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A domain derivative-based method for solving elastodynamic
inverse obstacle scattering problems

Frédérique Le Louër ∗

Abstract

The present work is concerned with the shape reconstruction problem of isotropic elastic inclusions from
far-field data obtained by the scattering of a finite number of time-harmonic incident plane waves. This
paper aims at completing the theoretical framework which is necessary for the application of geometric
optimization tools to the inverse transmission problem in elastodynamics. The forward problem is reduced
to systems of boundary integral equations following the direct and indirect methods initially developed for
solving acoustic transmission problems. We establish the Fréchet differentiability of the boundary to far-
field operator and give a characterization of the first Fréchet derivative and its adjoint operator. Using these
results we propose an inverse scattering algorithm based on the iteratively regularized Gauß-Newton method
and show numerical experiments in the special case of star-shaped obstacles.

Keywords : Elastic scattering, penetrable obstacle, boundary integral equation system, Fréchet derivative,
regularized Newton type method.

1 Introduction
This paper is concerned with the shape reconstruction problem of a three-dimensional bounded penetrable
obstacle from far-field data obtained by the scattering of time-harmonic incident waves in elastodynamics.
Efficient solution method for this inverse problem is of practical interest for various physical applications such
as non destructive testing or geophysical exploration.

In the last two decades, numerous new techniques have been developed for solving shape reconstruction
problems. Most attention has been spent on the following two categories of approaches: qualitative methods
and nonlinear optimization methods. Examples of qualitative methods are the Linear Sampling Method [12, 13]
and the Factorization Method [39] which have been developed initially for solving inverse acoustic scattering
problems in exterior domains. One can find in the scientific literature numerous extensions of these qualitative
methods to many different configurations : a non-exhaustive list of papers in linear elasticity includes inverse
scattering in unbounded domains [10, 11], in half-spaces [4], in waveguides [6, 7] and in periodic structures
[34]. These inverse scattering algorithms are very efficient for physical applications which do not seek to recover
additional informations on the scattering object (i.e. material properties). The main disadvantage of sampling
methods is that it requires, especially in unbounded media, a knowledge of the full far-field patterns for all
directions of incidence and observation. Uniqueness results are also based on such criteria [22] excepted for
balls or convex polyhedral scatterers that can be determined from far-field data obtained by the scattering of a
single incident plane wave [33]. The inverse problem of recovering the shape of an obstacle from measurements
obtained by the scattering a finite number of incident waves can be numerically solved by nonlinear optimization
algorithms based either on geometric optimization tools or on topological optimization tools. In this case the
inverse problem is often formulated as a nonlinear least squares problem for which iterative algorithm can be
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applied to recover an approximate solution. Geometric optimization consists in minimizing the nonlinear least
square among a family of parametrized boundaries with same genus. The problem being severely ill-posed,
the least squares are regularized by a quadratic penalty term, the so-called Tyckonov regularization. Pioneer
work in this area were conducted by Kirsch [38] for solving the acoustic inverse scattering problem for sound-
soft obstacles. The whole approach requires the Fréchet differentiability analysis of the far-field pattern of the
solution to the scattering problem with respect to any parametrizations of the unknown boundary and, if it is
possible, a characterization of the Fréchet derivative as a solution to a new elliptic boundary value problem.
This was achieved by Kirsch using variational methods and alternative proofs were given by Potthast using
the integral representation of the boundary to far-field operator and the material derivatives of the boundary
integral operators [49] and by Kress and Päivarinta using a farfield identity [42]. We refer to [29, Chapter 4]
for a review of existing iterative algorithms which lead to different choices of penalty terms in the framework of
Hilbert spaces. An extension of these algorithms to Banach spaces can be found in [37] and references therein. A
rigorous inverse algorithm based on regularized Gauß-Newton [5, 28] iterations and boundary integral equation
formulations is described and analyzed by Hohage in [29, Chapter 4]. A fast and accurate reconstruction of
the scattering object illuminated by a finite number of (or even one) incident plane waves is obtained [29, 23].
However a good initial guess and its approximate location have to be known from the beginning. The method has
then been extended to other boundary conditions in acoustic scattering [31] since the needed theoretical results
on the Fréchet derivatives where known [24, 25]. Second degree method for solving inverse obstacle scattering
problems [27] are less popular since the characterizations of higher order Fréchet derivatives are rather difficult
to obtain. Topological optimization consists in minimizing the nonlinear least square (or objective functional)
by modifying the topology of the medium, as for example by creating multiple simply connected obstacles.
Topological optimization method are very efficient for finding the number, the location and the size of the
obstacles from a very small amount of data and without using any a priori initial information. We refer to [8]
for a description of an iterative algorithm entirely based on topological derivatives for the identification problem
of sound soft obstacles. Such method could be used as a starting point for determining intial guesses in the above
mentioned geometric optimization algorithm. Nonlinear optimization methods have the additional interesting
feature that one can combine them, through slight modifications in the algorithm, with gradient-based method
to approximate the parameters of the obstacles and recover the boundary conditions satisfied by the scattered
field at the interfaces.

Characterization of the Fréchet derivatives have been recently derived in electromagnetism for various bound-
ary conditions [41, 21, 16, 45, 50] and a fast inverse iterative algorithm is proposed in [30] for the identification
of dielectric inclusions in unbounded homogeneous media. In elastodynamics, the characterization of the first
Fréchet derivatives for the Dirichlet boundary condition case was obtained by Charalambopoulos in [9] extend-
ing Potthast’s approach based on a boundary integral representation of the solution. An alternative proof and
the Neumann boundary condition case have been recently investigated by the author in [45] extending Kress
and Päivarinta’ s approach based on a farfield identity. The purpose of this paper is to consider the case of
transmission boundary conditions and to present a numerical solution method for iteratively recovering the
shape of isotropic elastic inclusions.

The paper is organised as follows: In Section 2 we introduce the transmission problem of time-harmonic
elastic waves across the smooth boundary of a three-dimensional bounded obstacle. The forward problem is
reduced to systems of boundary integral equations following the very well-known direct and indirect methods
initially developed in acoustics [40, 43]. The nature of elastic waves makes rather difficult the construction of
uniquely solvable weakly singular boundary integral formulation for the transmission problem. Contrary to the
acoustic case, the resulting systems consist of strongly singular and hypersingular integral equations but we
prove that they are uniquely solvable for the range of wavenumbers characterizing elastodynamic waves. Using
these results, the far-field pattern of the solution to the transmission problem is given in terms of products of
boundary integral operators and their inverses. Among all the existing methods above mentioned, we prove in
Section 3 the Fréchet differentiability of the boundary to far-field operator using the recent results on the material
derivatives of boundary integral operators with either a weakly, strongly or hypersingular kernel established in
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[15]. We give a characterization of the first Fréchet derivative and the adjoint operator, following ideas of
[29], which is needed in the implementation of the iteratively regularized Gauß-Newton (IRGN) method in the
framework of Hilbert spaces. In Section 4, we present the inverse scattering algorithm and we show numerical
experiments in Section 5. The boundary integral equation systems are numerically solved by applying the high
order spectral algorithm proposed by the author in [46] for solving elastodynamic problems in exterior domains.
Similar convergence rates than those reported in [46] and [19, 20] are observed. The characterizations of the
Fréchet derivatives are numerically compared to the finite difference method. The inverse scattering algorithm
is applied to the shape reconstruction problem of convex and non convex star-shaped obstacles.

2 Elastic scattering by penetrable obstacles
Let Ω ⊂ R3 be a bounded domain with a smooth closed orientable boundary Γ of class C 2 at least and outward
unit normal vector n and let Ωc denote the exterior domain R3\Ω. Throughout the paper we denote by Hs(Ω),
Hs
loc(Ω

c) and Hs(Γ) the standard (local in the case of the exterior domain) complex valued, Hilbertian Sobolev
space of order s ∈ R defined on Ωc and Γ respectively (with the convention H0 = L2.) Spaces of vector
functions will be denoted by boldface letters, thus Hs = (Hs)3. We also use the surface differential operators:
The tangential gradient ∇Γ, the surface divergence divΓ, the surface scalar curl curlΓ, the tangential vector curl
curlΓ and the scalar Laplace-Beltrami operator ∆Γ. For their definitions we refer to [47, pages 68-75].

For the formulation of the transmission problem we follow the notations of [11] and quote some important
results on potential theory from [17] and [44, Chapter 3] . The propagation of time-harmonic elastic waves in
the three-dimensional isotropic and homogeneous elastic medium is described by the Navier equation

∆∗u+ ρω2u = µ∆u+ (λ+ µ)∇ divu+ ρω2u = 0,

where ω > 0 is a fixed frequency. We assume that the Lamé parameters µ and λ and the density ρ take
constant and different real values in Ω and Ωc. Moreover we assume µ > 0 and 3λ+ 2µ > 0. We introduce the
dimensionless Poisson’s ratio ν = λ

2(λ+µ) . Then, we have µ
λ+2µ = 1−2ν

2(1−ν) ,
λ+µ
λ+2µ = 1

2(1−ν) and λ+3µ
λ+2µ = 3−4ν

2(1−ν) .
We set

H1(Ω,∆∗) :=
{
u ∈H1(Ω) : ∆∗u ∈ L2(Ω)

}
,

H1
loc(Ω

c,∆∗) :=
{
u ∈H1

loc(Ω
c) : ∆∗u ∈ L2

loc(Ω
c)
}
.

