar and trinocular
lines for the dataset with collinear-pinholes and Figure 12
displays the estimated epipolar and trinocular lines. Finally,
Table 4 shows our quantitative results, which confirm that for
collinear pinholes the trilinear components of the error are
actually necessary.
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Fig. 10 Collinear pinholes: Quantitative results using synthetic datasets
(20 points) with different amounts of gaussian noise, in terms of the
geometric distance error. The results are averaged over 10 runs.

Tri-Epi Epi Bundle adj
0.68 5.33 0.67

Table 4 Quantitative comparison between different approaches for the
office data-set (Figure 11), in terms of the geometric distance error
(measured in pixels).

5 Discussion

Our analysis has given us a better understanding of trinocu-
lar geometry. In particular, we were able to give necessary
and sufficient conditions for point correspondence, based on
bilinear and trilinear constraints. To express these conditions
analytically we exploited a model for trifocal configurations
that led to a family of minimal parameterizations of trinocu-
lar geometry, for both non-collinear and collinear pinholes.
Although we did not evaluate the impact of such parameteri-
zations on reconstruction algorithms in practice, we believe
that these could offer a simple and practical approach to
eliminate unnecessary degrees of freedom when optimizing
over the set of trinocular structures. We also presented an
interesting error function for trifocal parameter estimation,
which is based on epipolar and “trinocular” lines, and can be
used to reconstruct camera matrices efficiently (not requiring
the introduction of auxiliary variables, contrary to bundle
adjustment). Finally, our experiments clearly confirm that
enforcing epipolar constraints can correctly recover camera
parameters only for non-degenerate configurations, while for
collinear pinholes, or for images of 3D points lying close to
the trifocal plane, trilinear conditions are necessary.

One may also wonder whether the fact that four lines
intersect in exactly one point can also be characterized ge-
ometrically or analytically. Indeed, there exists a quadri-
focal tensor expressing the corresponding four-view con-
straints Triggs (1995), and it has been shown to be redundant
with the epipolar and trifocal constraints. In retrospect, it is

geometrically obvious that a necessary and sufficient con-
dition for four lines to intersect in exactly one point is that
any two triplets of lines among them also does: this follows
immediately from the fact that these triplets have two lines
in common, so the point where these two lines intersect is
aso the point where all four lines intersect. In other words,
there is no need to write any equation to realize that consid-
ering four lines together instead of a set of triplets does not
add anything to the geometric picture in this case. On the
other hand, the natural algebraic constraints expressing that
four lines are linearly dependent yield a set of quadrilinear
constraints. However, one can show that the elements of a
rank-3 family of lines do not necessarily intersect in a single
point (in general they form a regulus). Thus (this kind of)
quadrilinearities, on their own, are neither necessary nor suf-
ficient, to characterize the fact that the corresponding visual
rays intersect. This is intriguing, and perhaps may be a step
toward future work.

Acknowledgments. This work was supported in part by the
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Fig. 11 Three pictures taken from collinear viewpoints, and point correspondences obtained by matching SIFT descriptors.

Fig. 12 Estimated epipolar and trinocular lines. Note that the pairs of epipolar lines essentially coincide, while trinocular lines are always transversal.

Epi12 Epi13 Tr1A Tr1B Epi23 Epi21 Tr2A Tr2B Epi31 Epi32 Tr3A Tr3B
0.60 0.19 0.49 2.95 0.74 0.76 0.77 0.74 0.21 0.66 2.80 0.84

Table 3 Average distances (in pixels) to epipolar and trinocular lines for the collinear pinhole dataset (Figure 11). Here, “Epiij” refers to the
distance between points in image i and the corresponding epipolar lines associated with image j, and “TrjA” and “TrjB” refer to the distances
between points in image j and the corresponding two trinocular lines associated with the other two images.
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Appendix I: Deriving Trilinearities from the Join Matrix

In this section, we recall for completeness the construction of
trilinearities characterizing the convergence of three rays pro-
posed in Ponce et al. (2005). Contrary to the characterization
of Proposition 3 in the main body of this paper, this construc-
tion is based on an analysis of the join matrices associated
with these rays, and it relies on implicit general configuration
assumptions that we spell out along the way.

