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In this article, we propose a parallel implementation of the dynamic programming method for the knapsack problem on NVIDIA GPU. A GTX 260 (192 cores, 1.4GHz) was used for computational tests and processing times obtained with the parallel code are compared to the sequential one on a CPU with an Intel Xeon 3.0GHz. The results show a speedup up to 26 and permit one to solve large size problems within a reasonable processing time. Furthermore, in order to limit the communication between the CPU and the GPU, a compression technique is presented which decreases significantly the memory occupancy.

Introduction

Since a few years, graphics card manufacturers have developed tools to use their products for high performance computing. Graphics Processing Units, or GPUs, are high-performance many-core processors. NVIDIA GPUs are SIMT (Single Instruction, Multiple Thread) architectures which is akin to SIMD (Single Instruction, Multiple Data) architecture [START_REF]Cuda 2.0 programming guide[END_REF]. Severals parallel dynamic programming method have been proposed (see, for example, [START_REF] Baz | Load balancing methods and parallel dynamic programming algorithm using dominance technique applied to the 0-1 knapsack problem[END_REF], [START_REF] Lou | A parallel two-list algorithm for the knapsack problem[END_REF] and [START_REF] Gerash | A survey of parallel algorithms for onedimensional integer knapsack problems[END_REF]). Implementations on SIMD machine were performed on a 4K processor ICL DAP [START_REF] Kindervater | An introduction to parallelism in combinatorial optimization[END_REF] and 16K Connection Machine CM-2 systems (see [START_REF] Lin | Processor-efficient algorithms for the knapsack problem[END_REF], [START_REF] Ulm | Dynamic programming implementations on SIMD machines -0/1 knapsack problem[END_REF]) and a 4K MasPar MP-1 machine [START_REF] Ulm | Dynamic programming implementations on SIMD machines -0/1 knapsack problem[END_REF]. To the best of our knowl-edge, no parallel implementation of dynamic programming for combinatorial optimization problems has been done on a GPU. Using GPU architectures for solving combinatorial optimization problems is a great challenge in order to reduce the computing time needed to solve these NP-hard problems. In this paper, we propose a parallel implementation of the dynamic programming algorithm on a NVIDIA GPU for exactly solving the KP. Furthermore, a data compression is presented. This compression permits one to limit significantly, the communication between the CPU and the GPU and the memory needed to build the solution vector. The paper is structured as follows. Section 2 deals with the knapsack problem and its solution via dynamic programming. Section 3 focuses on GPU computing and the parallel dynamic programming method. In section 4 we propose a compression method which permits one to reduce significantly the memory occupancy and communication between CPU and GPU. Section 5 deals with computational experiences. Conclusion and future work are presented in section 6.

The knapsack problem

The knapsack problem, KP, is a NP-hard combinatorial optimization problem. It is one of the most studied discrete programming problem as it is among the simplest prototypes of integer linear programming problems and it arises in several sub-problems of many more complex problems (see, for example, [START_REF] Boyer | Heuristics for the 0-1 multidimensional knapsack problem[END_REF], [START_REF] Boyer | A dynamic programming method with list for the knapsack sharing problem[END_REF], [START_REF] Crowder | Solving large-scale zero-one linear programming problems[END_REF], [START_REF] Dietrich | More coefficient reduction for knapsacklike constraints in 0-1 programs with variable upper bounds[END_REF], [START_REF] Dietrich | New procedures for preprocessing 0-1 models with knapsack-like constraints and conjunctive and/or disjunctive variable upper bounds[END_REF], [START_REF] Kellerer | Knapsack Problems[END_REF] and [START_REF] Martello | Knapsack Problems -Algorithms and Computer Implementations[END_REF]).

Problem formulation

Given a set of n items i, with profit p i ∈ N * + and weight w i ∈ N * + , and a knapsack with the capacity C ∈ N * + , KP can be defined as the following linear integer programming problem:

(KP )              max n i=1 p i .x i , s.t. n i=1 w i .x i ≤ C, x i ∈ {0, 1}, i ∈ {1, ..., n}. (2.1)
To avoid any trivial solution, we assume that:

     ∀i ∈ {1, ..., n}, w i ≤ C, n i=1 w i > C.

