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Counterflow in a doubly superfluid mixture of Bosons and Fermions

F. Chevy1
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CNRS, UPMC-Sorbonne Universités, Collège de France

In this article, we calculate the friction between two counter-flowing bosonic and fermionic super-
fluids. In the limit where the boson-boson and boson-fermion interactions can be treated within the
mean-field approximation, we show that the force can be related to the dynamical structure factor
of the fermionic component. Finally, we provide asymptotic expressions for weakly and strongly
attractive fermions and show that the damping rate obeys simple scaling laws close to the critical
velocity.

PACS numbers: 67.85.-d, 67.10.-j, 67.85.Pq, 67.85.De

I. INTRODUCTION

The onset of frictionless flow in quantum fluids is prob-
ably one of the most intriguing macroscopic manifes-
tations of quantum mechanics. Recent experiments on
Bose-Fermi superfluid mixtures gave a new twist to this
old question by probing the critical velocity of a super-
fluid counterflow [1]. When two miscible superfluids flow
through each-other, Castin et al. suggested a generaliza-
tion of the celebrated Landau criterion where superfluid-
ity is destroyed by the shedding of a pair of elementary
excitations in the two systems [2]. Later-on, this scenario
was supported by the study of the lifetime of the quasi-
particles [3, 4] or by the calculation of the hydrodynamic
spectrum [5].

The results put forward in [2] were based on heuristic
arguments and were focusing on the velocity threshold
above which the counter-flow is damped. In this work,
we provide a full microscopic treatment of the friction in
a superfluid counterflow and we determine the explicit
velocity dependence of the damping force above the crit-
ical velocity. Assuming that the boson-boson and boson-
fermion interactions can be treated within the mean-field
approximation, we show that the force can be related to
the dynamic structure factor of the fermionic superfluid.
Although the general expression of the structure factor
of an attractive Fermi gas is not known exactly in the
crossover between the Bardeen-Cooper-Schrieffer (BCS)
and molecular Bose-Einstein Condensate (BEC) regimes,
we provide asymptotic expressions in the limits of weak
and strong interactions where the fermionic component
behaves respectively as an ideal Fermi gas and an hydro-
dynamic Bose-Einstein condensate of dimers [6]. We find
that close to the critical velocity, the force obeys simple
scaling laws, with exponent depending on the value of
the fermion-fermion scattering length.

II. GENERAL SETTING

We consider a mixture between a fermionic superfluid
and a weakly interacting Bose-Einstein condensate mov-
ing at velocities Vf and Vb respectively. The Hamiltonian

of the system can be written as

Ĥ = Ĥb + Ĥf + Ĥbf , (1)

where Ĥb,f are the Hamiltonians of the bosons and the

fermions and Ĥbf describes the coupling between the two
species. In the mean-field approximation, we have

Ĥbf = gbf

∫
d3r

∑
σ

ϕ̂(r)†ϕ̂(r)ψ̂†σ(r)ψ̂σ(r), (2)

where ψ̂σ is the field operator of spin σ fermions, and ϕ̂
that of the bosons. Assuming that the BEC can also be
described within the mean-field approximation, then the
bosonic field operator can be expanded over the Bogoli-
ubov modes

ϕ̂(r) = eikb·r

[
√
nb +

1√
Ω

∑
q

(
uq b̂qe

iq·r − vq b̂†qe−iq·r
)]

,

(3)
where Ω is the quantization volume, ~kb = mVb, nb is the
density of bosons and the (uq, vq) are the usual Bogoli-
ubov coefficients. The exponential prefactor describes
the Galilean boost associated with the the motion of the
condensate (see Appendix A). In addition, due to the
motion of the BEC, the energies of the Bogoliubov modes
are shifted by Doppler effect and their spectrum is given
by

Eq,b = E
(0)
q,b + ~q · Vb, (4)

where E
(0)
q,b = ~cbq

√
1 + q2ξ2b/2 is the Bogoliubov spec-

trum (here cb is the sound velocity and ξb is the healing
length) [7].