We use the following traces :

∂

∂n
= n · ∇, (normal derivative),

T (n, ∂) = 2µ
∂

∂n
+ λndiv +µn× curl, (traction trace).

We note that, due to the trace lemma, u|Γ ∈H
1
2 (Γ) for u ∈H1(Ω,∆∗)∪H1

loc(Ω
c,∆∗). The normal derivative

∂
∂nu|Γ and the traction derivative Tu|Γ are both defined as distributions in H−

1
2 (Γ).

In what follows, we will use a lower or upper index i for all quantities related to the penetrable scatterer
Ω and a lower or upper index e for all quantities related to the exterior domain Ωc. The forward problem
is formulated as follows: Given vector densities f ∈ H

1
2 (Γ) and g ∈ H−

1
2 (Γ), find the solution (ui,ue) ∈

H1(Ω,∆∗i )×H
1
loc(Ω

c,∆∗e) to the system of Navier equations in Ω ∪ Ωc

∆∗iu
i + ρiω

2ui = 0 in Ω , (2.1a)
∆∗eu

e + ρeω
2ue = 0 in Ωc , (2.1b)

which satisfies the transmission boundary conditions

ui = ue + f on Γ (2.1c)
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and
Tiu

i = Teu
e + g on Γ . (2.1d)

In addition the scattered field ue has to satisfy the Kupradze radiation condition

lim
r→∞

r

(
∂uep
∂r
− iκepuep

)
= 0, lim

r→∞
r

(
∂ues
∂r
− iκesues

)
= 0, r = |x|, (2.1e)

uniformly in all directions. Here, the longitudinal wave is given by uep = −(κep)
−2∇ divue and the transversal

wave is given by ues = ue − uep associated with the respective exterior wavenumbers κep and κes given by
κap = ω

√
ρa(λa + 2µa)−1 and κas = ω

√
ρaµ

−1
a for a = i, e. We point out that the Kupradze radiation conditions

are sufficient conditions [44, Theorem 2.9, pp. 127] to obtain the following useful radiation conditions

lim
r→∞

r
(
Teu

e
p − iκep(λe + 2µe)u

e
p

)
= 0, lim

r→∞
r (Teu

e
s − iκesµeues) = 0, r = |x|, (2.2)

The conditions (2.2) together with the first Green formula for the Navier equation [17, Lemma 2.1] and Rellich’s
Lemma allow us to prove that the homogeneous transmission problem admits at most one solution. Existence
of a solution can be proved using boundary integral equation methods. Following [40, 43], we give an alternative
proof to [17] below, but available for smooth boundaries only.

Setting G(κ, z) =
eiκ|z|

4π|z|
, the fundamental solution of the Navier equation is given by

Φa(x,y) =
1

µa

(
G(κas ,x− y)IR3 +

1

(κas)2
∇x

T∇x

(
G(κas ,x− y)−G(κap,x− y)

))
.

It is a 3× 3 matrix-valued function and we have Φa(x,y) =
T

Φa(x,y) = Φa(y,x). For a solution to the Navier
equation (2.1b), one can derive the Somigliana integral representation formula for x ∈ Ω

ui(x) =

∫
Γ

(
Φi(x,y)Ti,yu

i(y)− T[
Ti,yΦi(x,y)

]
ui(y)

)
ds(y), (2.3)

where Ty = T (n(y), ∂y) and TyΦ(x,y) is the tensor obtained by applying the traction operator T y to each
column of Φ(x,y). For a solution to the Navier equation (2.1b) that satisfies the Kupraze radiation condition,
one can derive the Somigliana integral representation formula for x ∈ Ωc:

ue(x) =

∫
Γ

(
T

[Te,yΦe(x,y)]ue(y)− Φe(x,y)Te,yu
e(y)

)
ds(y). (2.4)

The transmission problem of time-harmonic elastic waves by a bounded obstacle Ω can be reduced in several
different ways to a system of uniquely solvable boundary integral equations. We present two different approaches.
The Calderón projectors for the time-harmonic Navier equation are

P±a =

±1

2
I +Da −Sa

Na ±1

2
I−D′a

 .

where I is the identity operator and the boundary integral operators are defined by

Saϕ(x) =

∫
Γ

Φa(x,y)ϕ(y) ds(y),

Daψ(x) =

∫
Γ

T
[T a,yΦa(x,y)]ψ(y) ds(y),

D′aϕ(x) =

∫
Γ

T a,x {Φa(x,y)ϕ(y)} ds(y),

Naψ(x) =

∫
Γ

T a,x

{
T

[T a,yΦa(x,y)]ψ(y)
}
ds(y).
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The operator Sa is bounded from H−
1
2 (Γ) to H

1
2 (Γ) and compact from H−

1
2 (Γ) to itself. The operators

Da : H
1
2 (Γ) → H

1
2 (Γ) and D′a : H−

1
2 (Γ) → H−

1
2 (Γ) are bounded and have a strongly singular kernel. The

operator Na : H
1
2 (Γ)→H−

1
2 (Γ) is bounded and has a hypersingular kernel.

For a = i, e, we set pa =
T

(ua|Γ,T au
a
|Γ). We have the following results

P+
e pe = pe, P−e pe = 0, P+

i pi = 0, P−i pi = −pi .

The direct approach [40, Section 4.2] is used when f and g are the boundary data of a time-harmonic
incident elastic wave uinc which is assumed to solve the Navier equation in the absence of any scatterer. In this
case, we have

P+
e pinc = 0 and P−e pinc = −pinc with pinc =

(
uinc|Γ
Teu

inc
|Γ

)
.

Using these results, we derive the following system of boundary integral equations of unknown p = pi = pe+pinc

(P+
i − P

−
e )p =

(
I + (Di −De) −(Si − Se)
Ni −Ne I− (D′i −D′e)

)
p = pinc . (2.5)

If one solves the boundary integral equation system (2.5) then the solution of the transmission problem is given
by (2.3) and

ue(x) =

∫
Γ

(
T

[Te,yΦe(x,y)](ue + uinc)(y)− Φe(x,y)Te,y(ue + uinc)(y)
)
ds(y) . (2.6)

The indirect approach [40, Section 4.2] or [43] can be used for all boundary data (f , g) ∈H
1
2 (Γ)×H−

1
2 (Γ).

It is based on the layer ansatz

ui(x) =

∫
Γ

T[
Ti,yΦi(x,y)

]
ψ(y)ds(y) +

∫
Γ

Φi(x,y)ϕ(y)ds(y), x ∈ Ω (2.7)

ue(x) =

∫
Γ

T
[Te,yΦe(x,y)]ψ(y)ds(y) +

∫
Γ

Φe(x,y)ϕ(y)ds(y), x ∈ Ωc. (2.8)

We set p =
T

(ψ,ϕ) and p̃ =
T

(ψ,−ϕ), then pe = P+
e p̃ and pi = P−i p̃. We obtain the following system of

boundary integral equations(
I 0
0 −I

)
(P+
e − P−i )p̃ =

[(
I− (Di −De) −(Si − Se)
Ni −Ne I + (D′i −D′e)

)]
p =

(
−f
g

)
. (2.9)

If one solves the boundary integral equation system (2.9) then the solution of the transmission problem is given
by (2.7) and (2.8). In the sequel, we denote by Iop the boundary integral equation operator in (2.9) and by I†op
the one in (2.5).

Theorem 2.1 Let (f , g) ∈ H
1
2 (Γ) ×H−

1
2 (Γ). The boundary integral equation system (2.9) admits one and

only one solution p =
T

(ψ,ϕ) ∈H
1
2 (Γ)×H−

1
2 (Γ).

Proof. We proceed in two steps. First we prove injectivity following [43, proof (ii) of Theorem 4.2], then we
prove that the boundary integral equation operator is a Fredholm operator of index zero. We conclude using
Riesz theory.

• Let consider the homogeneous form of the system (2.9) which means f = 0 and g = 0. Since the
homogeneous form of the transmission problem (2.1a)-(2.1e) admits the trivial solution only, we obtain
ue = 0 in Ωc and ui = 0 in Ω. It follows P+

e p̃ = 0 and P−i p̃ = 0 and

P−e p̃ = −p̃ and P+
i p̃ = p̃. (2.10)
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Now we introduce the following displacement fields

vi(x) =

∫
Γ

T[
Ti,yΦi(x,y)

]
ψ(y)ds(y) +

∫
Γ

Φi(x,y)ϕ(y)ds(y), x ∈ Ωc

ve(x) = −
∫

Γ

T
[Te,yΦe(x,y)]ψ(y)ds(y)−

∫
Γ

Φe(x,y)ϕ(y)ds(y), x ∈ Ω.