Dynamic programming

Bellman's dynamic programming [START_REF] Bellman | Dynamic programming[END_REF], presented in 1957, was the first exact algorithm to solve KP. It consists in computing at each step k ∈ {1, ..., n}, the values of f k (ĉ), ĉ ∈ {0, ..., C}, using the classical recursion:

f k (ĉ) = f k-1 (ĉ), f or ĉ = 0, ..., w k -1, max {f k-1 (ĉ), f k-1 (ĉ -w k ) + p k } , f or ĉ = w k , ..., C. (2.2) 
with, f 0 (ĉ) = 0, ĉ ∈ {0, ..., C}.

The algorithm, presented in this section, is based on the the Bellman's recursion (2.2). A state corresponds to a feasible solution associated with the f k (ĉ) value. Toth [START_REF] Toth | Dynamic programming algorithm for the zero-one knapsack problem[END_REF] has proposed an efficient recursive procedure in order to compute the states of a stage and used the following rule to eliminate states:

Proposition 1 [START_REF] Toth | Dynamic programming algorithm for the zero-one knapsack problem[END_REF] If a state defined at k -th stage with total weight ĉ satisfies:

ĉ < C - n i=k+1 w i ,
then the state will never lead to an optimal solution and can be eliminated.

The dynamic programming method is described in algorithm 1. The matrice M stores all the decisions and is used to build a solution vector corresponding to the optimal value by doing a backtracking. The time and space complexities are O(n.C).

Algorithm 1 (Dynamic programming) for ĉ ∈ {0, ..., C}, f (ĉ) := 0, for i ∈ {1, ..., n} and ĉ ∈ {1, ..., C}, M i,ĉ = 0,

sumW := n i=1 w i , for k from 1 to n do sumW := sumW -w k , c = max{C -sumW, w k }, for ĉ from C to c do if f (ĉ) < f (ĉ -w k ) + p k then f (ĉ) := f (ĉ -w k ) + p k , M i,ĉ := 1, end if, end for, end for. return f (C) (the optimal bound of the KP)
The high memory requirement are frequently cited as the main drawback of dynamic programming. However, this method has a pseudo-polynomial time complexity and is insensitive to the kind of instances, i.e. with correlated datas or not. In order to reduce the memory occupancy, the entries of the matrix M have been stored in integers of 32 bits. This permits one to divide by 32 the number of lines of the matrix and the memory needed. However, the memory occupancy is still important and an efficient compression method will be presented in section 4.

GPU computing

GPUs are highly parallel, multithreaded, many-core architectures. NVIDIA introduced, in 2006, CUDA, a software development kit that enables users to solve many complex computational problems on their GPU cards. This tool has been used in order to implement our parallel dynamic programming code.

NVIDIA GPU architecture

On CUDA compatible NVIDIA cards, the threads are separated in blocks and these blocks are distributed on the multiprocessors. A multiprocessor processes one block at a time. When the threads of a block terminate, a new block is launched on the idle multiprocessor. The multiprocessor executes threads in groups of 32 parallel threads called warps. Threads composing a warp start together at the same program address, they are nevertheless free to branch and execute independently.

Another important aspect in GPU computing is the memory hierarchy. Indeed, threads have access to data from multiple memory spaces. Each thread has a private local memory. Each thread block has a shared memory visible to all threads of the block which has the same lifetime as the block. Finally, all threads have access to a global memory. Furthermore, there is two other read-only memory spaces accessible by all threads which are cache memories:

• the constant memory, for constant data used by the process,

• the texture memory space, designed for graphics applications.

In order to have a maximum bandwidth for the global memory, we have to insure a coalesced memory accesses. Indeed, the global memory access by all threads is done in one or two transactions if:

• threads access:

either 32-bit words, resulting in one 64-byte memory transaction, or 64-bit words, resulting in one 128-byte memory transaction, or 128-bit words, resulting in two 128-byte memory transactions;

• all 16 words lie in the same segment of size equal to the memory transaction size (or twice the memory transaction size when accessing 128-bit words);

• threads access the words in sequence (the kth thread in the half-warp accesses the kth word).

Otherwise, a separate memory transaction is issued for each thread. For further details on the NVIDIA cards architecture and how to optimize the code, see [START_REF]Cuda 2.0 programming guide[END_REF].