The join matrix [ξ∨] associated with a line ξ has rank
2. This is geometrically obvious since the planes passing
through a line form a one-dimensional pencil. This also fol-
lows immediately from the analytical definition of [ξ∨] using
the Klein constraint. Let us denote by ξ̄Ti (i = 1, 2, 3) the
first three rows of [ξ∨] and by ξ̄T0 its fourth row. The rows ξ̄Ti
(i = 0, 1, 2, 3) can be interpreted as the coordinate vectors
of four planes in the pencil with axis ξ, such that plane ξ̄i
contains the fundamental point xi. This follows from the fact
that ξ̄i = [ξ∨]Txi. Indeed, since [ξ∨] is skew-symmetric, we
also have ξ̄i = −[ξ∨]xi = −(ξ∨xi), i.e., ξ̄i contains ξ and
xi. It follows that a necessary and sufficient condition for two
rows ξ̄i and ξ̄j of the join matrix to be linearly independent
is that ξ and the line joining xi and xj do not intersect.

Now, a necessary and sufficient condition for three lines
λ, µ and ν to intersect in a point x is that the homogeneous
linear system of 12 equations in 4 unknowns obtained by
stacking the corresponding join matrices and defined by

[λ∨]

[µ∨]

[ν∨]

x = 0 (19)

admit a non-trivial solution, or equivalently, that all the 4× 4

minors of the corresponding 12× 4 matrix be zero.
We will assume in the rest of this section that the lines

of interest are in general position relative to the fundamental
points, that is, none of them intersects the line joining two
fundamental points. It follows that any two rows of the corre-
sponding rank-2 join matrices are linearly independent. Thus,
for example any row of [λ∨] can be written as unique linear
combination of, say, λ̄T

1 and λ̄T
2 , and none of the coefficients

λi is equal to zero.
The 4×4 minors of the 12×4 matrix of Eq. (19) come in

two shapes: (1) minors with two rows associated with one of
the three lines, and two associated with another one; and (2)
minors with two rows associated with one line, and one each
from the other two lines. Minors of type (1) only involve two
lines and, as shown below, boil down to bilinear constraints.
As noted in Ponce et al. (2005) and shown below for com-
pleteness, the minors of type (2) are linear combinations of
trilinearities.

Let us consider for example the minor associated with
the 4×4 matrix formed by any two rows of [λ∨] and any two
rows of [µ∨]. Under our assumptions, the first two rows of

Fig. 13 When a line that intersects two planes that contain two other
lines, the intersection (blue line) of these two planes is a transversal to
the three lines.

this matrix completely determine λ, and the other two com-
pletely determine µ, thus a necessary and sufficient condition
for the minor to be zero is that these two lines intersect or
equivalently (λ|µ) = 0. This is easily verified analytically.
For example, the minor of the matrix formed by the first
two rows of [λ∨] and the first two rows of [µ∨] is equal to
−λ3µ3(λ|µ). According to our general position assumption,
it follows that a necessary and sufficient condition for this
minor to be zero is that λ and µ intersect.

Let us now turn to minors involving two rows from one
join matrix, say [λ∨], and one row each from the other two,
and define

Aijkl =
1

λ3
Det


λ̄
T
i

λ̄
T
j

µ̄T
k

ν̄T
l

 . (20)

A simple calculation shows that

A1211 = −D234,

A1222 = −D315,

A1212 +A1221 = D134 −D235,

A1212 −A1221 = λ3(µ|ν)− µ3(ν|λ)− ν3(λ|µ).

(21)

These four “reduced minors” are therefore trilinear in the
Plücker coordinates of the three lines. They are in general lin-
early independent, but they verify some algebraic constraints.

Recall from Section 2.2.1 that δ̄i is the plane passing
through the line δ and the fundamental point xi. The minor
A12kl thus characterizes the fact that the line where µ̄k and
ν̄l intersect is a transversal to the three lines λ, µ, and ν
(Figure 13).

Under our general position assumption, and because of
the multilinearity of determinants, any of the reduced minors
can be written as a linear combination ofD234 = T1,D315 =

T2, A1212, and A1221. This is for example the case of the
reduced minors T0 = D456, and T3 = D126, and we can
write

T0 = a0T1 + b0T2 + c0A1212 + d0A1221,

T3 = a3T1 + b3T2 + c3A1212 + d3A1221,
(22)
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and it follows that all trilinearities can be written as linear
combinations of the constraints Tj = 0 (j = 0, 1, 2, 3) when
c0d3 − c3d0 6= 0. As shown in the next section, and contrary
to the claim of Ponce et al. (2005), this may not be the case.

Appendix II: Are Trilinearities Alone Sufficient for Con-
vergence?

We show in this section that the contraints Tj = 0 (j =

1, 2, 3), alone, do not guarantee that the corresponding rays
converge (Proposition A). On the other hand, there exist in
general four trilinearities among those defined in the previ-
ous section that do guarantee convergence (Proposition B).
In turn, this implies that all trilinearities cannot always be
expressed as linear combinations of the contraints Tj = 0

alone.

Trilinearities that don’t Guarantee Convergence

Proposition A. Given three pinholes in general position,
there exists a two-dimensional family of triples of non-intersecting
viewing rays going through these pinholes and satisfying the
four trilinearities Tj = 0 for j = 0, 1, 2, 3.

Proof Let us assume some fixed projective coordinate sys-
tem. A quadric surface that contains the fundamental points
xi (i = 0, 1, 2, 3) satisfies the equation

ax1x2+bx1x3+cx1x4+dx2x3+ex2x4+fx3x4 = 0. (23)

It follows that, given the position of three pinholes c1, c2,
and c3, there exists in general a non-empty, two-parameter
family of quadrics passing through these three points and
the four fundamental points, and satisfying the correspond-
ing three instances of Eq. (23) in the six unknowns a to f .
This family of quadrics corresponds to a non-empty two-
dimensional subspace Q of the projective space P5 equipped
with homogeneous coordinates (a, b, c, d, e, f).

Among these quadrics, the (nondegenerate) ruled ones
verify the constraint that the associated symmetric matrix

A =


0 a b c

a 0 d e

b d 0 f

c e f 0

 (24)

has two positive and two negative eigenvalues. Since the
matrix is symmetric its eigenvalues are real. Furthermore,
they are the roots of the characteristic polynomial

λ4 − (a2 + b2 + c2 + d2 + e2 + f2)λ2

−2(abd+ ace+ bcf + def)λ

+(a2f2 + b2e2 + c2d2 − 2abef − 2acdf − 2bcde).
(25)

Let ai denote the coefficient of the monomial of degree i of
this polynomial. Since a4 = 1, the product of the roots is
a0 = a2f2 + b2e2 + c2d2 − 2abef − 2acdf − 2bcde, and
their sum is −a3 = 0. In particular, a sufficient condition for
the quadric to be ruled is that a0 > 0 since, in this case, none
of the roots can be zero, and, since their sum is zero, at least
one of them is negative and another one positive, forcing two
of the roots to be positive and two negative, since otherwise
their product would be negative.

Under a general configuration assumption, to be made
explicit in a minute, there always exists a nonempty open
subset O of Q such that a0 > 0 for any point in O: Indeed,
taking c = 0 defines a non-empty projective subspace Q′ of
Q, such that a0 = (af − be)2 for any point in Q′. In general,
Q′ is one-dimensional (a straight line), and it either intersects
the quadric hypersurface H ′ defined by af − be = 0 in
zero, one, or two points (we say that we are in a general
configuration), or it is entirely contained in that hypersurface.
Assuming we are in a general configuration, the complement
of Q′ ∩H ′ in Q′ is open, and contains at least one point q
where a0 > 0. The value of a0 for any point in a small enough
open neighborhood O of q in Q is also strictly positive. Note
that Q′ may be of dimension greater than one if some of the
equations defining it are redundant, but this only relaxes the
general configuration assumption further.

Let us give an example. Assume that the three camera
centers are c1 = (1, 0, 1, 1)T , c2 = (0, 1, 1, 1)T , and c3 =

(1, 1, 0, 1). It is easy to show that the general form of Q in
this case is

ax2(x1 + x3 − x4) + bx3(x1 + x2 − x4)

+c[x4(x1 − x2 − x3) + 2x2x3] = 0,
(26)

which is indeed a two-parameter family of nondegenerate
ruled quadrics with a0 = 4c(a + c)(b + c)(a + b + c) > 0

when a, b, and c are, for example, all strictly positive. It is
also easy to verify that none of the lines joining two of the
optical centers, or two of the fundamental points lie on Q.

The rulings of the quadric xTAx passing through a given
point x have a direction v that satisfies

x′1v1 + x′2v2 + x′3v3 = 0,

av1v2 + bv1v3 + dv2v3 = 0,
(27)

where x′ = Ax. Writing v1 = −(x′2v2 + x′3v3)/x′1 and
substituting in the second equation yields

ax′2v
2
2 + (ax′3 + bx′2 − dx′1)v2v3 + bx′3v

2
3 = 0. (28)

This equation can be solved for v2/v3 if |ax′2| > |bx′3|, and
for v3/v2 otherwise. Note that in our example, we have d =

a+ b+ 2c, e = −a− c, and f = −b− c.
Under our general configuration assumption, there exists

a two-dimensional family of nondegenerate ruled quadrics
satisfying a0 > 0, and for each one of them, there exists one
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line δj passing through each pinhole cj (j = 1, 2, 3) in one
of the two rulings of the quadric. The lines δ1, δ2, and δ3 do
not intersect each other (unless two of them coincide, which
is not the case in our example), but are all intersected by each
one of the lines of the second ruling that pass through the four
fundamental points (again, no two of these lines coincide in
our example), and thus satisfy the corresponding trilinearities
(Lemma 3). (Note that a second set of three lines passing
through the pinholes and four transversals passing through
the the fundamental points can be obtained by inverting the
roles of the two rulings.)

In other words, trilinearities alone do not guarantee that
the associated correspondences are correct.

Figure 14 shows an example, where the three camera cen-
ters are c1 = (1, 0, 1, 1)T , c2 = (0, 1, 1, 1)T , and c3 =

(1, 1, 0, 1). It is easy to show that the general form of a
quadric surface passing through these pinholes and the fun-
damental points is

ax2(x1 + x3 − x4) + bx3(x1 + x2 − x4)

+c[x4(x1 − x2 − x3) + 2x2x3] = 0,
(29)

which is indeed a two-parameter family of nondegenerate
ruled quadrics when a, b, and c are, for example, all strictly
positive. It is also easy to verify that none of the lines joining
two of the optical centers, or two of the fundamental points
lie on Q.

Trilinearities that do Guarantee Convergence

Proposition B. A sufficient condition for three distinct linesλ,
µ, ν in general position to converge is that the trilinearities
corresponding to the reduced minors Ajkjj , Ajkjk, Ajkkj

and Ajkkk vanish for some 0 ≤ j < k ≤ 3.
We suppose as before in the rest of this section that our

three lines are distinct, and that the line joining the funda-
mental points xj and xk (0 ≤ j < k ≤ 3) does not intersect
µ or ν. This implies that any two rows of any of the join
matrices are linearly independent, and in particular that they
completely determine the corresponding line. This implies as
well that the planes µ̄j and µ̄k (resp. τ̄ j and τ̄ k) are distinct
for k 6= j.

Proof Let us first note that the conditionAjkjj = Ajkkk = 0

characterizes the fact that the line λ intersects the planes
µ̄j = µ ∨ xj and τ̄ j = ν ∨ xj . The condition Ajkjk =

Ajkkj = 0, on the other hand, characterizes the fact that λ
intersects the planes µ̄j = µ ∨ xj and τ̄ k = ν ∨ xk.

Let us suppose that the lines µ and ν are skew to each
other. This implies that the planes µ̄j and τ̄ k are distinct
(even if k = j) since the lines µ and ν respectively belong to
these two planes. It follows that the six linesµ, ν, δj , δk, δjk
and δkj are the edges of a proper tetrahedron. In particular,

δ
δk

jk

ν
xk

zνk zk

µkδkj

µ
δj

xjµ
ν

j

j
ν

xj

zj
µ

j

Fig. 15 Transversals corresponding to different minors. See text for
details.

δj and δk (resp. δjk and δkj) are skew to each other. This is
the case depicted in Figure 15.

Suppose now that the line λ intersects δj , δk, and δjk.
Since it intersects δj and δjk, this line must lie in their com-
mon plane µ̄j , or pass through their intersection zj on the
line ν. Likewise, since λ intersects δk and δjk, this line
must lie in their common plane τ̄ k or pass through their
intersection zk on µ.

These four possibilities boil down to three distinct cases:
the line λ may either (1) coincide with δjk (this corresponds
to λ lying in both µ̄j and τ̄ k or, equivalently, passing through
both zj and zk), (2) belong to the flat pencil of lines passing
through zj in the plane τ̄ k, or (3) belong to the flat pencil of
lines passing through zk in the plane µ̄j .