Expanding Ĥbf to first order in fluctuations of the
bosonic field, we have

Ĥbf = Ĥ
(0)
bf + Ĥ

(1)
bf + Ĥ

(1)†
bf + ... (5)

with

Ĥ
(0)
bf = gbfnb

∫
d3r

∑
σ

ψ̂†σψ̂σ(r), (6)
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and

Ĥ
(1)
bf = gbf

√
nb
Ω

∫
d3r

∑
q,σ

(uq − vq)e−iq·rψ̂†σ(r)ψ̂σ(r)̂b†q.

(7)

Ĥ
(0)
bf being proportional to the number of fermions, it is

a constant of motion, and can therefore be gauged away.

Ĥ
(1)
bf and Ĥ

(1)†
bf respectively create and destroy Bogoli-

ubov excitations in the BEC. In the weak coupling limit
we can expand the damping rate in power of gbf . To first

order, only Ĥ
(1)
bf plays a role and using Fermi’s Golden

Rule the rate of creation of excitations of momentum ~q
in the BEC and in an eigenstate |αf 〉 of the fermionic

Hamiltonian Ĥf is given by

Γ(α, q) =
g2bfnb
Ωh

(uq − vq)2δ(Eα,f + Eq,b)×∣∣∣∣∣〈αf |
∫
d3r

∑
σ

ψ̂†σψ̂σ(r)e−iq·r|0f 〉

∣∣∣∣∣
2

,

(8)

where Eα,f is the energy of the state |αf 〉 relatively to
that of the ground state |0f 〉 of the moving fermionic
superfluid. Since the creation of a Bogoliubov excitation
imparts a momentum ~q to the BEC, the force acting on
the bosons can be written as

F =
∑
α,q

~qΓ(α, q) (9)

= 2π
g2bfnb

Ω

∑
q

q(uq − vq)2S(−q,−Eq,b), (10)

where we introduced the dynamical structure factor of
the Fermi gas

S(q, E) =
∑
α

δ(E−Eα,f )

∣∣∣∣∣〈αf |
∫
d3r

∑
σ

ψ̂†σψ̂σ(r)eiq·r|0f 〉

∣∣∣∣∣
2

.

(11)
Note that the expression for the force is galilean invariant
and depends only on the relative velocity Vb−Vf . Indeed,
one can show that the dynamical structure factor S of a
system moving at velocity Vf is the related to the one of
a system at rest (denoted as Sst) by

S(q, E) = Sst(q, E − ~q · Vf ) (12)

(this result is a direct consequence of Eq. (A12) giving
the energy in the moving frame, and the fact that the

operator
∫
d3r

∑
σ ψ̂
†
σψ̂σ(r)eiq·r gives a kick ~q to the

system). Inserting this expression in Eq. (10) and using
the expression for the Bogoliubov spectrum of a moving
BEC, Eq. (4) we have for the force

F = 2π
g2bfnb

Ω

∑
q

q(uq − vq)2Sst(−q,−E(0)
q,b − ~q · V ),

(13)

with V = Vf −Vb. Finally, using the explicit form of the
Bogoliubov coefficients, we have

(uq − vq)2 =
εq,b

E
(0)
q,b

(14)

with εq,b = ~2q2/2mb, hence

F = 2π
g2bfnb

Ω

∑
q

q
εq,b

E
(0)
q,b

Sst(−q,−E(0)
q,b − ~q · V ). (15)

Eq. (15) is the main result of this paper and shows
that the friction between the two superfluids is directly
related to the dynamic structure factor of the fermionic
component of the system. The dynamical structure fac-
tor describes the response of a given system to a sinu-
soidal perturbation and can be related to two-body cor-
relations. In strongly correlated gases, it was measured
using Bragg spectroscopy [8] and was used to determine
the value of Tan’s contact parameter describing the tail
of the momentum distribution [9].