Parallel dynamic programming

Parallel implementation of the dynamic programming method is optimized for GPU NVIDIA architectures. The activity that consumes processing time is the loop that processes the values of f (ĉ), ĉ ∈ {0, ..., C}. This step has been parallelized on the GPU: one thread processes one value of f . Many efforts have been made in order to limit the communication between the CPU and the GPU and ensure coalesced memory access in order to significantly reduce the processing time. The procedures implemented on the CPU and the GPU, respectively, are described in algorithms 2 and 3, respectively.

• input f are the values of f processed at the previous step,

• output f are the output values of f ,

• output m are the output values of the decisions stored as integers of 32 bits and

• c min is the minimum value of ĉ.

This function creates C -c min + 1 threads for the GPU and groups them into blocks of 512 threads (the maximum size of a block of one dimension), i.e. (C -c min + 1)/512 blocks. All threads carry out on the GPU the procedure described in algorithm 3.

Algorithm 3 (Thread processing on GPU) blocks id: the ID of the belonging block, thread id: the ID of the thread within the belonging block, k: the step number of the dynamic programming (k ∈ {1, ..., n}), i := (k + 31)%32: the rest of the division of k + 31 by 32,

ĉ:=blocks id * 512 + thread id, if ĉ < c min or ĉ > C then STOP end if, if input f (ĉ) < input f (ĉ -w k ) + p k then output f (ĉ) := output f (ĉ -w k ) + p k , output m ĉ := output m ĉ + 2 i , else output f (ĉ) := output f (ĉ), end if
In the algorithm 3, threads have to access the values of input f (ĉ -w k ), this results in un-coalesced memory accesses as described in section 3.1. In order to reduce the memory latency, the texture memory is used to access the data stored in input f . We used the texture memory since this type of memory can be allocated dynamicaly contrarily to the constant memory. output f and output m are stored in the global memory.

Reducing memory occupancy

The analysis of the values stored in the matrix M h shows that the right columns are often filled with 1 and that the left columns are filled with 0. As these bits values are grouped in integers of 32 bits, in practice it corresponds to the value 2 32 -1 for the right columns (and 0 for the left columns). Thus, the communication between the CPU and the GPU occurs every 32 iterations in order to retrieve all the decisions stored in m d into the matrix M h (see algorithm 2). This step is time consuming and we have tried to further reduce the amount of data transfered to the CPU. A simple way to reduce the vector m d is then to compress it as follows:

f or ĉ ∈ {0, ..., rc -lc}, m d c ĉ = m d ĉ+lc with lc = min{ĉ ∈ {1, ..., C} | m d ĉ-1 = 0 and m d ĉ = 0}, rc = max{ĉ ∈ {1, ..., C} | m d ĉ-1 = 2 32 -1 and m d ĉ = 2 32 -1}.
Thus, we know that:

• if ĉ < lc, then m d ĉ = 0 and • if ĉ ≥ rc, then m d ĉ = 2 32 -1.
Then we have to retrieve only the values of m d ĉ for ĉ ∈ {lc, ..., rc -1} and we process lc and rc directly on the GPU via the algorithm 4.

Algorithm 4 (Thread compression on GPU) blocks id: the ID of the belonging block, thread id: the ID of the thread within the belonging block, m d: the input vector, lc: shared variable initiate with the value C, rc: shared variable initiate with the value 0,

ĉ:=blocks id * 512 + thread id, if ĉ ≤ 0 or ĉ > C then STOP end if, if m d ĉ-1 = 0 and m d ĉ = 0 then lc := min{ĉ, lc}, end if, if m d ĉ-1 = 2 32 -1 and m d ĉ = 2 32 -1 then rc := max{ĉ, rc}, end if.
This compression method decreases the amount of data transfered from the GPU to the CPU and permits one also to decrease significantly the memory occupancy needed to store all the decisions made throughout the dynamic programming recursion. Computational experiences shows that the efficiency of the compression depends on the sorting of the variables of the KP and, in average, the best results have been obtained with the following sorting:

p 1 w 1 ≥ p 2 w 2 ≥ ... ≥ p n w n .