If we further assume that λ intersects δkj , case (1) is
ruled out by the fact that δjk and δkj are skew to each other.
Case (2) is ruled out by the fact that the only line in the flat
pencil of lines passing through zj in τ̄ k that intersect δkj is
ν itself, which is inconsistent with our hypothesis that the
three lines λ, µ, and ν are distinct. Case (3) is also ruled out
by the fact that the only line in the flat pencil of lines passing
through zk in µ̄j that intersect δkj is µ itself.

Therefore our hypotheses are inconsistent and the two
lines µ and ν must be coplanar.

Thus, let us assume from now on that these two lines
intersect in some point z (uniquely defined since they are
distinct), and examine first the case where µ̄j and τ̄ k coincide
(and thus do not define a unique line δjk). In this case, we
have δj = µ̄j ∧ τ̄ j = τ̄ k ∧ τ̄ j = ν, δk = µ̄k ∧ τ̄ k =

µ̄k ∧ µ̄j = µ. In particular, a line λ intersecting δj = ν and
δk = µ must either intersect their common plane µ̄j = τ̄ k

transversally, and pass through z (in which case the three
lines converge), or lie in that plane.

In the latter case, the three lines λ, µ, and ν are coplanar.
Since µ and ν are distinct lines, the planes µ̄k and τ̄ j cannot
coincide too, and it follows that the line δkj is uniquely
defined and intersects the plane µ̄j = τ̄ k transversally in z
(if it lied in that plane, the two lines µ and ν would coincide
with δkj and each other). Since λ intersects δkj it must thus
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Fig. 14 Ambiguity locus of trilinearities. Top: Three camera rays and their transversals passing through the fundamental points. Bottom: A
two-dimensional family of non-intersecting triplets of rays going through the camera centers and satisfying the trilinearities.

pass through z, ensuring the convergence of the three lines
λ, µ and ν.

A similar line of reasoning shows that the three lines
also converge when µ̄k and τ̄ j coincide, µ̄j and τ̄ j coin-
cide, or µ̄k and τ̄ k coincide. We are thus left with one final
case, where the four planes µ̄j , µ̄k, τ̄ j , and τ̄ k are pairwise
distinct, and the two lines µ and ν intersect in the point z.
In this case the four lines δj , δk, δjk, and δkj are uniquely
defined, and they intersect in z. They do not all lie in the
same plane: for example δj and δjk lie in µ̄j , and δj and δkj
lie in τ̄ j . Thus for λ to intersect these four lines, it must also
pass through z, and the three lines λ, µ, and ν converge.

Appendix III: Minimal Parameterizations

Non-Collinear Pinholes

For general (non-collinear) pinholes, it is well known and
easy to see that the trinocular geometry has 18 degrees of free-
dom: 11× 3 independent elements in the projection matrices,
minus 15 degrees from the freedom of choice of projective
reference. Considering equations (6) and (7), we notice that
none of the constraints involve elements πjj , for j = 1, 2, 3,
i.e. they don’t involve elements on the j-th line of Πj : this is
due to the fact that “moving” the basis points of the retinal
planes along the lines passing through the associated camera
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pinholes (effectively changing retinal planes) does not affect
the algebraic description of the cameras. Thus, we see that
just by positioning the pinholes in the fundamental points
x1,x2,x3 we obtain a 24 degree of freedom parameteriza-
tion; we will use the remaining six degrees of freedom to
reduce the parameters to the minimal number.

We will say that three non-collinear cameras are “in gen-
eral configuration” if no two fundamental points in different
retinal planes correspond. This condition obviously does not
depend on the projective coordinate system of P3, but one
can always apply a general change of coordinates in the three
retinal planes in order to guarantee this form of generality.

In the following, we use the same notation introduced in
the main body of the paper.

Lemma 4 Three non-collinear cameras, with pinholes in
x1,x2,x3, are in general configuration if and only if for all
permutations (i, j, h) of (1, 2, 3)

det

[
πk
hi π

k
4i

πl
hj π

l
4j

]
6= 0 (30)

holds for all k, l ∈ {1, 2, 3}.

Proof One easily verifies that the condition det

[
πk
hi π

k
4i

πl
hj π

l
4j

]
=

0 expresses the fact that the lines xi × Πk
i and xj × Π l

j

intersect.

Proposition 7 Given three cameras with non-collinear pin-
holes in general configuration, it is possible to find a pro-
jective coordinate system of P3 setting the pinholes in the
fundamental points x1,x2,x3, and such that, up to permuta-
tion of the plane coordinates, the basis points of the retinal
planes are such that

π3
21 = 0,

π3
31 = π3

41,

π3
32 = 0,

π3
12 = π3

42,

π3
13 = 0,

π3
23 = π3

43.
(31)

In other words, we can assume that the Πj matrices, for
j = 1, 2, 3 are of the following form:

Π1 =


X X X

∗ ∗ 0

∗ ∗ 1

∗ ∗ 1

 , Π2 =


∗ ∗ 1

X X X

∗ ∗ 0

∗ ∗ 1

 , Π3 =


∗ ∗ 0

∗ ∗ 1

X X X

∗ ∗ 1


(32)

where the “∗” indicate unconstrained elements, that yield an
18 dof parametrization.

Proof Once we set the pinholes in the fundamental points xj

(j = 1, 2, 3), the general form of a projective transformation
Q that maps the points x1, x2, and x3 onto themselves is

Q =


α 0 0 κ

0 β 0 λ

0 0 γ µ

0 0 0 ν

 , (33)

where α, β, γ, ν are nonzero scalars. Let us now show that we
can indeed find a matrix Q that will transform the matrices
Πj so as to satisfy the constraints of Eq. (31). In the original
coordinate system, we have

QΠj =


απT

1j + κπT
4j

βπT
2j + λπT

4j

γπT
3j + µπT

4j

νπT
4j

 , (34)

which allows us to rewrite the constraints of Eq. (31) on
the transformed matrices Πj as a system of 6 homogeneous
equations in the 7 nonzero entries of Q that can be separated
into three groups of two:[

π3
12 π

3
42

π3
13 π

3
43

] [
α

κ

]
= ν

[
π3
42

0

]
,

[
π3
23 π

3
43

π3
21 π

3
41

] [
β

λ

]
= ν

[
π3
43

0

]
,

[
π3
31 π

3
41

π3
32 π

3
42

] [
γ

µ

]
= ν

[
π3
41

0

]
.

(35)

The 2× 2 determinants involved in these equations are
nonzero, because of the general configuration assumption.
Thus there will be a unique solution defined up to scale. The
solution yields nonzero values for α, β, γ, ν, determining a
valid homography defined by the matrix Q, if the elements
π3
41, π3

42 and π3
43 are non-zero. This can always be assumed

to be true, up to permuting columns of the Πj matrices, since
these must have at least one non-zero element on the fourth
row.

Collinear Pinholes

Assuming collinear pinholes, the degrees of freedom for
the trinocular geometry reduce to 16: indeed, the first two
camera matrices have 22 independent parameters, while the
third one only 9 since it’s center is constrained on a line (two
conditions); this means 31−15 = 16 independent parameters
by removing projective ambiguity. Fixing the camera centers
in x1, x2 and x1 + x2 reduces the number of parameters to
21, and we use the remaining degrees of freedom to impose
constraints on the entries of the matrices Πj (j = 1, 2, 3).



18 Jean Ponce et al.

We say that three cameras with collinear pinholes are in
general position if no two basis vectors of the retinal planes
give rise to a correspondence and the line containing the
pinholes does not intersect the third retina plane on the line
x+ y+ z = 0. Once again this condition does not depend on
the choice of coordinates in P3, but can be assumed true up
to a generic change of coordinates in the three retina planes.

Lemma 5 Three collinear cameras, with pinholes in x1,x2,
x1 + x2, are in general configuration if and only if for all
permutations (i, j, h) of (1, 2, 3)

det

[
πk
hi π

k
4i

πl
hj π

l
4j

]
6= 0 (36)

holds for all k, l ∈ {1, 2, 3} and the matrixπ1
33 − π2

33π
1
43 − π2

43

π2
33 − π3

33π
2
43 − π3

43

π3
33 − π1

33π
3
43 − π1

43

 (37)

has rank 2.

Proof As for the non-collinear case, the condition

det

[
πk
hi π

k
4i

πl
hj π

l
4j

]
= 0 (38)

expresses the fact that the lines xi×Πk
i andxj×Π l

j intersect.
Note that the matrix (37) cannot have rank 0, or the third

retina plane would contain c3 = x1 + x2; if it had rank 1, it
would mean that the unique solution (x, y, z) to

[
π1
33 π

2
33 π

3
33

π1
43 π

2
43 π

3
43

]xy
z

 = 0 (39)

satisfies x+ y + z = 0: indeed, any linear relation between
the first two rows of (37) can be used to find a solution of
(39) with x + y + z = 0. These coordinates represent the
point in the the retinal plane such that x3 = x4 = 0, i.e., the
intersection with the line generated by the camera pinholes.

Proposition 8 Given three cameras with collinear pinholes
in general configuration, it is possible to find a projective co-
ordinate system of P3 setting the pinholes in the fundamental
points x1,x2,x1 + x2, and such that the basis points of the
retinal planes are such that

π3
21 = 0,

π3
31 = 0

π3
12 = 0,

π3
42 = 0,

ω1
3 = ω2

3 = ω3
3 = π3

33 = π3
43 (40)

In other words, we can assume that the Πj matrices, for
j = 1, 2, 3 are of the following form:

Π1 =


X X X

∗ ∗ 0

∗ ∗ 0

∗ ∗ 1

 , Π2 =


∗ ∗ 0

X X X

∗ ∗ 1

∗ ∗ 0

 ,

Π3 =


X X X

X + 1 X + 1 X + 1

∗ ∗ 1

∗ ∗ 1


(41)

where the “∗” indicate unconstrained elements, that yield a
16 dof parametrization.

Proof Once we set the pinholes in the fundamental points
x1, x2 and x1 + x2, the general form of a projective trans-
formation Q that maps these points onto themselves is

Q =


α 0 β γ

0 α δ ε

0 0 λ µ

0 0 ν τ

 , (42)

with 9 parameters defined up to scale, or 8 independent pa-
rameters. Let us show that, as before, we can indeed find a
matrix Q that will transform the matrices Πj so as to satisfy
the constraints of Eq. (40). In the original coordinate system,
we have

QΠj =


απT

1j + βπT
3j + γπT

4j

απT
2j + δπT

3j + επT
4j

λπT
3j + µπT

4j

νπT
3j + τπT

4j

 , (43)

which allows us to rewrite the constraints of Eq. (40) on the
transformed matricesΠj as a system of 8 homogeneous equa-
tions in the 9 distinct nonzero entries of Q. These equations
can be separated into two groups:


π3
33 − π2

33π
3
43 − π2

43π
2
33 − π3

33π
2
43 − π3

43

π3
33 − π1

33π
3
43 − π1

43π
1
33 − π3

33π
1
43 − π3

43

π3
32 π3

42 0 0
0 0 π3

31 π3
41



β
γ
δ
ε

=α

ω3
3 − ω2

3

ω3
3 − ω1

3

−π3
12

−π3
21

,
(44)

π3
31 π

3
41 0 0

0 0 π3
32 π3

42

π3
33 π

3
43 −π3

33 −π3
43

π3
33 π

3
43 π3

33 π3
43



λ
µ
ν
τ

 = (αω1
3+(δ−β)π1

33+(ε−γ)π1
43)


0
0
0
2

,
(45)

where ω3 = π23 − π13 in the original coordinate system.
The matrix from the first system is invertible, since with
elementary column operations it reduces to

0 0 π2
33 − π3

33π
2
43 − π3

43

0 0 π1
33 − π3

33π
1
43 − π3

43

π3
32π

3
42 0 0

π3
31π

3
41 π3

31 π3
41

 (46)
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which is invertible because of the general position condition.
The matrix in equation (45) is also invertible, since using
elementary row operations it reduces to

π3
32 π

3
42 0 0

π3
33 π

3
43 0 0

0 0 π3
31 π

3
41

0 0 π3
33 π

3
43

 . (47)

Thus, for every value of α, we obtain a unique solution
[α, β, γ, δ, ε, λ, µ, τ ]. We now need to show that the matrix
Q defined by this solution represents an actual homography.
Since the determinant of Q is α(λτ − µν), and we can as-
sume that α 6= 0, we need to show that λτ −µν 6= 0. Indeed,
from the form of (41) we note that[

λ µ

ν τ

] [
π3
31

π3
41

]
= κ1

[
1

0

]
[
λ µ

ν τ

] [
π3
32

π3
42

]
= κ2

[
0

1

] (48)

for κ1, κ2 6= 0 (or the retinal planes would pass through
the pinholes). Finally, since in the new coordinate vectors we
have π3

41 6= 0, π3
32 6= 0, ω1(= ω2 = ω3) 6= 0, we can always

normalize the Πj matrices so that these values are equal to 1.
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