We deduce T
(ve|Γ,T ev

e
|Γ) = −P−e p̃ and T

(vi|Γ,T iv
i
|Γ) = P+

i p̃. From (2.10), we deduce (ve,vi) solves
the homogeneous form of the transmission problem (2.1a)-(2.1e) where we have interchanged the interior
parameters µi, λi, ρi with the exterior parameters µe, λe, ρe. Hence, the solution (ve,vi) ∈ H1(Ω,∆∗e) ×
H1

loc(Ω
c,∆∗i ) is identically equal to zero and coming back to (2.10) we obtain p̃ = 0 = p.

• Now we prove that the boundary integral equation operator is a compact perturbation of an invertible
operator. To this end we consider the principal parts of the boundary integral operators obtained in [18].
To describe their behavior we use an orthonormal basis

(
(Y(0)

j )0≤j<N0
, (Y(1)

j )j∈N∗ , (Y(2)
j )j∈N∗ , (Y(3)

j )j∈N

)
of L2(Γ) consisting of the eigenfunctions of the scalar and vector Laplace-Beltrami operators. (It seems
easier than the use of the Fourier analysis especially in linear elasticity [2].) We precise that (Y(0)

j )0≤j<N0

span the nullspace N of the vector Laplace-Beltrami operator and
(

(Y(1)
j )j∈N∗ , (Y(2)

j )j∈N∗

)
span the set

of tangential densities with non vanishing surface divergence or surface curl. We refer to the appendix for
more details. From [18, Lemmas 3.2 to 3.5] we deduce that the principal parts of the boundary integral
operators, written in the function basis (Y(1)

j ,Y(2)
j ,Y(3)

j ), behaves as follows when j →∞

P−1(Sa) =


3− 4νa

8µa(1− νa)
β
− 1

2
j 0 0

0
1

2µa
β
− 1

2
j 0

0 0
3− 4νa

8µa(1− νa)
β
− 1

2
j

+O
(
β−1
j

)

P0(Da) =


0 0

1− 2νa
4(1− νa)

0 0 0
1− 2νa

4(1− νa)
0 0

+O
(
β
− 1

2
j

)
, P0(D′a) =

T
P0(Da)

and

P1(Na) =


− µa

2(1− νa)
β

1
2
j 0 0

0 −µa
2
β

1
2
j 0

0 0 − µa
2(1− νa)

β
1
2
j

+O (1) .

Let jL2→Hs be the isomorphism between L2(Γ) and Hs(Γ) defined by (A.2). We extend this definition
to its bevariate analogue jL2×L2→Hs×Ht(Γ)(ϕ,ψ) =

(
jL2→Hs(ϕ), jL2→Ht(ψ)

)
. To homogenize the units

we use the following invertible linear transform : U : (ϕ,ψ) 7→ (ϕ, µeψ). By composition, the operator
Iop is a Fredholm operator of index zero on H

1
2 (Γ)×H−

1
2 (Γ) if and only if

Jop = j
H

1
2×H− 1

2→L2×L2
◦U−1 ◦ Iop ◦U ◦ j

L2×L2→H
1
2×H− 1

2

is a Fredholm operator of index zero on L2(Γ) × L2(Γ). Now we denote by (ϕ
(0)
j )0≤j<N0

, (ϕ
(1)
j )j≥1,

(ϕ
(2)
j )j≥1 and (ϕ

(3)
j )j≥0 the Fourier coefficients of the density ϕ ∈ L2(Γ) and by (ψ

(0)
j )0≤j<N0

, (ψ
(1)
j )j≥1,
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(ψ
(2)
j )j≥1 and (ψ

(3)
j )j≥0 the Fourier coefficients of the density ψ ∈ L2(Γ). The principal part of Jop is

a compact perturbation of an invertible operator A that can be rewritten as a sequence of 2 systems
with respectively 2 equations for the 2 unknowns (ϕ

(2)
j , ψ

(2)
j ) and with 4 equations for the 4 unknwons

(ϕ
(1)
j , ϕ

(3)
j , ψ

(1)
j , ψ

(3)
j ). The associated matrices are 1 − 1

2

(
µe

µi
− 1
)

− 1
2

(
µi

µe
− 1
)

1


whose determinant is equal to 1

2 + 1
4 ( µi

µe
+ µe

µi
) 6= 0 and


1 a b 0
a 1 0 b
c 0 1 −a
0 c −a 1

 with


a = 1−2νe

4(1−νe) −
1−2νi

4(1−νi)

b =
(

3−4νe
8(1−νe) −

µe

µi

3−4νi
8(1−νi)

)
c =

(
1

2(1−νe) −
µi

µe

1
2(1−νi)

)
whose determinant is equal to (a2 + bc− 1)2 6= 0. Indeed, under the hypothesis on the Lamé parameters
we have 2(1− νa) > (1− 2νa) > 0 and 4(1− νa)2 > (3− 4νa) > 0. It follows a2 < 1

2 −
(1−2νe)(1−2νi)
8(1−νe)(1−νi) < 1

2 ,
bc < 1

2−
µe

µi

3−4νi
16(1−νi)(1−νe)−

µi

µe

3−4νe
16(1−νi)(1−νe) <

1
2 and 1−a2−bc > 0. We choose A as the identity operator

on (N ⊕ CY(0)
0 )2. We have (Jop −A) = O

(
β
− 1

2
j

)
in the function basis (Y(1)

j ,Y(2)
j ,Y(3)

j ) when j → ∞.

Then Jop = A + (Jop −A) and (Jop −A) is compact from L2(Γ)×L2(Γ) to itself.

�

Remark 2.2 We also deduce the unique solvability of the equation (2.5) since I†op is related to the adjoint
operator (Iop)

t∣∣L2
of Iop for the L2 duality product that can be written as folows

(Iop)
t∣∣L2

=

(
0 I
I 0

)
I†op

(
0 I
I 0

)
.

An interesting feature of the systems (2.5) and (2.9) is that one only has to implement and store four boundary
integral operators for both systems. Numerical experiments are presented in Tables 1 and 2.

The radiation condition implies that the scattered field has an asymptotic behavior of the form

ue(x) =
eiκ

e
p|x|

|x|
u∞p (x̂) +

eiκ
e
s|x|

|x|
u∞s (x̂) +O

(
1

|x|

)
, |x| → ∞,

uniformly in all directions x̂ =
x

|x|
. The fields u∞p and u∞s are defined on the unit sphere S2 in R3 and known as

the longitudinal and the transversal far-field pattern, respectively. Using the direct approach (2.5) the far-field
pattern can be computed via the integral representation formula

u∞ =
(
F

N
−F

D

)( ui

Tiu
i

)
,

and using the indirect one (2.9) the far-field pattern can be computed via the integral representation formula

u∞ =
(
F

N
F

D

)(ψ
ϕ

)
,

7



where the far-field operator F
D
is defined by (see [3, equations (2.12) and (2.13)])

F
D
ϕ(x̂) =

∫
Γ

(
1

µe
[IR3 − x̂⊗ x̂]

e−iκ
e
sx̂·y

4π
+

1

λe + 2µe
[x̂⊗ x̂]

e−iκ
e
px̂·y

4π

)
ϕ(y) ds(y). (2.11)

and the far-field operator FN is defined by (see [3, equations (2.12) and (2.13)])

FNψ(x̂) =

∫
Γ

 1

µe

T[
T e,y[IR3 − x̂⊗ x̂]

e−iκ
e
sx̂·y

4π

]
+

1

λe + 2µe

T[
T e,y[x̂⊗ x̂]

e−iκ
e
px̂·y

4π

]ψ(y) ds(y).

The direct method is used to compute the farfield pattern of the solution to the forward problem while the
indirect one is required to compute the Fréchet derivatives of the boundary to farfield operator. The direct
method has the advantage to provide the boundary data which are needed to compute the boundary data of the
Fréchet derivatives (see Remark 3.2). The connection between the two integral formulations given in Remark
2.2 is used to obtain the characterization of the adjoint operator (see the step 2 in the proof of Proposition 3.3)

3 The Fréchet derivative and the adjoint operator
From now on, we choose a fixed reference domain Ωref with a closed and orientable boundary Γref of class C 2

at least and we consider variations generated by transformations of the form x 7→ q(x) of point x in the space
R3, where q is a smooth vector function defined in a neighborhood of Γref . We consider diffeomorphism q from
Γref to Γq := {q(x); x ∈ Γref} , such that the surface Γq is still a smooth orientable boundary of a domain Ωq
with same genus as Ωref . We have the continuous embedding Hs(Γref ,R3) ↪→ C 1(Γref ,R3) for any s > 2 (see [1,
pp. 98] and [47, pp. 50]). We choose s > 2 and we define the following open set of admissible variations

Q :=
{
q ∈ Hs(Γref ,R3) : q injective,det(Dq(x̂)) 6= 0 for all x̂ ∈ Γref

}
. (3.1)

By nq we denote the outward unit normal vector to Γq and, in what follows, we will distinguish the quantities
related to the elastic transmission problem at the interface Γq through the index q.