Computational experiences

Computational tests have been carried for randomly generated correlated problems, i.e. problems such that:

• w i , i ∈ {1, ..., n}, is randomly draw in [1, 1000],
• p i = w i + 50, i ∈ {1, ..., n},

• C = 1 2 . n i=1 w i .
For each instance, the average results displayed have been obtained with 10 problems.

A NVIDIA GTX 260 graphic card (192 cores, 1.4GHz) has been used and the parallel computational time is compared with the sequential one obtained on a CPU with an Intel Xeon 3.0GHz. Results on the memory occupancy are also presented.

Memory occupancy

In this section, we display the results obtained with the compression method presented in section 4. Table 1 shows the factor of compression computed as follow:

comp f actor = size of M c + 2. n/32 size of M ,
where M is the matrix of decision and M c the corresponding compressed matrix. 2. n/32 corresponds to the values of lc and rc needed for each lines. which leads to a very small memory occupancy as compared with the original dynamic programming algorithm. Furthermore, the factor of compression decreases with the size of the knapsack. This method of compression reduces significantly the memory occupancy of the dynamic programming algorithm and is robust when the number of variables increases. This permits one to solve larger problems that could not be solved otherwise, like problems with 100000 variables. Time spent for the compression step is presented in the next subsection, in order to be compared to the overall processing time.

Processing time

Table 2 presents the average processing time to solve KP obtained with the sequential and parallel algorithms. It also shows the corresponding average time spent during the compression step. Table 3 provides the resulting speedup.

We can see that the processing time cost of the compression step is relatively small as compared with the overall one. These results include the compression step and the transfer of data to the CPU. Thus, this approach is very efficient both in terms of memory occupancy and processing time.

The comparison of the parallel implementation with the sequential one shows that the resulting speedup increases with the size of the problem and meets a level around 26. Our parallel implementation of the dynamic programming reduces significantly processing time and shows that solving hard knapsack problems is possible on GPU. The parallel implementation of the dynamic programming algorithm on GPU combined with our compression method permits one to solve large size problems within a small processing time and a small memory occupancy. 

Conclusion

In this article we have proposed a parallel implementation of the dynamic programing algorithm for the knapsack problem on NVIDIA GPU with CUDA. This algorithm has been combined with data compression techniques. Computational experiences have shown that large size problems can be solved within small processing time and memory occupancy. The proposed approaches, i.e. implementation on GPU and data compression, seems to be robust as the results are not deteriorated when the number of variables increases. The observed speedup appears to be stable (around 26) for instances with more than 40000 variables. The reduction of the size on the matrix increases with the number of variables, resulting in a more efficient compression and the overhead does not exceed 3% of the overall one.

The proposed parallel algorithm to solve knapsack problems on GPU shows the relevance of using this type of architecture for combinatorial optimization. Further computational experiences are foreseen, in particular with a NVIDIA Tesla cards and hybrid supercomputers which are dedicated to hight performance computing.
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	shows that in the worst case the size of the compressed data (size of M c+
	2. n/32 ) corresponds to only 0.3% of the size of the initial the matrix M ,

Table 1 :

 1 Factor of data compression.

Table 2 :

 2 Processing time (s.).

		t. //		t. seq.	t. comp. //	t. comp. seq.
	10000	3.06		58.95	0.11	1.08
	20000	11.97		226.66	0.31	4.16
	30000	26.57		536.14	0.71	9.27
	40000	47.43		1225.52	1.23	18.66
	50000	73.55		1912.43	1.85	25.66
	60000	105.93	2752.81	3.25	38.14
	70000	143.98	3739.74	3.61	50.15
	80000	183.15	4771.55	4.69	64.09
	90000	238.57	6184.28	5.95	82.56
	100000	289.21	>7200	7.16	-
	t. //: average parallel time	
	t. seq: average sequential time	
	t. comp. //: average parallel time for compression
	t. comp. seq.: average sequential time for compression
	n		speedup	n	speedup
	10000	18.90		60000	25.98
	20000	19.26		70000	25.97
	30000	20.17		80000	26.05
	40000	25.83		90000	25.92
	50000	26.00		100000	-

Table 3 :

 3 Speedup ( t. seq.

t. // ).

In algorithm 2, the launching of the threads on GPU is done via the following function:

Compute f and m on device(input f,output f,output m,c min)

where: