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P. González de Alaiza Mart́ınez,1 I. Babushkin,2 L. Bergé,1 S. Skupin,3 E.
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Broadband ultrashort terahertz (THz) pulses can be produced using plasma generation in a noble
gas ionized by femtosecond two-color pulses. Here we demonstrate that, by using multiple-frequency
laser pulses, one can obtain a waveform which optimizes the free electron trajectories in such a
way that they reach the highest velocity at the electric field extrema. This allows to increase the
THz conversion efficiency to the percent level, an unprecedented performance for THz generation
in gases. Besides the analytical study of THz generation using a local current model, we perform
comprehensive 3D simulations accounting for propagation effects which confirm this prediction. Our
results show that THz conversion via tunnel ionization can be greatly improved with well-designed
multicolor pulses.

PACS numbers: 42.65.Re, 32.80.Fb, 52.50.Jm

Ultrashort pulses in the terahertz (THz) range (from
∼ 0.1 to ∼ 30 THz) are extremely important for var-
ious time-resolved studies in molecular physics, chem-
istry, material sciences, and security applications [1–8].
The THz frequency interval lies in between the acces-
sible range of electronic (microwave) and optical (in-
frared) technologies, often referred to as the THz gap.
To access this spectral range, recent investigations pro-
posed to use nonlinear processes in gases ionized by fs
laser pulses, which provides higher breakdown thresholds,
broader spectral ranges and better tunability in the THz
and mid-infrared (MIR) ranges. Field strengths of THz
pulses generated by two-color optical pulses are typically
limited to the range below 1 MV/cm or pulse energies
below 100 nJ [9–15]. The highest THz energy of 5 µJ
was obtained in [13] with conversion efficiency of 10−4.
The physics behind this so-called photocurrent mecha-
nism can be understood by the peculiarities of tunnel
ionization and subsequent dynamics of free electrons in
the field [12, 13, 16–19]. It was shown [16, 17, 19] that
laser-driven THz emission is related to interactions over
two different time scales: the attosecond sub-cycle dy-
namics of tunnel ionization and the femtosecond pump
pulse dynamics. Free electrons, extracted from atoms by
ionization in sharp attosecond-long steps [17, 20, 21], are
accelerated in the laser field and create a net macroscopic
current that contains low frequency components. This
current is responsible for the observed THz emission.

In Refs. [16, 17, 19] the spectral shape and energy of the
THz pulses generated by the above mechanism have been
explained by analogy with linear diffraction theory, where
ionization events play the role of slits in a “temporal
diffraction grating“. The THz radiation then appears as
a zero-diffraction order peak in the corresponding diffrac-

tive pattern. Its amplitude is impacted by each ionization
event and is determined not only by the pump field near
the ionization instants, but also by the whole pump wave-
form. This non-instantaneous dependence suggests that,
by optimizing the pump field shape, one may achieve
higher THz yields for a given pulse energy.

In this article, we exploit degrees of freedom given by
appropriately chosen pump waveforms to increase the
THz conversion efficiency. We show that the fields with
a sawtooth-like temporal shape do promote the high-
est THz signals triggered by tunnel-induced photocur-
rents. We predict, by means of a local theory, that saw-
tooth waveforms can in principle increase the THz effi-
ciency by up to two orders of magnitude, compared to
a standard two-color pulse. Boosting the THz yield is
confirmed through comprehensive 3D computations that
take all propagation effects into account. Selecting the
first four Fourier harmonics of the sawtooth waveform
already guarantees an impressive increase of the THz en-
ergy up to 5 µJ, similar to the record value in [13] but
with 100 times smaller total pump pulse energy.