The properties of strongly correlated Fermi systems
are notoriously hard to calculate, and approximate ex-
pression for the dynamic structure factor have been ob-
tained using the approximate methods [10, 11]. However,
its general properties can be summarized on the sketch of
Fig. 1. At low momenta, the excitation spectrum is dom-
inated by a phonon branch E = ~cfk, with cf the sound
velocity of the fermionic superfluid. Since the ground
state defines the energy zero, Sst vanishes for E < 0.
However, the presence of a pairing gap implies of a re-
gion where Sst vanishes at positive energies. Landau’s
critical velocity vL is defined as the highest value of v
such that Sst(E, q) vanishes for all E ≤ vq (see Fig. 1).
In the BEC regime of the BEC-BCS crossover, we have
vL = cF, while in the BCS regime, Landau’s velocity is
driven by pair breaking excitations and we have vL � cf .

These general features implies that if for all q we have

−E(0)
q,b − ~q · V < qvL, the force is zero. To get some

damping, there must be values of q for which −E(0)
q,b −

~q · V ≥ ~qvL. Using the general Landau argument, we

get that |V | ≥ vL + minq(E
(0)
q,b/~q) = vL + cb. Note that

this bound sets a necessary, but not sufficient, condition
on the relative velocity. As a consequence vL + cb is only
a lower bound for the real critical velocity.

Another consequence of this inequality is that the val-
ues of q contributing to the integral are bounded. Indeed,
from the inequality E ≤ ~qvL, we get that

qξb ≤
√

2x(x+ 2),

where xcb = V − cb − vL. In other words, when the
relative velocity gets close to cb + vL, the damping is
dominated by long wave-length excitations.

In what follows, we compute the force in the deep BEC
and BCS limits where analytical expressions can be ob-
tained.
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FIG. 1: Sketch of the structure factor of an interacting Fermi
gas: Sst vanishes outside the gray area and ∆ is the excitation
gap. Dotted line: low momentum phonon branch E = ~cfq.
Dashed line: Landau’s critical velocity E = ~vLq below which
the structure factor vanishes. Note that this sketch corre-
sponds to a weakly interacting system where Landau’s veloc-
ity is fixed by pair breaking, and vL < cf . In the molecular
regime of the crossover, vL = cf [2, 12].

III. BCS LIMIT

Let’s consider first the deep BCS limit where the
fermions can be described as an ideal gas. Since there
is a vanishingly small gap in the fermionic spectrum the
lower bound derived above is actually saturated and we
have Vc = cb. Working close to cb, the relevant values
of q much smaller than kF , and we can therefore replace
the expression of the dynamical structure factor by its
low-energy approximation (see for instance [13], and Ap-
pendix B)

Sst(q, E) =
m2

f ΩE

2π2~4q
,

this replacement being valid as long as the condition

kF ξ �

√
2

(
V 2 − c2b
c2b

)

is fulfilled.

Replacing the discrete sum over q by an integral, one
gets

F

Ω
= −2g2bfnbm

2
f

(2π)4~4

∫
d3q

qεb,q

qE
(0)
b,q

(E
(0)
b,q+~q·V )Θ(−E(0)

b,q−~q·V ).

(16)
where Θ is Heaviside’s step function. The integral can be
computed analytically and taking V ′ = V/cb, the force
becomes

F

Ω
= − g2bfnbm

2
f

(2π)3mb~2ξ5
I(V ′), (17)

with

I(V ′) =
1

105
√

2V ′2

[
105V ′3 sinh−1

(√
V ′2 − 1

)
+√

V ′2 − 1
(
6V ′6 − 39V ′4 − 80V ′2 + 8

)]
.

(18)

Close to V ′ = 1, this expression can be expanded as

I(V ′) ' 128

315
(V ′ − 1)

9/2
+ ... (19)

Even though this scaling is strictly-speaking obtained
for a non-interacting Fermi gas, it can be extended to the
case of a BEC moving inside an interacting Fermi gas in
its normal phase when it can be described within the
Fermi Liquid Theory. Indeed, close the critical velocity,
the damping mechanism described involves only low en-
ergy excitations of the system which behave as fermionic
quasiparticles with renormalized physical parameters. In
particular, the scaling S(q, E) ∝ E/q is still valid [14].