Let F : Q → L2(S2) denote the operator which maps a parametrization q ∈ Q of a boundary Γq to the
far-field pattern u∞q corresponding to the incident field uinc. Using (2.5), the operator F admits the factorization

F (q) = u∞q =
(
F

N,q −F
D,q

) [
I†op,q

]−1

(
uinc|Γq

T eu
inc
|Γq

)
. (3.2)

Theorem 3.1 (characterization of F ′[q]) The mapping F : Q→ L2(S2) with s > 2 is Fréchet differentiable
at all q ∈Q for which Γq is of class C 2, and the first derivative at q in the direction ξ ∈ Hs(Γref ,R3) is given
by

F ′[q]ξ = v∞q,ξ ,

where v∞q,ξ is the far-field pattern of the solution (viq,ξ,v
e
q,ξ) to the Navier equations (2.1a)-(2.1b) in R3\Γq that

satisfies the Kupradze radiation condition and the transmission conditions on Γq{
viq,ξ = veq,ξ + f ′q,ξ,

T iv
i
q,ξ = T ev

e
q,ξ + g′q,ξ,

with

f ′q,ξ =−
(
ξ◦q−1 · nq

)( ∂

∂nq
uiq −

∂

∂nq
(ueq + uinc)

)
,

g′q,ξ =
(
ξ◦q−1 · nq

)
ω2
(
ρiu

i
q − ρe(ueq + uinc)

)
+ divΓq

((
ξ◦q−1 · nq

)
It,q
[
σi(uiq)− σe(uqe + uinc)

]
It,q
)
.
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where for a = i, e we have set σa(u) = λa(divu)I3 + µa
(
[∇u] +

T
[∇u]) and It,q = I3 − nq ⊗ nq and (uiq,u

e
q)

is the solution of the transmission problem (2.1a)-(2.1e) at the interface Γq.

Proof. Let q ∈ Q such that Γq is of class C 2 at least. The solution (uiq,u
e
q) of the transmission problem

(2.1a)-(2.1e) at the interface Γq admits the following integral representation

ueq =
(
De,q −Se,q

) [
I†op,q

]−1

(
uinc|Γq

T eu
inc
|Γq

)
and uiq =

(
−Di,q Si,q

) [
I†op,q

]−1

(
uinc|Γq

T eu
inc
|Γq

)
,

where Sa,q and Da,q, for a = i, e, are the single layer and double layer elastic potential operators [44, Eqs.
(3.1) and (3.2), pp. 300-301]. The material derivatives of the boundary integral operators as well as those of
the surface differential operators have been extensively analysed in [15] in the framework of Sobolev spaces.
In [15, Section 4], it is shown that the material derivatives of the boundary integral operators with a pseudo-
homogeneous weakly or a strongly singular kernel exist at every order and the kernel of high order derivatives are
still weakly or stongly singular. In [15, Section 5], this results are extended to boundary integral operators with
a hypersingular kernel, as for example Na [15, Example 5.3], by expressing them in terms of surface differential
operators and boundary integral operators with a weaklysingular kernel. The factorizations of the operators
Da, D′a and Na can be found in [46, Lemmas 2.2 and 2.3]. Moreover the successive material derivatives at q in
any direction ξ involves the first tangential derivatives of ξ only. By the chain and quotient rules, we conclude
that the boundary to far-field operator F is infinitely Fréchet differentiable.

Writing Ωq and Ωcq as increasing unions of compact subsets Ωq =

∞⋃
i=1

K−p and Ωcq =

∞⋃
i=1

K+
p , we can establish

the differentiability properties of the potential operators [15, Theorem 4.8] by analysing their restrictions to
K−p ∪ K+

p for all p ≥ 1. Let us fix p ≥ 1. The kernels are C∞-regular in K−p ∪ K+
p so that, by the chain

and quotient rules, the potentials and the mapping G : q ∈ Q → (uiq,u
e
q) ∈ H1(K−p ,∆

∗
i ) × H

1(K+
p ,∆

∗
e)

are infinitely Fréchet differentiable. Since we can interchange the differentiation with respect to q with the
differentiation with respect to x ∈ K−p ∪K+

p , we deduce that the first Fréchet derivative G′[q]ξ = (viq,ξ,v
e
q,ξ)

for any ξ ∈ Hs(Γref ,R3) ⊂ C 1(Γref ,R3) solves the Navier equations (2.1a)-(2.1b) in K−p ∪K+
p . Collecting the

results for all p ≥ 1, we deduce (viq,ξ,v
e
q,ξ) solves the Navier equations (2.1a)-(2.1b) in Ωq ∪ Ωcq. However

the first Fréchet derivatives, considered as functions in Ωq ∪ Ωcq, lose regularity. Since we can interchange the
differentiation with respect to q and the passing to the limit |x| → ∞ we deduce that veq,ξ satisfy the Kupradze
radiations conditions (2.1e) and v∞q,ξ is the farfield pattern of veq,ξ. The boundary data of viq,ξ and veq,ξ exists
as distributions in H−

1
2 (Γq) ×H−

3
2 (Γq). It remains to compute the transmission conditions satisfied by the

first Fréchet derivative. We have{
uiq ◦ q − (ueq + uinc) ◦ q = 0

{σi(uiq)nq} ◦ q − {σe(ueq + uinc)nq} ◦ q = 0
on Γref and for all q ∈Q .

We will use the expansion of the gradient on the boundary Γq [47, Eq. (2.5.208)]:

∇u = ∇Γqu|Γq
+ nq

∂u

nq
,

and the material derivative of the normal vector given by [15, Lemma 4.3] ∂q{nq◦q}ξ = −
(
[∇Γq (ξ ◦ q−1)]nq

)
◦q.

• By differentiation with respect to q, we have

0 = ∂q
{
uiq ◦ q − (ueq + uinc) ◦ q

}
ξ = viq,ξ ◦ q + ξ · (∇uiq)∣∣Γq

◦ q − veq,ξ ◦ q − ξ · (∇(ueq + uinc))∣∣Γq
◦ q

= viq,ξ ◦ q − veq,ξ ◦ q

+ (ξ · nq ◦ q)

(
∂

∂nq
uiq −

∂

∂nq
(ueq + uinc)

)
◦ q

+ ξ · {∇Γqu
i
q −∇Γq (ueq + uinc)} ◦ q .
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From the first transmission condition (2.1c) on Γq we deduce ξ · [∇Γqu
i
q] ◦ q− ξ · [∇Γq (ueq +uinc)] ◦ q = 0, and

the expression of f ′q,ξ.
• We also have

0 = ∂q
{
{σi(uiq)nq} ◦ q − {σe(ueq + uinc)nq} ◦ q

}
ξ

= {σi(viq,ξ)nq} ◦ q − {σe(veq,ξ)nq} ◦ q

+

{
[(ξ ◦ q−1) ·∇σi(uiq)∣∣Γq

]nq − [(ξ ◦ q−1) ·∇σe(ueq + uinc)∣∣Γq
]nq

}
◦ q

−
{
σi(uiq)[∇Γq (ξ ◦ q−1)]nq − σe(u

e
q + uinc)[∇Γq (ξ ◦ q−1)]nq

}
◦ q ,

and

[(ξ ◦ q−1) ·∇σi(uiq)∣∣Γq
]nq = (ξ ◦ q−1 · nq)

[
∂

∂nq
σi(uiq)

]
nq + [(ξ ◦ q−1) ·∇Γqσ

i(uiq)]nq

= (ξ ◦ q−1 · nq)

[
∂

∂nq
σi(uiq)

]
nq + (ξ ◦ q−1) ·∇Γq (σi(uiq)nq)

−σi(uiq)
(
(ξ ◦ q−1) ·∇Γqnq

)
.

We develop in the same way [(ξ ◦ q−1) · ∇σe(ueq + uinc)∣∣Γq
]nq. We use the second boundary condition to

simplify (ξ ◦ q−1) ·∇Γq (σi(uiq)nq)− (ξ ◦ q−1) ·∇Γq (σe(ueq + uinc)nq) = 0. We finaly get

0 = {σi(viq,ξ)nq} ◦ q − {σe(veq,ξ)nq} ◦ q

+

{
(ξ ◦ q−1 · nq)

[
∂

∂nq
σi(uiq)

]
nq − (ξ ◦ q−1 · nq)

[
∂

∂nq
σi(ueq + uinc)

]
nq

}
◦ q

−
{
σi(uiq)∇Γq (ξ ◦ q−1 · nq)− σe(u

e
q + uinc)∇Γq (ξ ◦ q−1 · nq)

}
◦ q .

Now we use the following decomposition of the divergence on Γq [47, Eq. (2.5.210)]

divu = divΓq u+ nq ·
∂u

∂nq
. (3.3)

We obtain [
∂

∂nq
σi(uiq)

]
nq = divσi(uiq)∣∣Γq

− divΓq σ
i(uiq)∣∣Γq

= −ρiω2uiq
∣∣Γq
− divΓq σ

i(uiq)∣∣Γq
,

and

(ξ ◦ q−1 · nq) divΓq σ
i(uiq)∣∣Γq

+ σi(uiq)∣∣Γq
∇Γq (ξ ◦ q−1 · nq) = divΓq

((
ξ◦q−1 · nq

)
σi(uiq)∣∣Γq

)
.

We use again the second transmission condition to simplify σi(uiq)nq ⊗nq − σe(ueq + uinc)nq ⊗nq = 0 on Γq
and then, nq ⊗ nq(σi(uiq)− σe(ueq + uinc))It,q = 0. Collecting all the results, it yields the expression of g′q,ξ.

We have (f ′q,ξ, g
′
q,ξ) ∈ H

− 1
2 (Γq) ×H−

3
2 (Γq). For smooth boundaries Γq, the boundary integral equation

system can be solved on the space of weaker regularity H−
1
2 (Γq) ×H−

3
2 (Γq). Since the far-field operators

FD,q and FN,q are smoothing operators, we still have v∞q,ξ ∈ L2(S2) by using this characterization. The
characterization of higher order derivatives requires additional regularity for the boundary Γq.

�
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Remark 3.2 For numerical convenience, it will be useful to express the boundary data T
(f ′q,ξ, g

′
q,ξ) in terms of

the boundary data T
(uiq,Tiu

i
q), which is solution to the system (2.5), and their tangential derivatives. We use

the following rewriting of the traction trace operator on Γq

T au
a
q = σa(uaq)nq = 2µaMqu

a
q + (λa + 2µa)(divuaq)nq − µanq × curluaq

= µa

(
∂uaq
∂nq

+Mqu
a
q

)
+ (λa + µa)(divuaq)nq

= (λa + 2µa)
∂uaq
∂nq

− λaMqu
a
q + (λa + µa)nq × curluaq.

where Mq is the tangential Günter derivative on Γq defined by Mq =
(
[∇Γq · ]nq − nq divΓq

)
[44, Equation

(1.13) and Theorem 1.3, pages 282-284]. These formulas together with (3.3) lead to

nq ×
(
T au

a
q × nq

)
= µanq ×

(
∂

∂nq
uaq × nq

)
+ µa[∇Γqu

a
q]nq ,

nq · T auaq = (λa + 2µa)nq ·
∂uaq
∂nq

+ λa divΓq u
a
q ,

and
nq · T auaq = −2µa divΓq u

a
q + (λa + 2µa) divuaq .

We set ξnq
=
(
ξ◦q−1 · nq

)
and In,q = nq ⊗ nq, then we have(

f ′q,ξ
g′q,ξ

)
= B[q]ξ :=

(
B1[q]ξ
B2[q]ξ

)
,

where

B1[q]ξ = ξnq

{(
λi

λi+2µi
− λe

λe+2µe

)
nq divΓq u

i
q +

[(
1

λe+2µe
− 1

λi+2µi

)
In,q T iu

i
q +

(
1
µe
− 1

µi

)
It,q T iu

i
q

]}
(3.4)

and
B2[q]ξ = ξnq

(ρi − ρe)ω2uiq + divΓq

(
ξnq

σt(u
i
q)
)

+ divΓq

(
ξnq

σn(Tiu
i
q)
)

(3.5)

with
σt(u

i
q) =

(
2λiµi
λi + 2µi

− 2λeµe
λe + 2µe

)(
divΓq u

i
q

)
It,q + (µi − µe) It,q

(
[∇Γqu

i
q] +

T
[∇Γqu

i
q]
)

It,q ,

and
σn(Tiu

i
q) =

(
λi

λi + 2µi
− λe
λe + 2µe

)(
nq · Tiuiq

)
It,q .

An interesting feature of these formulas is that they make appear the contrasts between the interior and exterior
values of the Lamé parameters. Numerical experiments are presented in Table 3 and attest the theoretical results.

With the objective to use Gauß-Newton iterations we need to compute the adjoint operator F ′[q]*∣∣L2
of F ′[q]

for the complex L2 inner product (not to be mistaken the L2 duality product mentioned in Remark 2.2).

Proposition 3.3 (characterization of the adjoint F ′[q]*∣∣L2
) Let q ∈Q and

uinch (y) :=

∫
S2

(
e−iκ

e
sx̂·y

4πµe

(
x̂× h(x̂)

)
× x̂ +

e−iκ
e
px̂·y

4π(λe + 2µe)

(
x̂ · h(x̂)

)
x̂

)
ds(x̂), y ∈ R3
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denote the vector Herglotz function with density h ∈ L2(S2) and ui
q,h̄

the interior wave solution to the elasto-
dynamic transmission problem at the interface Γq with the incident wave uinc

h̄
. Then the L2-adjoint of F ′[q] is

defined by

F ′[q]*∣∣L2
h = Jq

(
nq Re

{(
1

λi+2µi
− 1

λe+2µe

) (
nq · T iuiq

)(
nq · T iuiq,h̄

)
+
(

λe

λe+2µe
− λi

λi+2µi

) (
divΓq u

i
q

)(
nq · T iuiq,h̄

)
+
(

1
µi
− 1

µe

) (
T iuiq × nq

)
·
(
T iuiq,h̄ × nq

)
+ (ρi − ρe)ω2uiq · uiq,h̄ − σt(uiq) : ∇Γqu

i
q,h̄

+
(

λe

λe+2µe
− λi

λi+2µi

) (
nq · T iuiq

)(
divΓq u

i
q,h̄

)})
◦ q ,

(3.6)

where Jq is the determinant of the Jacobian matrix of the change of variable x̂ 7→ q(x̂) and, for two (3 × 3)
matrices A and B whose columns are denoted respectively by (a1, a2, a3) and (b1, b2, b3), we have set A : B =
a1 · b1 + a2 · b2 + a3 · b3.

Proof. The proof consists of three steps:
1. factorization of F ′[q] and F ′[q]∗∣∣L2

: Due to (2.9), Theorem 3.1 and Remark 3.2 F ′[q] has a factorization

F ′[q]ξ = A[q]B[q]ξ where A[q] :=
(
F

N,q F
D,q

)
[Iop,q]

−1

(
−I 0
0 I

)
.

Let us denote by (A[q])∗∣∣L2
and (B[q])∗∣∣L2

the adjoints of A[q] and B[q] with respect to the L2 inner products.

Therefore, the adjoint of F ′[q] has the factorization

F ′[q]∗∣∣L2
h = (B[q])∗∣∣L2

(A[q])∗∣∣L2
h ,

and it remains to characterize (A[q])∗∣∣L2
and (B[q])∗∣∣L2

.

2. characterization of A[q]∗∣∣L2
: Let us consider first the adjoint of F

D,q : Ht(Γq)→ L2(S2) for some t ∈ R. For

any h ∈ L2(S2) we have(
F ∗

D,q
∣∣L2
h

)
(y) =

1

4π

∫
S2

[
eiκex̂·y

µe
[IR3 − x̂⊗ x̂] +

eiκ
e
px̂·y

λe + 2µe
[x̂⊗ x̂]

]
h(x̂) ds(x̂) = uinc

h̄
(y) .

The function uinc
h̄

(y) is analytical on Γq. We also obtain

(
F

N,q F
D,q

)∗∣∣L2 h =

(
T euinc

h

uinc
h

)
.

Therefore, using Remark 2.2 to pass from Iop to I†op, it follows that

(A[q])∗∣∣L2
h =

(
−I 0
0 I

)
[Iop,q]

t−1∣∣L2

(
T eu

inc
h

uinc
h

)

=

(
0 −I
I 0

)[
I†op,q

]−1
(
uinc
h

T eu
inc
h

)
=

−T iuiq,h̄
ui
q,h̄
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where we have used (2.5) in the last line.
3. characterization of B[q]∗∣∣L2

: We use

〈
B[q]∗∣∣L2

−T iuiq,h̄
ui
q,h̄

 , ξ

〉
L2(Γref ,R3)

= Re

〈−T iuiq,h̄
ui
q,h̄

 ,B[q]ξ

〉
L2(Γq)×L2(Γq)

= −Re
〈
T iuiq,h̄,B1[q]ξ

〉
L2(Γq)

+ Re
〈
ui
q,h̄
,B2[q]ξ

〉
L2(Γq)

.

For B1[q] we obtain

−Re
〈
T iuiq,h̄,B1[q]ξ

〉
L2(Γq)

= −
∫

Γq

(ξ◦q−1 · nq) Re
{(

1
λe+2µe

− 1
λi+2µi

)
T iuiq,h̄ · In,q T iu

i
q

+
(

1
µe
− 1

µi

)
T iuiq,h̄ · It,q T iu

i
q

+
(

λi

λi+2µi
− λe

λe+2µe

)
T iuiq,h̄ · nq divΓq u

i
q

}
ds .

We use a change of variable to pass from an integral over Γq to an integral over Γref and we finaly get

−Re
〈
T iuiq,h̄,B1[q]ξ

〉
L2(Γq)

=

∫
Γref

ξ · Jq

(
nq Re

{(
1

λi+2µi
− 1

λe+2µe

)
(nq · T iuiq,h̄)(nq · T iuiq)

+
(

1
µi
− 1

µe

)
(T iuiq,h̄ × nq) · (T i uiq × nq)

+
(

λe

λe+2µe
− λi

λi+2µi

)
(nq · T iuiq,h̄)(divΓq u

i
q)
})
◦ q ds .

For B2[q] we obtain

Re
〈
ui
q,h̄
,B2[q]ξ

〉
L2(Γq)

=

∫
Γq

(ξ◦q−1 · nq) Re
{

(ρi − ρe)ω2ui
q,h̄
· uiq

}
ds

+

∫
Γq

Re
{
ui
q,h̄
· divΓq

(
(ξ◦q−1 · nq)σt(uiq)

)
+ ui

q,h̄
· divΓq

(
(ξ◦q−1 · nq)σn(Tiuiq)

)}
ds .

We note that the vector columns and the vector lines σn(Tiuiq) and σt(uiq) are tangential fields and we can
use the integration by part formula

∫
Γq
ϕ1 divΓq ϕ2ds = −

∫
Γq
∇Γqϕ1 ·ϕ2ds for any scalar function ϕ1 and any

tangential vector function ϕ2. We finaly get

Re
〈
ui
q,h̄
,B2[q]ξ

〉
L2(Γq)

=

∫
Γref

ξ · Jq
(
nq Re

{
(ρi − ρe)ω2ui

q,h̄
· uiq

})
◦ q ds

−
∫

Γq

ξ · Jq
(
nq Re

{
∇Γqu

i
q,h̄

: σt(uiq)

+∇Γqu
i
q,h̄

: σn(Tiuiq)
})
◦ q ds ,

with ∇Γqu
i
q,h̄

: σn(Tiuiq) =
(

λi

λi+2µi
− λe

λe+2µe

) (
nq · Tiuiq

)
(∇Γqu

i
q,h̄

: It,q) and (∇Γqu
i
q,h̄

: It,q) = divΓq u
i
q,h̄

.
�
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4 The inverse scattering algorithm
In this section we present the inverse problem of interest and describe an inverse scattering algorithm when the
unknown scatterer is diffeomorphic to a ball which means Γref = S2.

We consider the scattering of m ∈ N∗ incident plane waves of the form [3, Section 3] or [22, section 3]:

uinc` (x) =
1

µe
eiκ

e
sx·d`(d` × p`)× d` +

1

λe + 2µe
eiκ

e
px·d`(d` · p`)d` ,

where for ` = 1, . . . ,m we have d`,p` ∈ S2. When the polarization p` · d` = 0, the incident plane wave uinc`
oscillate in a direction orthogonal to the direction of propagation. They are called shear waves. When p` = d`,
the incident plane waves oscillate along the direction of propagation. Let F` : Q → L2(S2), ` = 1, . . . ,m
denote the operator which maps a parametrization q ∈ Q of a boundary Γq to the far-field pattern u∞`
corresponding to the incident field uinc` . These operators may be combined into one operator F : Q→ L2(S2)m,
F (q) := (F1(q), . . . , Fm(q))>. The inverse problem is formulated as follows: Given noisy far field measurements
u∞1,δ, . . . ,u

∞
m,δ solve for ` = 1, . . . ,m

F`(q
δ) = u∞`,δ.

We also combine the measured far-field patterns into a vector u∞δ := (u∞1,δ, . . . ,u
∞
m,δ)

> ∈ L2(S2)m such that
the inverse problem can be written as

F (qδ) = u∞δ . (4.1)

Here, δ denotes the noise level which is measured in the L2(S2)-norm, i.e. ||u∞δ −u∞0 ||L2(S2)m < δ. To compute
an approximate solution to (4.1) we use the IRGN method [5, 28, 29]. At each iteration step, the iterates of the
IRGN method can be computed by

qδN+1 := argminq∈Hs

[
‖F (qδN ) + F ′[qδN ](q − qδN )− u∞δ ‖2L2(S2)m + αN‖q − q0‖2Hs(S2,R3)

]
. (4.2)

Here q0 = qδ0 is some initial guess, and the regularization parameters are chosen of the form αN = α0γ
−N

with γ > 1, which provides logarithmic convergence rates of the IRGN method [28, 29, Theorem 4.9] when the
stoping rule is given by the Morozov’s discrepancy principle (5.1).

The updates (∂q)N := qδN+1 − qδN are the unique solutions to the linear equations [5]

(
αN I + F ′[qδN ]*∣∣L2F

′
k[qδN ]

)
(∂q)δN =

m∑
k=1

F ′k[qδN ]*∣∣L2

(
u∞k,δ − F k(qδN )

)
+ αN

(
qδ0 − qδN

)
, (4.3)

which is solved by the conjugate gradient (CG) method.
In the special case where we seek to restore a star-shaped scattering object with respect to the origin, we

can consider special parametrizations of the form

q = Rr with (Rr)(x̂) := r(x̂)x̂, x̂ ∈ S2

with a function r : S2 → (0,∞). Then the function r is uniquely determined by Γq. In this case we set, for
some s > 2, Qstar := {r ∈ Hs(Γ,R) : r > 0}. As R(Qstar) ⊂Q, we can define Fstar : Qstar → L2(S2)m by

Fstar := F ◦ R .

Then Fstar is injective if a star-shaped interface Γq is uniquely determined by the far field data u∞1 , . . . ,u∞m .
We obtain F ′star[r]*∣∣L2

h = x̂ · Re{. . . } ◦ q where the expression in the curly brackets coincides with the one in

Proposition 3.3.
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Fully discrete algorithm. To solve the forward problem and compute the Fréchet derivatives we use
the fast spectral method proposed by the author in [46]. For any n ∈ N∗, let HR

n be the (n + 1)2 finite
dimensional space spanned by the orthonormal scalar real spherical harmonics of degree at most n and let
Qn be the 3(n + 1)2 − 2 finite dimensional space spanned by the orthonormal vector spherical harmonics of
degree at most n. Let On and Ln be the projection operators on Qn and HR

n defined in [20, Eq. (3.10)] and
[19, Eq. (2.44)] respectively. In the sequel, we consider that the solution to the boundary integral equations
systems and the unknown parametrization are approached by vector or scalar spherical harmonics of degree
at most nsol and nstar, respectively. The far-field data are evaluated at 2(nmeas + 1)2 quadrature points
x̂ =

T
(cosφr sin θs, sinφr sin θs, cos θs) with θs = cos−1 zs, where zs, s = 1, . . . , nmeas + 1, are the zeros of the

Legendre polynomial of degree nmeas + 1, and φr =
rπ

nmeas + 1
, r = 0, . . . , 2nmeas + 1.

Following details in [46], we denote by [Iop]nsol
the spectral approximation of the operator Iop defined

on the space Q2
nsol

and by
[
I†op
]
nsol

the spectral approximation of the operator I†op. The discrete numerical
scheme for solving the forward problem using the system (2.5) is: find uinsol

= Onsol
uiq ◦ q ∈ Qnsol

and
tinsol

= Onsol
(T iu

i
q) ◦ q ∈ Qnsol

such that

[
I†op
]
nsol

(
uinsol

tinsol

)
=

(
Onsol

Jqu
inc ◦ q

Onsol
Jq(T eu

inc) ◦ q

)
. (4.4)

Setting
(
F

N,q −F
D,q

)
nmeas

the spectral approximation of the elastic far-field operators defined from Q2
nsol

to
Qnmeas , then the approximate farfield data is

Fstar(r) =
(
F

N,q −F
D,q

)
nmeas

(
uinsol

tinsol

)
. (4.5)

The discrete numerical scheme for computing the Fréchet derivative of Fstar at r in the direction ν using the
system (2.9) is: find ψnsol

= Onsol
ψq ◦ q ∈ Qnsol

and ϕnsol
= Onsol

ϕq ◦ q ∈ Qnsol
such that

[Iop]nsol

(
ψnsol

ϕnsol

)
=

(
−Onsol

Jqf
′
q,ξ ◦ q

Onsol
Jqg

′
q,ξ ◦ q

)
where ξ = Rν . (4.6)

Setting
(
FN,q FD,q

)
nmeas

the spectral approximation of the elastic far-field operators defined from Q2
nsol

to
Qnmeas

, then the approximate Fréchet derivative of the farfield data is

F ′star[r]ν =
(
FN,q FD,q

)
nmeas

(
ψnsol

ϕnsol

)
. (4.7)

The discrete solution space for the inverse problem (4.1) is HR
nstar

undowed with the norm of Hs given in the
appendix. We denote by jRL2→Hs the restriction of the isomorphism defined by (A.1) to real-valued functions
and by B−snstar

= Lnstar
jRL2→Hs its discrete approximation. In practice, we represent ν by the vector B−snstar

ν
and we solve (4.2) in L2 [29, Chapter 5]. The complete algorithm is the following.

1. Choose an initial guess qδ0 = q0 = Rr0.

2. For the parametrization qδN = RrδN : Γref → R3 of the current reconstruction ΓδN := qδN (Γref) of the inter-
face, evaluate Fstar(rδN ) by solving (4.4) for all incident waves ` = 1, . . . ,m. Save the Fourier coefficients
of the interior boundary data ui`,nsol

and ti`,nsol
on ΓδN and compute the discrete far field patterns u∞`,nmeas

for the `th incident wave and the interface ΓδN with (4.5).
If the stopping rule is not satisfied at the Nth regularized Gauß-Newton step, then:

3. Compute the next iterate qδN+1 by minimizing the least square (4.2) (or solving the equivalent linear
equation (4.3)) by the conjugate gradient method. In each CG step we need to compute F ′star[rδN ]ν and
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F ′star[r
δ
N ]∗∣∣L2

h numerous times. The Fréchet derivatives are evaluated by solving (4.7) for k = 1, . . . ,m. The

right hand sides can easily be evaluated using the discrete boundary data (ui`,nsol
, ti`,nsol

) (see Remark

3.2). To compute F ′star[qδN ]*∣∣L2
h with h =

T
(h(1), . . . ,h(m)), we compute traces of the total fields for

Herglotz incident fields with kernels h(`) by evaluating

T
(−Onsol

(T iui
q,h(`)

) ◦ q,Onsol
ui
q,h(`)

◦ q) =
T

[Iop]nsol

T(
F

N,q F
D,q

)
nmeas

h(`)

(see proof of Proposition 3.3). The surface derivatives which appear in the formulas (3.4)-(3.6) can be
computed analytically using some identities stated in [30, Section 3] or [46, Section 3] which link surfaces
derivatives on Γq to surface derivatives on S2. The discrete analogue of the integration by part formula
used in the proof of Proposition 3.3 is exact when one uses these identities.

5 Numerical experiments
The forward problem. We present numerical experiments for low and medium frequencies to highlight the
fast convergence of the spectral algorithm [20, 46] that we use to solve the elastic transmission problem. We
consider various smooth convex and non convex obstacles whose the parametric representations and visualiza-
tions are given in [19, 48]. The surfaces are characterized by their diameter denoted size obj. The convex
shapes are the sphere, denoted by sphere(size obj), the ellipsoid with principal diameters a, b and c denoted
by ellipsoid(a, b, c) and the rounded tetrahedron denoted by tetra(size obj). The non convex shape is the
stellated dodecahedron denoted by stell(size obj).

As a first test, using the indirect approach (2.9), we compute the far field, denoted by u∞ps , created by an
off center point source located inside the elastic obstacle :

uinc(x) = −[Φe(x, s)]p, s ∈ Ω and p ∈ S2.

In this case the total exterior wave has to vanish so that the far-field pattern of the scattered wave us is the
opposite of the far field pattern of the incident wave. The following far-field representation is obtain by applying
the kernel of the far field operator F

D
to p (see (2.11)).

u∞exact(x̂) =
1

µe

e−iκ
e
sx̂·s

4π
(x̂× p)× x̂+

1

λe + 2µe

e−iκ
e
px̂·s

4π
(x̂ · p) x̂.

We choose s =
T

(0, 0.05, 0.0866) and p =
T

(1, 0, 0). In the tabulated results we indicate the uniform-norm error
(by taking the maximum of errors obtained over 1300 observed directions, i.e nmeas = 25) :

||[u∞ps ]nsol
− u∞exact||∞ = max

x̂∈S2

∣∣[u∞ps ]nsol
− u∞exact

∣∣.
As a second test, using the direct approach (2.5), we compute the far-field pattern, denoted by u∞pw, created

by the scattering of an incident plane elastic wave. In the tabulated results (excepted for the sphere) we indicate
the real part and the imaginary part of the polarization component of the far-field evaluated at the incident
direction : [u∞pw(d)]nsol

· p. In the case of the sphere we know the analytical representation of u∞pw(d), thus we
compute the errors ||[u∞pw]nsol

− u∞exact||∞ by taking the maximum errors over 1300 directions as for the point
source radiation. The representation of u∞pw(d) is given by a series expansion of the vector spherical harmonics
(see [46, Appendix] for more details). Here, we consider an incident shearing plave wave with d =

T
(0, 0, 1) and

p =
T

(1, 0, 0).
In all simulations, the mechanical parameters characterizing the exterior domain are ρe = 1, λe = 2 and

µe = 1 so that κes = 2κep. In the interior domain we set ρi = 1.3, λi = 1.8, µi = 1.1. The size of the scatterers
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Table 1: Solution of the forward transmission problem : numerical examples for medium and high frequency scattering.

κe
s = 8π κe

s = 24π

sphere(8.0λes) ell(8.0λes,4.0λes,4.0λes) sphere(24.0λes) ell(24.0λes,12.0λes,12.0λes)

nsol ||[u∞pw]nsol − u
∞
exact||∞ ||[u∞ps ]nsol − u

∞
exact||∞ nsol ||[u∞pw]nsol − u

∞
exact||∞ ||[u∞ps ]nsol − u

∞
exact||∞

30 5.4101E− 03 1.2902E− 06 80 1.1005 2.1431E− 05
35 1.1801E− 06 2.4828E− 09 85 4.7521E− 04 4.5892E− 08
40 1.6390E− 09 1.8113E− 11 90 7.3925E− 07 8.0673E− 11

Table 2: Solution of the forward transmission problem : numerical examples for low frequency scattering

surface nsol ||[u∞ps ]nsol − u
∞
exact||∞ Re[u∞pw(d)]nsol · p Im[u∞pw(d)]nsol · p

15 1.6623E− 04 0.246 216 901 0.039 464 026
tetra(1.0290 λes) 25 1.2149E− 05 0.245 997 865 0.039 157 197

κe
s = 2 35 7.3789E− 07 0.246 014 718 0.039 116 512

45 8.7730E− 08 0.246 017 049 0.039 116 029

25 2.0217E− 04 0.221 257 743 0.039 813 339
stell(1.0116 λes) 40 9.4046E− 06 0.220 496 093 0.039 521 322

κe
s = 3 55 1.9360E− 06 0.220 449 588 0.039 547 333

70 2.9745E− 07 0.220 455 459 0.039 545 784

is indicated between brackets and is expressed in terms of the exterior S-wavelength λes = 2π/κes. As it was
reported [19, 20, 46], we observe extremely fast convergence rates for smooth convex obstacles but the presence
of angularity or concavity greatly increase the needed number of degree of freedom. In both cases, the spectral
algorithm intially developed by Ganesh and al. [19, 20] is very competitive with already existing fast BEM
method for low and high frequency scattering.

The Fréchet derivative. To attest the theoretical results we compare the Fréchet derivative obtained by
solving the transmission problem given by Theorem 3.1 and Remark 3.2 with the Gâteaux derivative typically
defined by

lim
t→0

F (q + tξ)− F (q)

t
.

We choose Γq = Γref = S2, hence q = I and the object is sphere(1.0λes) . The direction ξ and the different
values of t are defined in Table 3. The radial funcion ν is described by the spherical coordinates of any point
x̂ ∈ S2 denoted by (θ, φ) ∈ (0;π) × (0; 2π) ∪ {(0, 0); (0, π)}. The material parameters and the incident elastic
plane wave are chosen as previously with κes = π. We have set nmeas = 7, nsol = 10 and nstar = 5. As expected,
we observe linear convergence rate.

Application to the inverse problem. The first test is concerned with the shape reconstruction problem of
a convex obstacle illuminated by only one incident plane shear wave directed from top to bottom. The convex

Table 3: Numerical computation of the Fréchet derivative : comparison with the finite difference method

ξ v∞q,t t ||v∞q,t − v∞q,ξ||∞

ξ = Rν
ν(x̂) = 3

5
cos θ sinφ+ 2

5
cos 2θ sin 3φ

u∞q+tξ − u∞q
t

E− 01
E− 02
E− 03

1.7340E− 01
1.7344E− 02
1.7344E− 03
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obstacle is the rounded tetrahedron whose the visualization is given in Figure 1 (a). In this case, we do not
consider noisy farfield data so that δ = 0. We show in Figures 1 (c) and (e) some shape reconstruction for
various values of the interior density ρi. The Lamé parameters are defined as above and we choose κes = 2
so that the diameter of the scatterer is roughly 1λes. The exterior density is ρe = 1. To compute the exact
far-field data we use nsol = 25. To compute the far-field data at each iteration step we use nsol = 20. The
radial functions describing the unknown parametrization belong to HR

15. We use a mesh grid of 128 (nmeas = 7)
degrees of freedom to evaluate the far-field pattern. The initial guess is the unit sphere. We run the algorithm
until the 30-th iteration step is achieved. We choose α0 = 10−2. We observe that the shape reconstruction of the
scatterer is quite slow with a weak constrast between the exterior and interior densities and Lamé parameters.
The numerical experiments show that at the 30-th iteration step with ρi = 1.3, only the 4 vertices of the
tetrahedron are recovered but the 5 edges remains concave. Increasing the constrast by considering ρi = 2, we
obtain an accurate reconstruction of the tetrahedron. Other experiments have been conducted and we found
that using higher values of the frequency (κes = 3 or κes = 4) and illuminating the scatterer by several incident
plane waves (as for example 3 or 6 shear waves) greatly reduces the needed number of iterations to obtain an
accurate reconstruction of the obstacle.

Our second test is concerned with the shape reconstruction of the (rounded) stellation of the dodecahedron
whose the visualization is given in Figure 1 (b). This shape consists of 20 peaks located at the 20 vertices of the
regular dodecahedron. In this case, we reconstruct the obstacle from noisy far-field measurements corresponding
to the scattering of 6 incident plane shear waves from top, bottom, front, back, left and right sides. We consider
a noise level of 5% random noise. The Lamé parameters are defined as above and we choose κes = 6 so
that the diameter of the scatterer is roughly 2λes. To compute the exact far-field data we use nsol = 40. To
compute the far-field data at each iteration step we use nsol = 30. The radial functions describing the unknown
parametrization belong to HR

20. The initial guess still is the unit sphere. Using the discrepancy principle, the
algorithm is stopped at the first index N for which

‖F (qδN )− u∞δ ‖ ≤ τδ (5.1)

where we choosed τ = 1.5 . We set again α0 = 10−2. With this stopping rule we obtain the picture presented
in Figure 1 (d) after 14 iterations and the picture presented in Figure 1 (f) after 10 iterations. We observe that
noisy measurements affect the accuracy of the shape reconstruction of scatterer for weak constrast between the
interior and exterior Lamé parameters and densities. One can see in Figure 1 (d) that the peaks are assembled
two by two. This phenomenon is amplified by letting the algorithm running until the L2 error between the
farfield data and the farfield pattern of the unknown scatterer is closed to δ. We find that with ρi = 1.3
the shape of the unknown scatterer stagnates and we definitively obtain the result presented in Figure 1 (d),
whereas the shape reconstruction process is not finished in the case ρi = 2 and the size of all the 20 peaks are
well recovered.

These numerical experiments were realised in few hours using matlab programing language. The vector
nature of elastic waves greatly increases the dimension of the integral equation systems and makes the whole
algorithm significantly slower than in the case of acoustic waves. Rather recently, iterative methods for the
shape reconstruction, avoiding solving the direct scattering problem at each iteration step, have drawn some
interest [35, 36]. Investigations will be conducted in this area of research. Another future research line is the
combination of topological optimization tools with geometric optimization tools to find the location, the shape
and the material properties of multiple elastic obstacles between interfaces of piecewise homogeneous media.

Acknowledgement. The author gratefully acknowledges Prof. Dr. Thorsten Hohage from the Institute of
Numerical and Applied Mathematics at the University of Goettingen for providing the inversion toolbox he
developed with Matlab programing language [28, 29].
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(a) true obstacle (b) true obstacle

(c) 1 shear wave, ρi = 1.3, 0% noise (d) 6 shear waves, ρi = 1.3, 5% noise

(e) 1 shear-wave, ρi = 2, 0% noise (f) 6 shear-waves, ρi = 2, 5% noise

Figure 1: Iterative shape reconstruction of the tetrahedron (left side) and the stellated dodecahedron (right side).
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Appendix
This appendix is devoted to the construction of an orthonormal function basis of the Hilbert space L2(Γ). We
use the eigenfunctions of the scalar and vector Laplace-Beltrami operators following [47, Section 5.4.1]. Using
this funcion basis we introduce some isomorphisms between Sobolev spaces.

Since Γ is a compact manifold, the scalar negative Laplace-Beltrami operator (−∆Γ) admits a countable
increasing sequence of non-negative real eigenvalues (βj)j∈N associated with the normalized eigenfunctions
(Yj)j∈N satisfying the eigenvalue problem −∆ΓYj = βjYj in L2(Γ) . We have βj 6= 0 for j ≥ 1. Any scalar
function r ∈ L2(Γ) can be expanded on the basis Yi in the form

r(x) =

∞∑
j=0

rj Yj(x) , with
∞∑
j=0

|rj |2 < +∞ .

For any s ∈ R, the space Hs(Γ) of distributions can be redefined as

Hs(Γ) =

r ;

∞∑
j=0

(1 + βj)
s|rj |2 <∞

 ,

undowed with the norm ||r||2Hs =
+∞∑
j=0

(1 + βj)
s |rj |2. We naturally deduce the following bicontinuous isomor-

phism between the spaces L2(Γ) and Hs(Γ) :

jL2→Hs : L2(Γ) → Hs(Γ)

r := (rj)j≥0 7→ r :=
(
rj=(1 + βj)

− s
2 rj

)
j≥0

. (A.1)

Since ∆Γ = divΓ ∇Γ = − curlΓ curlΓ, the vectors ∇ΓYj and curlΓ Yj = ∇ΓYj × n are eigenvectors of the
tangential vector negative Laplace-Beltrami operator −∆Γ = curlΓ curlΓ−∇Γ divΓ with the eigenvalue βj . Let
N be the nullspace of the vector Laplace-Beltrami operator. If the surface Γ is simply connected then N = {~0}
otherwise, let N0 ∈ N∗ be the dimension and (Y(0)

j )0≤j<N0
be an orthonormal function basis of N . For j ≥ 0

we set Y(3)
j = nYj and for j ≥ 1 we set Y(1)

j = β
− 1

2
j ∇ΓYj and Y(2)

j = β
− 1

2
j curlΓ Yj . The concatenation of the

sequences (Y(0)
j )0≤j<N0 , (Y(1)

j )j∈N∗ , (Y(2)
j )j∈N∗ and (Y(3)

j )j∈N forms an orthonormal basis of L2(Γ).
Any vector dentity ϕ ∈ L2(Γ) can be expanded in the above eigenvector basis as follows

ϕ =

N0−1∑
j=0

ϕ
(0)
j Y(0)

j +

+∞∑
j=1

[
ϕ

(1)
j Y(1)

j + ϕ
(2)
j Y(2)

j

]
+

+∞∑
j=0

ϕ
(3)
j Y(3)

j .

We call (ϕ
(0)
j )0≤j<N0 , (ϕ

(1)
j )j≥1, (ϕ

(2)
j )j≥1 and (ϕ

(3)
j )j≥0 the Fourier coefficients of ϕ. The space L2(Γ) is defined

by

L2(Γ) :=

ϕ ;
∣∣∣ϕ(3)

0

∣∣∣2 +

N0−1∑
j=0

∣∣∣ϕ(0)
j

∣∣∣2 +

+∞∑
j=1

[∣∣∣ϕ(1)
j

∣∣∣2 +
∣∣∣ϕ(2)
j

∣∣∣2 +
∣∣∣ϕ(3)
j

∣∣∣2] < +∞

 ,

undowed with the norm ||ϕ||2
L2 =

∣∣∣ϕ(3)
0

∣∣∣2 +
N0−1∑
j=0

∣∣∣ϕ(0)
j

∣∣∣2 +
+∞∑
j=1

[∣∣∣ϕ(1)
j

∣∣∣2 +
∣∣∣ϕ(2)
j

∣∣∣2 +
∣∣∣ϕ(3)
j

∣∣∣2]. For any s ∈ R we

define the vector space Hs(Γ) by (extending [47, (5.4.17)] to non tangential fields)

Hs(Γ) :=

ϕ ;
∣∣∣ϕ(3)

0

∣∣∣2 +

N0−1∑
j=0

∣∣∣ϕ(0)
j

∣∣∣2 +

+∞∑
j=1

(βj)
s

[∣∣∣ϕ(1)
j

∣∣∣2 +
∣∣∣ϕ(2)
j

∣∣∣2 +
∣∣∣ϕ(3)
j

∣∣∣2] < +∞

 ,
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undowed with the norm ||ϕ||2Hs =
∣∣∣ϕ(3)

0

∣∣∣2 +
N0−1∑
j=0

∣∣∣ϕ(0)
j

∣∣∣2 +
+∞∑
j=1

(βj)
s

[∣∣∣ϕ(1)
j

∣∣∣2 +
∣∣∣ϕ(2)
j

∣∣∣2 +
∣∣∣ϕ(3)
j

∣∣∣2]. We naturally

deduce the following bicontinuous isomorphism between the spaces L2(Γ) and Hs(Γ) :

jL2→Hs : L2(Γ) → Hs(Γ)

ϕ :=



ϕ0
(3)

(ϕ
(0)
j )1≤j<N0

(ϕ
(1)
j )j≥1

(ϕ
(2)
j )j≥1

(ϕ
(3)
j )j≥1


7→



ϕ
(3)
0 = ϕ0

(3)(
ϕ

(0)
j = ϕ

(0)
j

)
1≤j<N0(

ϕ
(1)
j = (βj)

− s
2ϕ

(1)
j

)
j≥1(

ϕ
(2)
j = (βj)

− s
2ϕ

(2)
j

)
j≥1(

ϕ
(3)
j = (βj)

− s
2ϕ

(3)
j

)
j≥1


. (A.2)

In the special case Γ = S2, the expression of the eigenvalues and the eigenfunctions of the scalar and vector
Laplace Beltrami operator are well-known. The exact expressions are given for instance in [30, Appendix B].
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