We start with the local current (LC) approxima-
tion [17], which neglects propagation effects. The free
electron density ρ(t) and current J(t) are governed by

∂ρ(t)

∂t
= W [E(t)] [ρ0 − ρ(t)] , (1)

∂J(t)

∂t
=

q2

m
ρ(t)E(t)− J(t)

τc
, (2)

where E(t) is the pump field;

W [E(t)] =
α

|E| exp
[
− β

|E|

]
(3)
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is the instantaneous tunnel ionization rate [14], ρ0 is the
density of neutral atoms, q and m are the charge and
mass of electron, and τc is the current decay time due
to collisions. In Eq. (3), α = 4ωa(rH)5/2Ea and β =
2(rH)3/2Ea/3 depend on the ratio of the ionization po-
tential Ui of the considered gas over the hydrogen ioniza-
tion potential, rH = Ui/UH , while Ea = m2q5/(4πε0)

3
~
4

and ωa = mq4/(4πǫ0)
2
~
3. The THz field ETHz(t) is gen-

erated by the free electrons created by tunnel ionization
and then accelerated in the pump field. That is, assum-
ing a small size of the plasma spot, ETHz(t) ≈ g∂tJ(t),
where g is a geometrical factor depending on the position
of the observer [17].
Ionization mostly happens near the extrema of E(t).

In the following, we number their corresponding instants
consecutively as t1, t2, t3, . . . tn. Thus, the electron den-
sity and current [Eqs. (1)-(2)] can be approximated as
follows (see [17] for details):

ρ(t) ≃
∑

n

δρnHn(t− tn), (4)

J(t) ≃ JA(t) + JB(t), (5)

JA(t) =
∑

n

qδρnvf (t)Hn(t− tn), (6)

JB(t) = −
∑

n

qδρne
− t−tn

τc vf (tn)Hn(t− tn), (7)

where vf (t) is the free electron velocity given by

vf (t) =
q

m
e−

t
τc

∫ t

−∞
E(t′)e

t′

τc dt′. (8)

The quasi-step function used in Eqs. (4)-(7) is Hn(t) =
1
2 [1 + erf(t/τn)], where τn is the width of the nth ion-
ization event and the density jump at t = tn, δρn, is
expressed as (see supplemental material)

δρn ≃ ρ0ǫn

(
1− e−

√
πW [E(tn)]τn

)
, (9)

with ǫ1 = 1 and ǫn = e−
√
π
∑n−1

j=1 W [E(tj)]τj for n > 1.
Moreover, it is possible to estimate analytically the

spectrum of the THz radiation generated by the current
components JA and JB . We obtain in Fourier space (see
supplementary material for a detailed derivation)

F [∂tJB](ω) ≈
−q√
2π

∑

n

δρnvf (tn)e
itnω

ω

i/τc + ω
, (10a)

F [∂tJA](ω) ≈
−iq2√
2πm

∑

n

N∑

k=1

δρnEk(tn)
ω

k2ω2
0

. (10b)

Here to evaluate JA(t), we considered multi-color pulses
of the form

E(t) =

N∑

k=1

Ek(t) =

N∑

k=1

Ek(t)ak cos(kω0t+ φk), (11)
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FIG. 1. (a) Sawtooth waveform E(t) (black thick solid line)
having the maxima of vf (t) (black dashed line) at the same
instants as the extrema of E(t). Colored solid curves show
the three-color (blue curve) and ten-color (red curve) approx-
imations to the ideal sawtooth shape. (b) Spectrum of the
sawtooth waveform containing all harmonics of ω0 with in-
tensities falling down as 1/k2. Inset shows the trajectories
of free electrons in the phase space (p, x) for an increasing
number of colors. Dots locate the maxima of |E(t)|; for the
2-color case, the value of mvf at those maxima is exemplified.

where Ek(t), ak and φk are the envelope with duration τk,
relative amplitude and phase of the kth harmonic, respec-
tively; ω0 is the fundamental frequency and we assumed
long pulses ω0τk ≫ 1. For a near-infrared pump, the con-
tribution JB dominates over JA [22] in the THz spectral
range, mainly because the Ek(tn) are not sign definite
and the summands in Eq. (10b) mostly cancel each other.
We therefore neglect JA in the coming analysis. We also
assume henceforth Gaussian envelopes Ek(t) = E0e

−t2/τ2

with amplitude E0 and duration τ being identical for all
colors.