IV. HYDRODYNAMIC LIMIT

In the BEC limit of the cross-over, the excitations of
the fermionic superfluid are dominated by phonons of
energy Ef,q. In this case, the dynamical structure factor
can be approximated by a Dirac function and we have in
this case

Sst(q, E) = Aδ(E − E(0)
f,q) (20)

where the normalization constant A is fixed by the f-sum
rule [7, 15] and is given by

A = Nf
εq,f

E
(0)
f,q

. (21)

In this limit, we obtain for the force

F = 2πg2bfnbnf
∑
q

q
εq,bεq,f

E
(0)
q,bE

(0)
−q,f

δ(E
(0)
q,b +E

(0)
−q,f + ~q ·V ).

(22)
Using the usual Landau argument, we see that the force
vanishes if the velocity is smaller than a critical velocity
Vc given by

Vc = min
q

(
E

(0)
q,b + E

(0)
−q,f

~q

)
. (23)
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In case of linear dispersion relation, the critical velocity
is simply

Vc = cb + cf , (24)

where cf,b are the sound velocities of the fermions and
the bosons.

To calculate explicitly the force, we assume that both
the bosons and the fermions follow the Bogoliubov dis-
persion relation, an assumption valid in the far-BEC
limit of the BEC-BCS crossover. Taking ξb,f the healing
lengths of the two superfluids, we have after performing
the angular integral

F

Ω
=− g2bfnbnf~

8πmfmbcbcfV
×

∫ qM

0

q4dq
(
cb
V

√
1 + q2ξ2b/2 + cf

V

√
1 + q2ξ2f/2

)
√

(1 + q2ξ2b/2)(1 + q2ξ2f/2)

(25)

with qM given by the condition

cb

√
1 + q2Mξ

2
b/2 + cf

√
1 + q2Mξ

2
f /2 = V (26)

For V ' Vc, qM is vanishingly small, and is given by

qM ' 2

√
V − Vc

cbξ2b + cfξ2f
,

hence

F

Ω
' − 4g2bfnbnf~

5πmfmbcbcfVc

(
V − Vc

cbξ2b + cfξ2f

)5/2

(27)

V. CONCLUSION

In this work we have shown that the damping between
two bosonic and fermionic superfluids could be related
to the dynamical structure factor of the fermions. In the
weakly and strongly attractive limits, we find a power law
dependence of the damping force vs velocity close to the
critical velocity. Like previous findings [3], we find that
the exponent varies across the BEC-BCS crossover and is
different from the scaling F ∝ (V ′−1)2 found for the drag
of a particle in a Bose-Einstein condensate [16]. These
different scalings highlight the many-body nature of the
two counter-flowing systems and the role of the collective
excitations in the damping mechanism. Our prediction
can be directly tested by measuring the damping of the
relative oscillations of two superfluids, as presented in [1]
for a unitary fermions. In particular, comparison with
Eq. 15 provides a quantitative test of theoretical pre-
dictions for the structure factor of a strongly correlated
fermionic superfluid.
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Appendix A: Bogoliubov Transformation in a
Moving Frame

Consider a ensemble of N particles described by a state
|ψ〉. The action of a velocity V boost is described by the
operator

Û = exp

i N∑
j=1

k · r̂i

 , (A1)

with k = mV /~. In second quantization, this operator
is represented by

Û = exp

(
i

∫
d3r′ϕ̂(r′)†ϕ̂(r′)k · r′

)
. (A2)

Define ϕ̂′(r) the field operator in the moving frame.

By definition, we must have for |ψ′i=1,2〉 = Û |ψi=1,2〉,
〈ψ′1|ϕ̂′(r)|ψ′2〉 = 〈ψ1|ϕ̂(r)|ψ2〉, hence

〈ψ1|Û†ϕ̂′(r)Û |ψ2〉 = 〈ψ1|ϕ̂(r)|ψ2〉. (A3)

This equation being valid for any |ψi〉, we must have

Û†ϕ̂′(r)Û = ϕ̂(r) hence

ϕ̂′(r) = Û ϕ̂(r)Û†. (A4)

ϕ̂′ can be calculated using the Campbell-Hausdorff for-

mula. Taking Û = exp(T̂ ), we have indeed

ϕ̂′(r) = ϕ̂(r) + [T̂ , ϕ̂(r)] +
1

2
[T̂ , [T̂ , ϕ(r)]] + ... (A5)

The commutator [T̂ , ϕ̂(r)] is readily calculated and yields

[T̂ , ϕ̂(r)] = −ik · rϕ̂(r). After resumming the Campbell-
Hausdorff formula, we obtain

ϕ̂′(r) = e−ik·rϕ̂(r). (A6)

In the moving frame, the BEC is stationary and we can
therefore decompose ϕ′(r) using a Bogoliubov transform

ϕ̂′(r) =
√
n0 +

1√
Ω

∑
q

[
uqe

iq·r b̂q − vqe−iq·r b̂†q
]
. (A7)

We thus have in the lab frame

ϕ̂(r) = eik·rϕ̂′(r) (A8)

= eik·r

[
√
n0 +

1√
Ω

∑
q

(
uqe

iq·r b̂q − vqe−iq·r b̂†q
)]

.(A9)
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The eigenenergies of the Bogoliubov excitations of the
moving Bose-Einstein condensate are obtained by apply-

ing the Galilean boost operator Û to the eigenstates |β〉b
of the condensate at rest. Taking |β′〉b = Û |β〉b, and
consider the quantum many-body Hamiltonian

Ĥb =−
∫
ϕ̂(r)†

~2∇2

2m
ϕ̂(r)d3r

+

∫
V (r − r′)ϕ̂(r)†ϕ̂(r′)†ϕ̂(r′)ϕ̂(r)†d3rd3r′.

(A10)

By using Eq. A6), we see readily that if |β〉b is a com-

mon eigenstate of Ĥb and the momentum and particle

number operators, then |β′〉b is an eigenstate of Ĥb for
the eigenvalue

E′β = Eβ + ~qβ · V +Nb
mV 2

2
, (A11)

where ~qβ is the momentum of state |β〉b. Compared to
the energy E′0 of the boosted ground-state Bose-Einstein
condensate, the energy of the excitation |β′〉b is therefore

E′β − E′0 = Eβ + ~qβ · V , (A12)

and is simply Doppler-shifted.

Appendix B: Dynamic structure factor of the ideal
Fermi gas.

In this appendix, we rederive the dynamical structure
factor for zero-temperature, non-interacting fermions. A
more general derivation including finite temperature ef-
fects can be found in [13].

The dynamic structure factor is given by the

matrix elements of the excitation operator F̂q =∑
σ

∫
d3reiq·eψ̂σ(r)†ψ̂σ(r). Expanding the field op-

erators over the plane wave basis as ψ̂σ(r) =∑
k e

ik·r ĉk,σ/
√

Ω, where Ω is a quantization volume,
yields

F̂q =
∑
k,σ

ĉ†k+q,σ ĉk,σ.

In other words, the operator F̂q kicks one particles of
the system and gives it a momentum q. The states

|n〉 excited by F̂q from the ground state |0〉 correspond
to particle-hole pairs of momenta k (hole) and k + q
(particle). The energy of such an excitation is En =
εk+q − εk = ~2q2/2m+ ~2k · q/m and we can write the
structure factor as

S(q, E) = 2

∫
k<kF ,|k+q|>kF

d3kΩ

(2π)3
δ

(
E − ~2q2

2m
− ~2kzq

m

)
,

Κ

kz

Κ1

Kz

q

Κ

kz

Κ1Κ2

Kz

q

Κ

kz

Κ1 Κ2

Kz

q

FIG. 2: Construction of the dynamic structure factor in mo-
mentum space. The shaded area represents the Fermi sphere.
Energy-momentum conservation fixes the initial kz to a value
Kz (see text). Since the initial state must lie inside the

Fermi Sea, we must have κ ≤ κ1 =
√
k2F −K2

z . Moreover,
the final momentum must be above the Fermi surface, hence
κ ≥

√
k2F + (Kz + q)2. The thick solid line represents the mo-

menta contributing to the dynamical structure factor. From
top to bottom. Upper panel, case (1): Kz + q larger than kf .
The final momentum is always above the Fermi surface. Mid-
dle panel, case 2: Kz + q is lower than kF , with κ2 ≤ κ1. The
permitted values of k are located in the ring κ2 ≤ κ ≤ κ1.
Lower panel, case 3. For κ2 ≥ κ1, the contribution to the
structure factor vanishes.
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where the z axis is chosen along q and where the factor
2 comes from the two spin states.

We perform first the integral over kz. Take Kz(q, E) =

(E − ~2q2

2m )m/~2q. The delta-function selects kz =
Kz(q, E) and taking κ = (kx, ky) we have

S(q, E) =
2m

~2q

∫
|Kz|<kF ,|k+q|>kF

d2κΩ

(2π)3
. (B1)

The condition |Kz| ≤ kF selects a band in the (q, E)
plane. Indeed, we must have

−~2kF q
m

≤
(
E − ~2q2

2m

)
≤ ~2kF q

m
.

The constraint kz = Kz selects a plane in initial-
momentum space. Taking into account the fact that the
initial momenta must lie within the Fermi Sea, we see
that the transverse momentum κ lies within a disk of ra-
dius κ1 =

√
k2F −K2

z . The set of allowed values for κ is
further constrained by Pauli Blocking on the final states.
Indeed, the final momentum must lie outside the Fermi
Sea and as such it implies the condition |k + q| ≥ kF .
We must then consider three cases (see also Fig. 2) :

1. If Kz+q is larger than kF , then for any k such that
kz = Kz, the final momentum k + q is outside the
Fermi Sea. The constraint on the final state is thus
always satisfied and does not have any effect on the
calculation of the integral over κ, which yields the
area of the disk of radius κ1. We thus have

S(q, E) =
mΩκ21
4π2~2q

. (B2)

2. For Kz + q ≤ kF , final momenta corresponding
to small values of κ (more precisely smaller than

κ2 =
√
k2F − (Kz + q)2) lie inside the Fermi Sea

and are therefore forbidden by Pauli Principle. We
have then

S(q, E) =
mΩ(κ21 − κ22)

4π2~2q
=
m2ΩE

2π2~4q
. (B3)

Take k3F = 3π2nf , where nf is the total density of
fermions, this expression can be recast as

S(q, E) =
3Nf

8

(
kF
q

)
E

E2
F

, (B4)

with Nf = nfΩ the total number of fermions.

3. Eq. B3 is valid as long as κ1 ≥ κ2. Graphically,
case (2) ends when Kz + q = −Kz, ie for E = 0.

For E ≤ 0, the dynamic structure factor vanishes,
as expected since the Fermi Sea is the ground state
of the system.

H1L

H2L

H3L

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1

0

1

2

3

4

5

k�kF
E

�E F

FIG. 3: Dynamical structure factor of the ideal gas. The
shaded area corresponds to the region where the structure
factor takes finite values. The solid lines corresponds to con-
dition −kF ≤ Kz ≤ kF . The dashed marks the limit be-
tween cases (1) and (2) and is associated with the condition
Kz + q = kF .

Finally, let’s consider some simple limiting cases. For
q ≥ 2kF , we are in case (1) (see Fig. 3), and S(q, E) is
therefore given by

S(q, E) =
mΩ

4π2~2q

[
k2F −

m2

~2q2

(
E − ~2q2

2m

)2
]
. (B5)

In this regime, S is peaked around the energy E = εq =
~2q2/2m with a half-width ∆E = ~2kF q/m. We note
that ∆E/εq = 2kF /q → 0 for q →∞. In other words, we
recover at large momenta the dynamic structure factor
of a free particle.

For low values of q, the range of validity of case (1)
is vanishingly small and the dynamic structure factor is
mostly given by case (2). We therefore have

S(q, E) =
3Nf

8

(
kF
q

)
E

E2
F

, (B6)

as long as 0 ≤ E ≤ 2EF q/kF , and S = 0 otherwise.

One readily checks that both approximate expressions
(B6) and (B5) satisfy the f-sum rule.
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