N
N

N

HAL

open science

GHOST: A Combinatorial Optimization Solver for
RTS-related Problems

Florian Richoux, Alberto Uriarte, Jean-Francois Baffier

» To cite this version:

Florian Richoux, Alberto Uriarte, Jean-Francois Baffier.
Solver for RT'S-related Problems. IEEE Transactions on Computational Intelligence and Al in games,

2016, 10.1109/TCIAIG.2016.2573199 . hal-01152231v1

HAL Id: hal-01152231
https://hal.science/hal-01152231v1
Submitted on 15 May 2015 (v1), last revised 10 Jul 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

GHOST: A Combinatorial Optimization

https://hal.science/hal-01152231v1
https://hal.archives-ouvertes.fr

GHOST: A Combinatorial Optimization Solver for RTS-related
Problems

Florian Richoux? Jean-Francois Baffier! Alberto Uriartet

Abstract

This paper presents GHOST, a combinatorial optimization solver an RTS AI developer can use as a
blackbox to solve any problems encoded by a constraint satisfaction/optimization problem. We show a
way to model three very different RTS problems by a constraint satisfaction/optimization problem, each
problem belonging to a specific level of abstraction, and test our solver on them, using StarCraft as a
testbed. For the three problems (the target selection problem, the wall-ion problem and the build order
planning problem), GHOST shows very good results computed within some tens of milliseconds.

Game Al, Real-Time Strategy, StarCraft, CSP, COP, Solver, Optimization, Combinatorics.

1 Introduction

One can see games as a simplification of the world: The playground is smaller, rules are easier and less
numerous, thus possibilities are more limited. However, games are rich enough to propose complex, dynamic
environments where it remains difficult for a computer to make predictions, have a global understanding
of the current situation and then take a decision. This is especially true when information is incomplete,
forcing the computer to infer the global state of the game from pieces of information. This is the case with
Real-Time Strategy games (RTS), where a Clausewitz’s fog of war hides the opponent’s moves. Thus, RTS
games are very suitable to design Artificial Intelligence techniques that could be applied afterward in other
domains.

Many Al techniques are used in RTS games. Without making an exhaustive list, we can cite reinforce-
ment learning, case-base reasoning, Bayesian programming, goal-driven autonomy, potential fields, etc. We
recommend the reader to look at surveys from Ontanén et al. [1] and Robertson and Watson [2] to have a
very complete overview of Al techniques in RTS games.

However, there are few works in RTS game Al using constraint programming techniques, in particular
through constraint satisfaction/optimization problem (CSP/COP) models. Among others, branch and
bound algorithms have been used to optimize build order in Churchill and Buro [3]. Genetic algorithms
have been used off-line to optimize build order, with multiple objectives, and have been analyzed in Kuchem
et al. [4] and a population-based algorithm has been used for multi-objective procedural aesthetic map
generation in Lara-Cabrera et al. [5]. Still, CSP/COP offers a convenient, homogeneous framework able to
model a huge number of combinatorial and optimization problems, and proposes a various set of algorithms
to solve them.

CSP/COP is widely used in Artificial Intelligence to solve problems like path-finding, scheduling, and
logistics. Unlike mathematical programming, CSP/COP algorithms are usually not designed to solve one
specific problem but are general, able to manage any problems modeled in that framework. Besides the
generality, it is also easy and intuitive to model a problem with a CSP/COP. Altogether, these bring ideal
conditions to design and develop a user-friendly, easy-to-extend, general solver.

*LINA, Université de Nantes, France, and JFLI, University of Tokyo, Japan. florian.richoux@univ-nantes.fr
fJean-Francois Baffier Department of Computing Science of the University of Tokyo, Japan. jf_baffier@nii.ac.jp
fComputer Science Department at Drexel University, Philadelphia, PA, USA. au49@drexel.edu

1.1 RTS problem families

Ontanén et al. propose in [1] to decompose RTS problems into three families, according to their level of
abstraction. From the higher to the lower level, these families are (extracted from [1]):

e Strategy: corresponds to the high-level decision making process. This is the highest level of abstraction
for the game comprehension. Finding an efficient strategy or counter-strategy against a given opponent
is key in RTS games. It concerns the whole set of units and buildings a player owns.

e Tactics: are the implementation of the current strategy. It implies army and building positioning,
movements, timing, and so on. Tactics concerns a group of units.

e Reactive control: is the implementation of tactics. This consists in moving, targeting, firing, fleeing,
hit-and-run techniques (also knows as “kiting”) during battle. Reactive control focuses on a specific
unit.

Problems from different families usually involve different algorithms to solve them. In this paper, we will
model one problem for each of these three family, and use our solver GHOST to solve them, without any
modifications of the solver core. Only problem models will, of course, differ.

1.2 StarCraft: Brood War

StarCraft: Brood War is the extension of the game StarCraft, both released in 1998 by Blizzard Entertain-
ment. It is an RTS game where three very different races (Terran, Protoss and Zerg) can be played, giving
an asymmetric but perfectly well balanced strategy game. In this paper, the term “StarCraft” will actually
refer to the game plus its extension StarCraft: Brood War.

A player has to gather two kind of resources, mineral and gas, in order to construct buildings for producing
units, upgrading characteristics such as damage points or armor, unlocking technologies and special abilities.
Producing units has also a cost, each unit type having their own characteristic (hit points, damage points,
size, etc) and a price in consequence.

The game is run on a rectangular map, discretized into two kind of tiles: Walk tiles, composed of 8 x 8
pixels and build tiles composed of 4 x 4 walk tiles, i.e., 32 x 32 pixels. The difference between these two
kinds of tiles would be explained in Section 4, while introducing the wall-in problem. Like every RTS games,
the map is recovered by a fog of war, only dissipated around our own units/buildings. This means that one
cannot know at any time the full state of the game. Also, the player has to deal with a supply capacity,
limiting the number of units he can have. The player can increase it by constructing the right building or
producing the right unit, according to the race.

StarCraft has been a world wide success, and is still the most sold RTS game of the history with 11 millions
of copies distributed. It has been and still is particularly popular in South Korea, where a StarCraft league
has been specially created for the game, organizing televised tournaments between sponsored players and
teams. Korean professional players, or pro-gamers, are reputed to be among the best StarCraft pro-gamers
in the world.

Time’s flow in StarCraft is tricky: The game has 7 speed modes from “slowest” to “fastest” where
“normal” corresponds to the regular time’s flow (one second is one second) and the 6 others disturbing it.
This is why when we will write about in-game time, all along this paper we will refer to the terms StarCraft
unit time rather than second, to not make any confusions with proper seconds. In the fastest mode, one
game frame takes 42ms. In StarCraft AI competitions, it is necessary for bots to not make computations
longer than 55ms per frame, in which case the bot automatically looses the game after 200 frames exceeding
5bms.

1.3 Goals and summary

The research presented in this paper is an extension of Richoux et al. [6], where the problem to make a wall
at a given chokepoint in StarCraft has been modeled and solved thanks to an ad-hoc algorithm.

The goal of this paper is double:

e To present to the RTS Al community our solver GHOST, its architecture, how to model different
problems with it and the results we obtained.

e To show that constraint programming can be successfully used in RTS Al, at any level of abstraction.

The paper is organized as follows: In Section 2, we give a short introduction or reminder on constraint
satisfaction/optimization problems, how they model problems and what kind of algorithms exists to solve
them. Then, we present GHOST architecture, what user is aimed, how to use it to solve an already encoded
problem and how to write your own problems via GHOST. Sections 3, 4 and 5 give details about three
different problem, each from a specific level of abstraction (from the lower to the higher: Reactive Control,
Tactic and Strategy), how we modeled them into a CSP/COP and what results we obtained by applying
GHOST. Finally, this paper concludes with future works.

2 GHOST: A General meta-Heuristic Optimization Solving Tool
2.1 A brief introduction to CSP/ COP

Constraint Satisfaction Problems (CSP) and Constraint Optimization Problems (COP) are two close for-
malisms intensively used in Artificial Intelligence to solve combinatorial and optimization problems. Con-
straint Programming allows an intuitive and uniform way to model problems, as well as different general
algorithms able to solve any problems modeled by a CSP or a COP.

The difference between a CSP and a COP is simple:

e A CSP models a satisfaction problem, i.e., a problem where all solutions are equivalent; the goal is
then to just find one of them, if any. For instance: finding a solution of a Sudoku grid. Several solutions
may exist, but finding one is sufficient, and no solutions seem better than another one.

e A COP models an optimization problem, where some solutions are better than others. For instance:
Several paths may exist from home to workplace, but some of them are shorter.

Formally, a CSP is defined by a tuple (V, D, C) such that:
e V is a set of variables,
e D is a domain, i.e., a set of values for variables in V,
e (is a set of constraints.

A constraint ¢ € C can be seen as a k-ary predicate ¢ : V¥ — {T, 1} where T can be semantically
interpreted by true and L by false. Thus, regarding the value of the vector V¥, we say that c is either
satisfied (equals to T) or unsatisfied (equals to L).

Notice also that D should formally be the set of the domain for each variable in V', thus a set of set of
values. However it is common to define the same set of values for all variables of V', thus one can simplify
D to be the set of values each variable in V' can take.

A COP a defined by a tuple (V, D, C, f) where V, D and C represent the same sets as a CSP, and f
is an objective function to minimize or maximize.

Upon a CSP or a COP, one can build a CSP formula or a COP formula, respectively. A CSP/COP
formula is a conjunction of constraints from C, each constraint taking their variables from V. We say a
CSP/COP formula is satisfied if there exists an assignment ¢ : V' — D such that each constraint of the
formula is satisfied. Considering the vector v € V™ of variables used in a CSP/COP formula, a vector
z € D™ such that Vi € {1,n},z[i] = q(v[i]) is called a configuration. Since CSP/COP models a specific
problem P, a CSP/COP formula represents an instance of P.

Roughly speaking, there exist two different kinds of algorithms to solve CSP/COP problems:

e Tree-based search algorithms, also called complete algorithms since they completely explore the search
space of solutions, using smart moves (backtracking, forward checking, etc) to localize and avoid dead-
ends in the search space.

e Meta-heuristics, also called incomplete algorithms, since they are based upon local moves to find
optimums, rather than looking at the problem as a whole. In practice, these algorithms are the only
viable methods to manage industrial-size problems within a reasonable runtime. On the other hand,
they cannot prove they have found an optimal solution, neither they cannot prove there are no solutions
to the given problem.

For GHOST, we have chosen a meta-heuristic algorithm to be the heart of the solver, Adaptive Search
from Codognet and Diaz [7]. The reason we have chosen a meta-heuristics is simple: To solve combinatorial
and optimization problems while playing a RTS game, the solver needs to be very fast to find a solution,
within some tens of milliseconds, which is virtually impossible with tree-based search algorithms. The reason
we have chosen Adaptive Search is that, although it is not a well-known algorithm, it is one of the fastest
meta-heuristics at the moment, up to our knowledge (see Caniou et al. [8]).

In the next sections, we will see that looking for the optimal solution is not always an interesting strategy
for RTS games. Indeed, it is sufficient to have a solution “optimal enough” in some tens of milliseconds rather
than spending seconds to find a global optimum. Also, the reader has to keep in mind that meta-heuristics
are stochastic methods, then two runs on the same problem instance leads to two different solutions within
the same runtime. This is why results in this paper are the average of 10 to 100 repeated experiments,
regarding the problem. These results with GHOST are very good on all tested problems, and even often
better than results the reader can find in the current literature.

2.2 GHOST architecture

GHOST is a template C4++ solver!, under the GNU GPL v3 licence, designed to solve any kind of RTS-
related problems, as soon as they are modeled into a CSP or a COP. Two different users are targeted:

e The casual user, who only wants to use GHOST to solve an already encoded problem, like the three
problems presented in next sections. This user only needs to instantiate variables, the domain, con-
straints and eventually an objective to describe the instance of his problem, and to call the function
solve of the solver to run the search. This is done in 5 short C++ lines.

e The developer user, who has a specific problem not written with GHOST yet. GHOST has been
designed to let the implementation of new problems easy without changing a single line in the solver
and the existing code, and without expertise needed in Constraint Programming. Also, our solver has
been designed to have as few parameters as possible, to avoid tedious and time-consuming parameters
tuning before obtaining interesting results.

GHOST is implemented around five main C++ classes: Variable, Domain, Constraint, Objective and
Solver?. Interactions between these classes are depicted in Figure 1.

The function solve defined in Solver follows the steps exposed in Figure 2. It is composed of two main
loops: the outer loop for optimization, containing the inner loop for satisfaction. The satisfaction part, in red
in Figure 2, only tries to find a possible solution among all configurations, i.e., tries to find an assignment of
each variable such that all constraints of the CSP are satisfied. It is possible to call Solver: :solve without
defining any objective functions. In that case, a default objective is applied, doing nothing special, and the
solver will output a solution that satisfied all constraints, if it finds one.

If an “real” objective function is set, then the optimization part, in blue in Figure 2, is triggered. Even
more: it will influence the satisfaction part (finding a valid solution) if the objective implements optional
heuristics to select the variable to change and the value to assign, if the current configuration is not a
solution.

ISource code available at github.com/richoux/GHOST
2See GHOST manual pages (richoux.github.io/GHOST/) for more details

https://github.com/richoux/GHOST
http://richoux.github.io/GHOST/

Domain
#size
Solver #domains
-vector variables :ualui_uf[var]
-domain . reset()
-vector constraints
-objective Variable
+solve() Fname
#1ID
#value
+shift value()
Objective
#name
+cost() Constraint
+heuristic variable() -
+heuristic_wvalue() ::e‘t‘?‘r variables
+postprocess_satisfaction() omatn
+postprocess_optimization() +cost()
T +simulate_cost()

Figure 1: A simplified class diagram of GHOST

The optimization part also applies two optional post-process optimizations, one on the output of the
satisfaction loop, one on the final output, giving the solution returned by the solver. We will detail the
purpose of such functions later, in particular in Section 4.

The fundamental thing in the optimization part is the optimization loop itself. To explain how this
loop works, we have to introduce the two temporal parameters in GHOST. The function solve takes two
parameters: The first one, mandatory, is the satisfaction timeout = in milliseconds. It means that, if after x
ms, we leave the satisfaction loop, certainly without a valid solution since the loop stops as soon as it finds
a solution. The second parameter, optional this time, is the optimization timeout y, always in milliseconds.
It corresponds also to the total runtime of GHOST, modulo the post-process after the optimization loop
(which is negligible in practice and should be about 100 times smaller than y). If the y parameter is not
given, then it is set to 10 times =x.

Thus, the optimization loop repeats n times the satisfaction loop, and receives in total m < n valid
solutions. After receiving a new solution from the satisfaction loop, and applying an eventual satisfaction
post-process, it calls the objective function to compute the optimization cost, compares it with its saved
solution (if any) and keeps the solution with the lower cost. Then it repeats the satisfaction loop to obtain
a new solution, and so on, until ¥ ms are reached.

In some way, GHOST is applying a sort of Monte Carlo sampling. Notice that this is not MCTS. It
would certainly possible to implement a MCTS though GHOST, by twisting derived classes from Variable,
Domain, Constraint and Objective, however the authors do not recommend to use GHOST this way, since
it should be more efficient to develop a proper, ad-hoc MCTS program.

There exists a third and last parameters in the solver: The length of the tabu list. Indeed, Adaptive
Search contains a tabu list of explored variables in order to not revisit the same variable too soon during
the search. The tabu parameter is then a number expressing how long the solver has to wait before being
allowed to revisit an explored variable. Actually, we also have implement escape mechanisms to not make
this tabu list strict, by allowing the solver to draw a tabu variable if there are really no other interesting
variables. GHOST’s tabu list is thus more like a priority list.

i ml Variables

| EI SAT Domain

I X| Constraints
|

I

heuristics

[SAT post-process |

|
|
|
I OPT]I Objectives /[M]

y

OPTI post-process

Figure 2: GHOST architecture: In red, the satisfaction inner loop, running for x milliseconds top. In
blue, optimization mechanisms. The whole process, excluding optimization post-process, runs under y
milliseconds.

During our experiments, we realized that the same value for this parameter was leading to optimal
performances, when set to |V| — 1. It is then a priori not necessary to tune this parameter, however this
remains of course possible to the developer user.

A developer user has to build his own classes upon Variable, Domain, Constraint and Objective,
by inheriting from them. For instance, to create a class of variables representing units, this is done by
class Unit : public Variable. Classes composed of other classes, like Domain which needs to know on
what variables it will work with, must instantiate the right templates. Thus, declaring the domain for the
target selection problem is done by class TargetDomain : public Domain<Unit>.

Concerning objective functions, GHOST has been designed to minimize their value. If a developer user
needs to maximize an objective function f, this can be simply adapted to GHOST by defining the objective
function 1/f. Our solver is designed to deal with mono-objective optimization problem only, thus, one
can only choose at most one objective function at the time before running the solve function, however
the objective function can be dynamically changed between two calls of solve. The choice of designing a
mono-objective solver is pragmatic: Multi-objective solvers are in general significantly slower, since dealing
with more complex problems. Multi-objective solvers are also more difficult to implement, which makes
harder one goal of GHOST: To propose a solver both easy to use and easy to extend by implementing new
problems.

In the next three sections, we explain how we modeled a reactive control problem, a tactic problem and
a strategy problem with a respective CSP/COP, and what results we obtained by applying GHOST. We
would like to stress that no modifications, no optimizations of the solver has been done to manage these
different problems: The core of the solver, i.e., everything in the Solver class, remains unchanged. Even if

post-processes are defined differently in their respective Objective classes, the way they are included and
called into the solver is rigorously the same.

3 Reactive control problem: The target selection

Reactive control problems have been fairly well studied for StarCraft, with many different techniques applied:
We can cite Synnaeve and Bessiére proposing in [9] a Bayesian model allowing units to move in group without
being in each other’s way, finding the right distance to attack, etc; Uriarte and Ontafién in [10] using influence
maps for kiting, i.e., moving backward while recharging then attacking forward when one is ready to shoot,
and Churchill et al. in [11,12] showing a heuristic search method making combats outcome predictions.
These two last papers are also among the rare ones dealing with the target selection problem in StarCraft.

3.1 Problem statement and model

The target selection problem is a classical reactive control problem: A player has to cope with it several
times in each fight. Its satisfaction version is very easy: It consists of assigning to each unit of a fighting
group a reachable target, i.e., an enemy unit within our unit range.

In addition, one has also to take into account a cooldown, that is to say a fixed number of StarCraft unit
time within a unit recharges and has to wait before shooting again. The cooldown is the same for all units
of the same type. We can now describe the target selection problem with the following CSP:

CSP model for the Target Selection problem:

Variables: A group of our units.

Domain: A group of enemy units.

Constraints: Each living, ready-to-shoot unit must aim a living enemy within its range, if any.

The target selection problem is a frame-by-frame problem: We only consider the question “what enemy
should I shoot this frame?”, without looking at micro-management moves like kiting.

Usually, RTS games define specific characteristics to each unit type making the target selection more
subtle. Thus in StarCraft, each unit type has a size (small, medium or large) and a damage type (concussive,
normal or explosive). Table 1 shows the damage efficiency according to the aimed unit size and the shooter
damage type. For instance, a normal-damage unit will always afflict a target with full damage, whatever the
target size. But a concussive-damage unit, like a Terran Vulture, will only make 5 damage points (without
counting upgrade neither armor) against a large unit like a Terran Tank, instead of 20 damage points as
usual. Moreover, some units have a splash attack, afflicting damage to the target’s neighbors. In StarCraft,

Table 1: Damage efficiency matrix in StarCraft.
Damage type
Concussive Normal Explosive

Small 100% 100% 50%
S Medium 50% 100% 75%
Large 25% 100% 100%

two splash attack types exist: The linear splash, where the unit can hit a line of enemies, such as the Zerg
Lurker, and the radial splash where an attack triggers a circled shockwave hitting units around the target
within one the three splash radiuses. The first radius afflicts 100% of damage, the second one 50% and the
last one 25%. Terran Firebat are special cases mixing both linear and radial splashes.

Splash damages combined with damage efficiency lead to interesting optimization opportunities. In this
work, we investigated two different objective functions:

e Max damage, where our group tries to deal as much damage as possible within the current frame.

Figure 3: Mirror Terran unit composition and placement used for experiments. Line 1: 5 marines. Line 2: 2
Goliaths and 2 Vultures (in the middle). Line 3: 2 Siege Tanks in tank mode and 2 Ghosts (in the middle).
Line 4: 1 Siege Tank in siege mode, doing splash damage.

e Max kill, where our group tries to kill as much enemy units as possible within the current frame.

Notice that these two objective are more complex that looking for the maximal damage or the maximal dead
enemies each unit can do independently: Imagine a scenario where we have two units Ul and U2 and two
enemies E1 and E2, such that Ul can afflict 10 damage points to E1 and 9 to E2, U2 can afflict 8 damage
points to E1, but E2 is out of range, and E1 has 5 hit points (HP) left. The best global assignment is Ul to
E2 and U2 to El, even if Ul deals more damage to E1.

3.2 GHOST implementation and results

Figure 3 shows the mirror setup we used for experiments. We chose Terran units since many of them are
long-range attack units and this makes the target selection problem more interesting. Also, we packed units,
places them close each others, to make significant the Terran Siege Tank’s splash damage. Terran Firebat
has not been taking into account in the small simulator we wrote for testing GHOST on the target selection
problem. We first planned to use SparCraft [3,11,12], but we were lacking of time to learn how to use it

Table 2: Average results over 100 simulations for both objective functions, with the setup shown in Figure 3.
The first table shows experiments where calls to GHOST lasts for 3ms, and the second table calls lasting
for bms

GHOST victory Opponent victory
Objective Win % | # Draws | # GHOST living units | GHOST HP | # Opponent living units | Opponent HP
g Max Damage 86.0 3 2.8 153.4 1.0 37.1
o | Max Kill 80.0 2 3.0 163.2 1.1 62.8
g Max Damage 91.0 1 2.8 149.6 1.1 58.7
o | Max Kill 82.0 3 3.0 169.5 1.0 37.2

and combined it with GHOST. It was then faster to develop an quick ad-hoc simulator (about 200 lines of
C++ code).

The simulator is here to emulate a combat of two unit groups and thus needs to trigger cooldowns, manage
each unit HP, apply damages, compute Euclidian distances between units. Ranges, damage efficiency and
splash damages are directly managed by GHOST. It is important to stress that, in this simulator, enemy
units are randomly shooting at a reachable target.

Our simulator does not implement:

Healing, repair, HP or shield regeneration,

Terrain level (high/low ground),

Air shots (in StarCraft, there is always a small chance to miss the target),

Friendly fire,
e Firebat’s unique splash damage.

We ran 100 simulations for both objective functions until one group is completely annihilated, calling
GHOST at each StarCraft unit time. Eventually, the two groups can kill one another, leading to a draw.
We can then compute GHOST’s win rate, as well as the average number of GHOST’s living units at the
end of the simulation and the average of remaining HP for GHOST living units when GHOST wins, and
the same averages when the opponent wins. For these experiments, we first fixed the x satisfaction timeout
and y optimization timeout parameters respectively to 1ms and 3ms, and we ran a new series of experiments
with parameters x = 2 and y = 5. In [11,12], Churchill et al. propose an Alpha-Beta search and run it for
5ms. This is why we have chosen to set the optimization timeout to 3ms and 5ms to compare our results
with the same timeout and with a shorter one. For this problem, no particular post-processing optimizations
have been necessary.

Although Churchill et al. method predict a 100% victory in average in the different scenarios they have
tested, the real win rate in-game was 84%. It is however difficult to compare their results to ours from
Table 2 for many reasons: their 84% of victory comes from in-game experiments against the built-in AI,
where units are moving. Our simulator, although realistic for damage, do not emulate movements since it
is outside the scope of the target selection problem (i.e., answering the question “what enemy units should
I aim this frame?”). Plus, the simulator is considering an enemy shooting randomly, and the built-in AT is
applying a smarter heuristic.

Table 2% shows that the Max Damage objective wins 91% of the time against the mirror unit group
shooting randomly if we let 5ms to GHOST to do computations (and 86% within 3ms). The Max Kill
objective seems less efficient with a win rate of 82% within 5ms, (80% within 3ms). One explanation is that
Max Kill may not be a heuristic as good as Max Damage when enemy units have their full HP. It would be
interesting to cross these two objectives to see if it leads to better results.

3All target experiment results and the simulator can be found at github.com/richoux/GHOST _paper/tree/master/xp/target

https://github.com/richoux/GHOST_paper/tree/master/xp/target

For both objectives, we see that GHOST victories are undeniable, with in average 2.9 remaining units
after the simulation, whereas losses are tight, with just one living enemy unit at the end of the combat. The
average of total remaining HP is also clearly in favor of GHOST.

3.3 Future works

To go further, we could implement additional objective functions for the target selection problem, like
minimizing damage waste, i.e., to try to be as close as 0 HP while killing an enemy unit instead of shooting
a 5-HP target with 20 damage points for instance. Even if GHOST is a mono-objective solver, we could
craft new objectives by mixing already encoded ones, by simply applying a priority heuristics, like “maximize
killings first, and consider maximizing damage as a tiebreaker”.

The current implementation only deal with Terran ground units for the target selection problem. Ex-
tending it to all StarCraft units would be easy. Finally, improving the current simulator or using SparCraft
would make our experiments sharper.

4 Tactic problem: Wall-in

Up to our knowledge, tactic problems has not been intensively investigated for StarCraft. We can cite however
the broadly used BWTA library implementing a Voronoi decomposition to cut out and find a delimitation
between regions and chokepoints presented in [13].

However, the only works dealing with the wall-in problem is the pioneer paper from Certicky [14] and
the wall-in solver from Richoux et al. in [6]. As already written, the latter provided the basis for the present
work.

4.1 Problem statement and model

A classical tactic in RTS to defend a base is to make a wall, that is, to construct buildings side by side in
order to close or to narrow the base entrance. Closing a base gives the player extra-time to prepare a defense,
or helps him to hide some pieces of information about his current strategy. Narrowing an entrance creates
a bottleneck easier to defend in case of invasion. In this section we will focus only on walls constructed by
buildings, discarding small narrow passages that can be closed by small units like workers.

We define two properties of buildings: their build size, and their real size. The build size is a pair (w, h) of
build tiles. In order to create such a building, we need a rectangle of buildable tiles in the map (w build tiles
in width and h build tiles in height). The real size is a pair (wy, hyp), such that w, < 32 x w and h, < 32 x h,
representing the actual size of the building in pixels once it’s constructed in the game, where 32 is the size
in pixels of a build tile in StarCraft. The real size of a building can then be smaller than its build size. This
is actually always the case in StarCraft.

This means that two buildings constructed side by side are still separated by a gap which may be big
enough to let small units enter, like Zerglings, Marines or Zealots. In this paper, we will call significant gap
a gap allowing Zerglings (16 x 16 pixels) to enter into the base.

The wall-in problem has been first modeled in CSP by Certicky in [14]. Then, Richoux et al. proposed
a different model, always in CSP, in [6]. The work published in the latter has been GHOST foundation.
One can see GHOST has a deep extension and generalization of the solver used in [6].

For GHOST, the model of the wall-in problem is identical to the one in [6]:

CSP model for the Wall-in problem:

Variables: Buildings of the player race.

Domain: Possible positions around the chokepoint.

Constraints: Overlap, Buildable, NoHoles and StartingTargetTile.

Constraints of our models are illustrated in Figure 4. They are defined as follows:

e Overlap: buildings do not overlap each others.

10

Figure 4: Constraint are: Overlap (upper-left), Buildable (upper-right), NoHoles (bottom-left) and Start-
ingTargetTile (bottom-right). Dark grey tiles represent unwalkable and unbuildable tiles. Light grey tiles
are walkable but unbuildable tiles.

e Buildable: buildings do not overlap unbuildable tiles.
e NoHoles: no holes of the size of a build tile (or greater) in the wall.

e StartingTargetTile: there are exactly one building constructed on a given starting tile s, and one
building (it can be the same one) on a given target tile ¢.

Actually, Overlap, Buildable and NoHoles are sufficient to make a wall. We added the constraint Starting-
TargetTile to help the solver to find how to surround the chokepoint.

4.2 GHOST implementation and results

Like for the target selection problem, we focused on the Terran race for experiments. The wall-in problem
offers many interesting optimization opportunities. Therefore, we have implemented three different objective
functions, aiming to minimize:

e Building: the number of buildings in the wall,
e Gap: the number of significant gaps in the wall,

e TreeTech: the required technology level in the game (in games like StarCraft, some buildings require
technologies that require resources to acquire, so it is interesting to build walls with buildings of low
technology).

To evaluate the technology level of a wall, we simply take the depth in the technology tree of the most
technological building composing the wall. Thus, a Command Center has a depth 0, a Barracks a depth 1,
a Factory a depth 2, and so on.

11

This time, the satisfaction post-processing is important for these three objective functions, and the
optimization post-processing really helps to improve the Gap and the TreeTech objectives.

The role of the satisfaction post-processing is to “clean” the proposed wall, i.e., to remove all unnecessary
buildings in the valid solution, such that the resulting wall still satisfies the four constraints of the model.

The optimization post-processing used with the Gap and TreeTech objectives tries to swap each building
of the proposed wall with another building from the set of variables V, of the same size and not already
used in the wall. This simple permutation can drastically decrease the number of significant gaps between
buildings and the technology level required.

Table 3: Results over 48 chokepoints extracted from 7 StarCraft maps. Results are the average of 100 runs
for each chokepoint. Each calls of GHOST lasts for 150ms

Satisfaction run | Optimization run | % solved (opti)
Building 4.05 2.56 98.04%
Gap 1.32 0.03 97.50%
TreeTech 1.99 1.35 97.54%

Satisfaction runs in Table 3 are GHOST runs without any objective functions and with a satisfaction
timeout of 160ms, like in [6] with the difference that in Richoux et al.’s paper, they compiled 8 satisfaction
runs of 20ms each to have great chances to find a valid solution. We measure their average number of
buildings, significant gaps and technology level in order to match them with optimization runs. Always
following the experiment methodology of [6], optimization runs are slightly defavored since there global
timeout is 10ms shorter than satisfaction runs, with 150ms. For optimization runs, x and y parameters where
fixed to 20 and 150, respectively. We can see in Table 3% that optimization runs leads to real improvements
compared to satisfaction runs. This is particularly true with the Gap objective, where significant gaps are
almost completely eliminated: Over 4,800 runs in total, 4,680 walls have been found (97.50%), and 4527 of
them are perfect walls (i.e., without any significant gaps). In other words, 96.73% of walls found by GHOST
are perfect.

Since GHOST code has been improved compared to the solver in [6], we obtained slightly better results:
the percentage of problems solved goes from 95-96% to 97-98%, walls decided with the Building objective
were composed of 2.65 buildings against 2.56 now, the number of significant gaps goes from 0.05 to 0.03 and
the technology level from 1.56 to 1.35 currently.

Table 4 shows the percentage of walls found in each of the seven maps from where chokepoints were
extracted. These numbers correspond to pure satisfaction runs, since they do not defer significantly for
optimization runs. We can see that GHOST has more difficulties to find a wall for Fortress chokepoints.
Actually, it is failing from time to time on the same chokepoint, where a valid solution can only be achieved
by using two 3 x 2-sized buildings.

Table 4: Percentage of solutions found for each map.

Map name % solved
Python 100
Heartbreak Ridge 100
Circuit Breaker 99
Benzene 99
Aztec 97
Andromeda 96
Fortress 90

4All wall-in data and experiment results can be found at github.com/richoux/GHOST _paper/tree/master/xp/wallin

12

https://github.com/richoux/GHOST_paper/tree/master/xp/wallin

4.3 Future works

For the wall-in problem, we could add new objective functions to widen possibilities. For example, trying to
make a wall by minimizing the cost, or the makespan. This last objective is trickier and related to the next
section (it is somehow the wall-in 4 the build order problems).

Most importantly, since the required runtime to correctly optimize a wall is longer than a StarCraft frame
duration, we could implement GHOST in order to support computation pauses and resumes. Actually,
GHOST architecture has been designed by keeping in mind this feature: The satisfaction part is executed
in 20ms, i.e., it can be executed within one StarCraft frame in the fastest mode. Marking a pause after each
satisfaction loop and resume GHOST at the next frame until the computation ends would not be difficult
to do. This is more discussed in detail in Section 6.

In addition to extend the current code to manage all StarCraft races, results in Table 4 give us the feeling
that our wall-in model can be refined again to reach a higher percentage of found solutions.

5 Strategy problem: The build order

The reader can find an extensive literature about build order planner and/or prediction for StarCraft:
Churchill and Buro propose in [3] a build order planner using a branch and bound technique, Kuchem et al.
analyze build order tools for StarCraft II in [4], Cho et al. present in [15] a strategy prediction and build
order adaptation system learning from replays and in [16] Synnaeve and Bessiere show a Bayesian model to
predict the opponent build order in-game.

5.1 Problem statement and model

A build order planning is a series of actions following a specific timing, in order to achieve a goal. Such a goal
is a combination of buildings, units, upgrades and researches produced. Usually, the objective for a player is
to reach a fixed goal the fastest possible way. However, alternatives can also be considered, like reaching the
goal without sacrificing the economy, or focussing first on units in order to have an army quickly available.

A build order planning can be intuitively modeled by a CSP as a permutation problem, where a bijection
maps the set of variables to the domain. Changing the value of one variable is then actually swapping its
value with another variable.

All actions have a (potentially empty) dependency list, i.e., an action « has a list of actions that are
required before starting «. For instance, to start the Air Weapons Upgrade level 2, it is required to have
finished the Air Weapons Upgrade level 1. Notice that we can dive recursively into these dependency lists.
Thus if someone aims to do Air Weapons Upgrade level 2 for Protoss, it required Air Weapons Upgrade level
1, which requires itself a Cybernetics Core, which requires a Gateway.

The CSP model we propose for the build order planning problem is the following one:

CSP model for the Build Order Planning problem:
Variables: All actions we need to reach our goal.

Domain: Order of actions.

Constraints: Each dependency of an action o must occurs before a.

5.2 GHOST implementation and results

We have chosen to focus on Protoss to test GHOST on the build order problem. The current implementation
can deal with any Protoss buildings, units, researches and upgrades.

For this problem, we have implemented one objective function only: Minimizing the build order makespan.
With this objective function, we did not have implemented a special satisfaction post-processing, but we did
for the optimization post-processing. Imagine the case where the user asked, among others, to produce n
units of type U. Thus, GHOST will automatically add, recursively, all dependencies of U into the variable
set. Suppose the unit type U is produced by the building of type B, and the user eventually asked for m < n

13

buildings of type B. After having computed an optimized build order, the optimization post-processing will
retake this solution and try to see if it can shorten the makespan even more by constructing more buildings
of type B, to speed up the production of units of type U. This post-processing optimization is significantly
efficient in cases the user ask for a high number n of the same unit U, and none or a low number m of B.

Unlike the target selection problem, we needed this time to integrate a simulator inside GHOST to
emulate a game (without combats) and be able to compute the makespan of build orders. Thus, this simulator
must emulate resources gathering, units producing (including workers), supply capacity, constructions, etc.
Our simulator will always try to produce workers until reaching saturation (24 workers per base), as well
as maintaining supply in order to never be “supply blocked”, that is, unable to produce a unit because we
reached the supply capacity limit.

In [3], Churchill and Buro give details about the simulator they developed for their build order planner.
We first used the same settings, but after matching GHOST results against build order from Korean pro-
gamers, we realized that these settings were too advantageous for the simulator. We then closely analyzed
some replays from Korean pro-gamers to refine our simulator settings, listed below (in StarCraft unit time

t):
e Time to go build something: 5t (4t in [3])
e Time to go back gathering minerals after building something: 4t (0 in [3])

e Time to go from the base to mineral patches to start mining: 5t (0 in [3])

Time for a worker to switch from mineral to gas: 5t (0 in [3])

Mineral gathering rate: 0.68 mineral per worker per t (1.07 in [3])

Gas gathering rate: 1.15 gas per worker per t (1.66 in [3])

To be sure these parameters make our simulator realist, we matched its execution against the first 2 minutes
of games played by Korean pro-gamers. Table 5 give an example of our simulator matched against the
Protoss Korean pro-gamer Kim ”Bisu” Taek Yong. Gas is not revealed since it remained at 0 for both Bisu
and the simulator during the first 2 minutes. Each time the simulator started to produce a probe, i.e., a
worker, we write down the simulator and Bisu mineral stock and supply situation (used supply over supply
capacity). One can see that these two early game are very similar, with a slight advantage to the simulator
since its probe production is nearly perfect.

Table 5: Our simulator execution matched against the pro-gamer Bisu during the first two minutes.

Simulator in GHOST Bisu
Action (by S(im) or B(isu)) | Time t | Mineral | supply (used / capacity) | Mineral | supply (used / capacity)
S starts a probe 20 40.8 5/9 40 5/9
S starts a probe 44 19.7 7/9 20 7/9
S starts a probe 64 46.5 8/9 50 8/9
S starts a pylon 75 - - - -
B starts a pylon 78 - - - -
S starts a probe 89 1.2 9/9 12 9/9
S starts a probe 109 60.0 10/17 132 9/17
B starts a gateway 116 - - - -
S starts a gateway 125 - - - -
S starts a probe 125 1.8 11/17 78 9/17

For Table 6°, GHOST has been run 10 times on each build order. We run experiments on two sets of

5Al build order data, experiment results and the simulator can be found at
github.com/richoux/GHOST _paper/tree/master/xp/build_order

14

https://github.com/richoux/GHOST_paper/tree/master/xp/build_order

Table 6: Average makespan of Humans and GHOST build orders in StarCraft unit time over 3647 games.
Each calls of GHOST lasts for 30ms

Games till 10.000 frames
Match-up | Humans | GHOST | % solved | Gain

All 656.02 | 619.62 94.4 | 36.40
PuvP 651.51 | 608.06 95.0 | 43.45
PuT 660.50 | 628.17 939 | 32.33
PvZ 649.20 | 609.34 95.0 | 39.86
| Allpro | 64338 | 597.25 | 963 | 46.13 |

Games till 7.800 frames
Match-up | Humans | GHOST | % solved | Gain

All 522.50 | 491.11 938 | 31.39
PP 516.08 | 485.56 99.3 | 30.52
PuT 527.66 | 506.65 98.3 | 21.01
PvZ 51581 | 458.23 99.7 | 57.58
[Allpro | 506.38 | 480.88 | 100 | 25.50 |

build orders: Those extracted from replays by Gabriel Synnaeve® and refined by Glen Robertson’, and those
extracted from top Korean pro-gamers.

In total, the first set is composed of 3647 build orders: 768 Protoss versus Protoss, 2043 Protoss versus
Terran and 836 Protoss versus Zerg. Replays where these build orders occur are coming from TeamLiquid,
GosuGamers and ICCup web sites. Table6 shows that GHOST outperforms by far human build orders,
with a mean of 36.4 StarCraft unit time of gain considering 10,000 frames build orders and 31.39 StarCraft
unit time of gain considering 7,800 frames build orders, all match-ups taken together.

We have also analyzed some few replays of games played by top Korean pro-gamers, i.e., Kim ”Bisu”
Taek Yong, Doh "BeSt” Jae Wook, Woo ”Violet” Jung Ho, Yang ”Cure” Jung Hyun, all Protoss players,
against Lee ”Flash” Young Ho (Terran), Lee ”Jaedong” Jae Dong (Zerg), Ma ”"sAviOr” Jae Yoon (Zerg)
and we match their build orders with GHOST. Since we had to manually select those replays, we have only
downloaded 6 of them (2 for each match-up including a Protoss player), giving us a set of 8 build orders to
give to GHOST.

Results against these pro-gamers are shown at the very last line of Table 6. One can see that GHOST
clearly obtains better build order than Protoss Korean pro-gamers listed above, with a gain of 45.38 StarCraft
unit time for 10,000 frames build orders and 24.88 StarCraft unit time for 7,800 frames build orders. We
have to lower the first result by stressing that pro-gamers are often already engaged in a fight before 10,000
frames and/or are applying ouside-the-book strategies, and thus minimizing the build order makespan may
not be their first priority anymore. To a lesser extent, this is also true with 7,800 frames build orders.

Computation time is only 20ms for satisfaction runs and 30ms for the (global) optimization run. This
means that GHOST can compute a highly optimized build order within only one StarCraft frame at the
fastest speed. In [3], Churchill and Buro’s branch and bound method is computing 90% of the time build
orders with the same makespan as pro-gamers in about 3.735 seconds (for build orders with a makespan up to
249s), giving thus a CPU time / makespan ratio of 1.5%. Considering GHOST is computing in average build
orders with a makespan of 619.62 StarCraft unit time within 30ms. In the fastest mode, 619.62 StarCraft
unit time corresponds to about 423s; leading to a CPU time / makespan ratio of 0.007%.

Why planning a build order is easier than wall-in? A huge part of the answer is that planning a build
order can be modeled in CSP by a permutation problem, which drastically decrease the combinatorial
complexity of the problem. Also, the satisfaction part for the target selection and the build order problems
are not difficult to compute, since constraints modeling these problems are trivial. This is not the case for

6emotion.inrialpes.fr/people/synnaeve/ TLGGICCUP _gosu_reps.7z
“scidrive.uoa.auckland.ac.nz/gameai/scdata/files.txt

15

http://emotion.inrialpes.fr/people/synnaeve/TLGGICCUP_gosu_reps.7z
http://scidrive.uoa.auckland.ac.nz/gameai/scdata/files.txt

the wall-in problem, where even getting a non-optimized valid solution is hard.

5.3 Future works

As for all other problems, we could implement another objective function for the build order problem. For
instance, it would be natural to propose an objective function trying to first minimizing the makespan of all
army units asked by the user, and then to minimize the makespan of remaining actions (buildings, researches,
upgrades). This would allow the user to secure first his base with an army.

6 Discussion and conclusion

In this paper, we introduced GHOST, a combinatorial optimization solver to solve any problems encoded by
a constraint satisfaction/optimization problem. We presented three different RT'S problems belonging to a
specific level of abstraction, and proposed a CSP/COP model for each. Experiments applying GHOST on
these models shown very good results computed within some tens of milliseconds, without any modification
or optimization of the solver source code. Results obtained are often better than the ones we can find in the
current literature.

One claim written in Section 2 is now clear: Looking for the absolute optimal solution may not be the
best strategy for RTS games; runtimes to find such solutions can last far beyond what one can allow oneself.
Fast meta-heuristics can output an “optimal enough” solution in some tens of milliseconds, and if no good
enough solutions has been found, the user can always re-run the solver on the next frame. One has to
seriously consider such a way to manage and solve optimization problems in RTS games; results shown in
this paper proves it is absolutely viable.

The discerning reader had noted that GHOST is actually a general CSP/COP solver, and can not only
solve any RTS-related problems modeled with this formalisms but also any kind of such problems from other
fields. One of our starting point is to make GHOST a C++ library to be very easily included into StarCraft
bots. This should be done in the next few months by using the BWAPI 4 library, giving us (almost) all
informations we need on units, buildings, events, etc, in StarCraft for each race. We could also use other
libraries related to other RT'S games to make GHOST broadly available.

Some improvements we have in mind concern the implementation of a pause/resume system, allowing
GHOST to start a long computation and hash it into small pieces fitting within one frame (say, less than or
equals to 30ms to let some time for other computations). GHOST architecture has been designed to make
such an implementation easy to do, in particular thanks to the decoupling satisfaction loop - optimization
loop. Another improvement would be to let the solver check how many cores are available in the machine
running it, and use all of the to speed up the search. This can also be done easily since Adaptive Search
is known to be very efficient with a straightforward parallel scheme (see Caniou et al. [8]). Indeed, this
algorithm has been parallelized on super-computer and shows linear speed-ups over 8,192 cores on some
problems (and fairly good speed-ups on others), which are impressive parallel performances.

GHOST has also been designed following the famous Object Oriented programming “open-close princi-
ple”, to let the door open for extensions without needing to modify the already written classes. It is easy to
implement and include new problems in GHOST, and the authors highly encourage contributors to propose
implementations of new problems to integrate into the library.

Finally, this work leads us to take a global view on CSP/COP, and to consider the following: Even if a
huge number of combinatorial and optimization problems can be modeled with CSP/COP, this framework
is not well adapted to deal with uncertainty or incomplete information. This is penalizing for many RTS-
related problems, where most of interesting challenges come from the fact that information is incomplete.
Some variations of Constraint Programming propose to take into account uncertainty through formalisms
like soft, constraints or fuzzy constraints, however none of these formalisms favor the design of efficient solvers,
up to our knowledge. Thus, far beyond the scope if the present work, we would like to investigate on a new
CSP formalism that could manage uncertainty efficiently.

16

References

[1]

S. Ontanén, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill, and M. Preuss, “A survey of real-
time strategy game Al research and competition in starcraft,” IEEE Transactions on Computational
Intelligence and Al in games, vol. 5, no. 4, pp. 1-19, 2013.

G. Robertson and I. Watson, “A review of real-time strategy game Al,” Al Magazine, 2014.

D. Churchill and M. Buro, “Build order optimization in starcraft,” in AIIDFE, V. Bulitko and M. Ried],
Eds. The AAAI Press, 2011, pp. 14-19.

M. Kuchem, M. Preuss, and G. Rudolph, “Multi-objective assessment of pre-optimized build orders
exemplified for starcraft 2,” in CIG. IEEE, 2013, pp. 1-8.

R. Lara-Cabrera, C. Cotta, and A. J. Ferndndez-Leiva, “A self-adaptive evolutionary approach to the
evolution of aesthetic maps for a RTS game,” in IEEE World Congress on Computational Intelligence
(WCCI), 2014.

F. Richoux, A. Uriarte, and S. Ontanén, “Walling in strategy games via constraint optimization,” in
AIIDE. The AAAI Press, 2014.

P. Codognet and D. Diaz, “Yet another local search method for constraint solving,” in proceedings of
SAGA’01. Springer Verlag, 2001, pp. 73-90.

Y. Caniou, P. Codognet, F. Richoux, D. Diaz, and S. Abreu, “Large-scale parallelism for constraint-
based local search: The costas array case study,” Constraints, vol. 19, no. 4, pp. 1-27, 2014.

G. Synnaeve and P. Bessiere, “A bayesian model for RT'S units control applied to starcraft,” in CIG,
S.-B. Cho, S. M. Lucas, and P. Hingston, Eds. ITEEE, 2011, pp. 190-196.

A. Uriarte and S. Ontanén, “Kiting in RTS games using influence maps,” in AIIDE. The AAAI Press,
2012.

D. Churchill, A. Saffidine, and M. Buro, “Fast heuristic search for RTS game combat scenarios,” in
AIIDE, M. Riedl and G. Sukthankar, Eds. The AAAI Press, 2012.

D. Churchill and M. Buro, “Incorporating search algorithms into RTS game agents,” in AIIDE First
Workshop on Artificial Intelligence in Adversarial Real-Time Games, 2012.

L. Perkins, “Terrain analysis in real-time strategy games: An integrated approach to choke point detec-
tion and region decomposition,” in AIIDE, G. M. Youngblood and V. Bulitko, Eds. The AAAI Press,
2010.

M. Certicky, “Implementing a wall-in building placement in starcraft with declarative programming,”
arXiv, 2013.

H.-C. Cho, K.-J. Kim, and S.-B. Cho, “Replay-based strategy prediction and build order adaptation for
starcraft Al bots,” in CIG. IEEE, 2013, pp. 1-7.

G. Synnaeve and P. Bessiere, “A bayesian model for opening prediction in rts games with application
to starcraft,” in CIG, S.-B. Cho, S. M. Lucas, and P. Hingston, Eds. IEEE, 2011, pp. 281-288.

17

	Introduction
	RTS problem families
	StarCraft: Brood War
	Goals and summary

	GHOST: A General meta-Heuristic Optimization Solving Tool
	A brief introduction to CSP/ COP
	GHOST architecture

	Reactive control problem: The target selection
	Problem statement and model
	GHOST implementation and results
	Future works

	Tactic problem: Wall-in
	Problem statement and model
	GHOST implementation and results
	Future works

	Strategy problem: The build order
	Problem statement and model
	GHOST implementation and results
	Future works

	Discussion and conclusion