The energy in the THz part of the spectrum be-
low a certain cut-off frequency ωco ≫ 1/τc can be
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thus estimated by the local THz yield as UTHz ∝
ωco∫
0

|ωĴB(ω)|2dω ∝
[∑

n
δρnvf (tn)

]2
. Obviously, to maxi-

mize UTHz one may not only try to increase the ionization
yield δρn, but also the free electron velocity vf (tn). Thus,
maximizing the THz energy requires that vf (t) reaches
its extreme values at the discrete instants tn, and that all
vf (tn) have the same sign. According to Eq. (8), vf (t)
attains local extrema when E(t) changes its sign. So
the only way to achieve maxima of both |E(t)| and vf (t)
at the same instants is to have a discontinuous electric
field. This condition is fulfilled by the sawtooth wave-
form, which can be obtained by setting ak = 1/k and
φk = (−1)kπ/2 in Eq. (11). The sawtooth waveform and
vf (t) are illustrated by Fig. 1(a) in the limit of negligible
free electron collisions, τc → +∞. Figure 1(a) also shows
that the velocities vf (tn) are sign definite.
Practically, as an infinite number of harmonics in the

pump is not achievable, we should employ a finite num-
ber N of colors. As shown in Fig. 1(a), the sawtooth
shape is fairly well reproduced for N ≥ 3, which is
confirmed by the sawtooth spectrum of Fig. 1(b). In-
set of this figure details the free electron phase space
p(t) ∝

∫ t

−∞ E(t′)dt′ ∼ mvf (t) versus x(t), as well as the
maximum values of |E(t)| (see dots). One can see that
the sign-definite value of p(t) at the field extrema in-
deed increases with the number of colors, thus increasing
UTHz.
In the following, we fix ω0 corresponding to the wave-

length λ0 = 1600 nm, a choice clearly advantageous over
the usual one λ0 = 800 nm, because more harmonics
are accessible in practice. In particular, the first four
harmonics are λ0/2 = 800 nm, λ0/3 = 533 nm, and
λ0/4 = 400 nm. All these frequencies can be produced
from a 800 nm femtosecond laser source using, for in-
stance, optical parametric amplification to obtain λ0 and
λ0/3 and frequency doubling to obtain λ0/4. In contrast,
for λ0 = 800 nm the fourth harmonic at 200 nm lies al-
ready in the UV and is not so easy to produce. Through-
out the paper, we consider argon at 1 atm pressure and
assume a Gaussian pulse envelope with 40 fs FWHM du-
ration (τ = 34 fs).
Let us first check our analytical predictions by com-

puting numerically the local THz yield UTHz in the fre-
quency range ν ≡ ω/2π < νco ≡ ωco/2π = 100 THz from
the LC model. For a given multi-color pulse [Eq. (11)]
we compute the current J(t) according to Eqs. (1)-
(3) and evaluate the local THz yield in Fourier space

UTHz ∝
νco∫
0

|νĴ(ν)|2dν [23]. From our coming 3D simula-

tions accounting for propagation effects we know that for
given pulse energy and focusing conditions the ionization
yield for different multi-color configurations is almost the
same [see Fig. 3(d)]. This is understandable, because free
electrons have a strong defocusing effect and balance the
intensity growth in the focal region, similar to the well-
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FIG. 2. (a) Dependency of local THz yield on a2, φ2 for a
N = 2 color field Eq. (11). (b) Same for a3, φ3 and N = 3.
(c) Same for a4, φ4 and N = 4. Relative amplitude and phases
of the lower harmonics in (a)-(c) are fixed according to the
(optimum) sawtooth shape, i.e., ak = 1/k, φk = (−1)kπ/2.
The total electric field amplitude E0 is fixed by the ionization
yield ρmax = 2.7×1018 cm−3. White crosses in (a)-(c) indicate
the values of the sawtooth waveform. (d) N-color sawtooth
THz yield normalized to the 2-color pulse one when ρmax is
fixed. For comparison, the inset shows the THz yield for fixed
pump energy flux E2

0

∑
k
a2

k.

known intensity clamping in femtosecond filaments [24].
A reasonable strategy is thus to compare the local THz
yield from pulses producing a constant ionization level
controlled by ρ(t → +∞) = ρmax in Eq. (1).
Figure 2 summarizes results from the LC

model Eqs. (1)-(3) for Gaussian multi-color pulses
with ionization yield ρmax fixed to 10% of ρ0. For
given ak and φk the field amplitude E0 is chosen such
that ρmax = 2.7 × 1018 cm−3. First, we fix relative
amplitude and phase for the fundamental frequency to
a1 = 1, φ1 = −π/2. This choice is arbitrary, because
for multi-cycle pulses (τ = 34 fs) carrier-envelope phase
effects are negligible. For N = 4 colors, we are then
left with six free parameters, a2, a3, a4 and φ2, φ3, φ4.
Because we cannot visualize the dependency of the THz
yield on all six parameters in the same figure, we treat
two-, three-, and four-color cases separately and vary
relative amplitude and phase of the highest harmonic
only [see Figs. 2(a)-(c)]. Clearly, we observe maximum
THz yield for the sawtooth waveform in all cases. We
checked that this behavior does not change when one
selects the ionization yield to 5% or 50% of ρ0.
An interesting issue is how the overall THz signal de-
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pends on the number of harmonics that approximates the
sawtooth shape. We clarify this question in Fig. 2(d).
One can see that the THz yield significantly increases
till N ∼ 5, while its quasi-linear growth saturates for
larger N . This behavior is also supported analytically in
the supplemental material. There, we also justify that
the pump wave shape which optimizes the THz yield ap-
proaches the sawtooth one at large N . In the inset of
Fig. 2(d) we find it instructive to present the efficiency
of the N -color sawtooth approximation in LC limit when
the pump energy flux E2

0

∑
k a

2
k is fixed, instead of pre-

serving the same ionization level. In this case, the saw-
tooth shape achieves a more impressive conversion up
to a factor of 50 because not only vf (tn) but also ρn
grow considerably. Remarkably, somewhat similar wave
shapes were found to increase the yield and electron rec-
ollision energy in high-order harmonic generation process
by up to two orders of magnitude [25, 26].
The advantage of the four-color approximation of a

sawtooth field is now studied using the unidirectional
pulse propagation equation that takes into account prop-
agation effects in full space and time resolved geometry.
This 3Dmodel was successfully tested against experimen-
tal data for THz generation from two-color pulses [27].
We use an adapted version of the unidirectional pulse
propagation equation [28] for linearly polarized pulses

∂zÊ = i
√
k2(ω)− k2x − k2yÊ + i

µ0ω
2

2k(ω)
P̂NL. (12)

Here, Ê(kx, ky, z, ω) is the pulse electric field expressed
in Fourier domain with respect to transverse coordinates
and time, k = ωn(ω)/c is the wave number, c is the
speed of light and n(ω) is the linear refractive index

of argon [29]. The nonlinear polarization P̂NL(ω) =

P̂Kerr(ω)+iĴ(ω)/ω+iĴloss(ω)/ω accounts for third-order
nonlinear polarization PKerr(t), electron current J(t) and
a loss term Jloss(t) due to photon absorption during ion-
ization. The plasma current J(t) is described by Eqs. (1)-
(3). Since 3D propagation affects relative phases, local
intensities and pulse durations, we can anticipate a re-
duced THz conversion efficiency compared with the pre-
diction of Fig. 2(d).
Figure 3(a) displays the pulse spectrum (left axis) and

the THz yield below 100 THz (right axis) of a two-color
40-fs pulse with overall energy of 300µJ. The fundamen-
tal wavelength is 800 nm and 6% of the pulse energy is
in the second harmonic (SH). The input beam width is
100µm, and the pulse is propagating along the longitudi-
nal (z) axis focused over 5-mm focal length in argon at 1
atm pressure. In this classical (non-optimized) two-color
setup the THz yield is about 1 µJ. Before passing over to
the four-color configuration in Fig. 3(c), let us discuss the
second two-color configuration of Fig. 3(b). Here we shift
the fundamental wavelength to 1600 nm and augment
the SH ratio, which leads to a roughly twofold increase
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FIG. 3. Low-frequency spectra (image plots) of (a) a two-color
pulse for λ0 = 800 nm and its second harmonic in respective
energy ratio of ≈ 0.06, (b) a two-color pulse for λ0 = 1600 nm
and its second harmonic in respective energy ratio of ≈ 0.4,
and (c) a four-color sawtooth pulse for λ0 = 1600 nm (thus
sum of harmonics energy in ratio ≈ 0.4). The overall THz
energy (ν < 100 THz) in the numerical box, UTHz(z), versus
z is shown by the right axes. The evolution of the peak free
electron density for all three pulses is shown in (d), revealing
a comparable fraction (≈ 10%) of the neutral atoms ionized.

of the THz yield. The SH ratio is higher than that pre-
scribed for the sawtooth waveform; however, according to
Fig. 2(a) a too large coefficient a2 has limited impact on
the THz yield. It is worth noticing that, by doubling the
pump wavelength, only a factor two is achieved in the en-
hancement of the THz yield. This departs from the order
of magnitude increase reported from setups with differ-
ent focusing conditions in Refs. [19, 30], but remains
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consistent with the non-monotonic increase of the THz
field strength at high optical intensities (> 1014 W/cm2)
predicted in [31]. In Fig. 3(c) the results for the four-
color configuration are presented with pump pulses up to
the fourth harmonic according to the sawtooth waveform.
The THz yield is now 5 µJ [see Fig. 3(c)], i.e., 2.5 to 5
times larger than with the two-color cases in Figs. 3(a,b),
which agrees with the LC predictions presented in Fig. 2.
Finally, the electron density evolution for the three pulses
of Figs. 3(a)-(c) is shown in Fig. 3(d). Because pulse en-
ergy and focusing conditions are the same, the plasma
densities exhibit similar dynamics. In particular, a com-
parable fraction ≈ 10% of the neutral atoms is ionized
in all three cases, justifying the earlier assumption of a
constant ionization yield in the local current model.

In conclusion, THz energy depends not only on the
number of electrons ionized, but also on the pump field
waveform. We have identified the free electron velocity
at the time instants of ionization as being crucial for op-
timizing the THz yield. By exploiting this insight, we
have shown that a sawtooth pump shape can boost THz
conversion efficiency significantly compared to the stan-
dard two-color configuration. Moreover, we provided ar-
guments showing that in the regime of intensity clamp-
ing, which unavoidably appears when highest THz energy
is targeted, the sawtooth shape is indeed optimal. Com-
prehensive 3D simulations confirm this finding and reveal

an efficiency of 2%, which is unprecedented for THz gen-
eration in gases.
Numerical simulations were performed using high per-

formance computing resources at Rechenzentrum Garch-
ing (RZG). AH acknowledges the support of DFG
(project HU 1593/2-1). IB is thankful to P. Kinsler for
useful discussions.

SUPPLEMENTAL MATERIAL

Expressions of ρ(t), d
dt
JB(t) and d

dt
JA(t)

As preliminary computations we introduce the multi-
color electric field Eq. (11) into Eq. (3) of the main
article, assuming |E(t)| ≪ β. Ionization events occur
at the instants tn of the electric field extrema. In the
neighborhood of tn the absolute value of the electric field
is approximated by

|E(t)| ≈ |E(tn)| −
1

2
|Ë(tn)|(t− tn)

2, (13)

where Ë ≡ ∂2
tE. Following Ref. [17], the ionization rate

can be expanded through Taylor series. Using Eq. (13),
it is easy to prove by recurrence that odd derivatives of
W are approximately zero at t = tn and even derivatives
of W satisfy

d2m

dt2m
W (|E(tn)|) ≈ (−1)m(2m− 1)!!W (|E(tn)|)

(
β|Ë(tn)|
|E(tn)|2

)m

, m ≥ 0, (14)

where p!! = p · (p − 2) · · · 3 · 1 is the double factorial of
the odd integer number p [(−1)!! = 1].

By substituting Eq. (14) into the Taylor series of the
ionization rate, one finds

Wn(t)

W (|E(tn)|)
≈

∞∑

m=0

[
(−1)m(2m− 1)!!

(
β|Ë(tn)|
|E(tn)|2

)m
(t− tn)

2m

(2m)!

]

= exp

(
− β|Ë(tn)|
2|E(tn)|2

(t− tn)
2

)
,

since (2m)! = (2m − 1)!!m!2m. The ionization rate
around the instant tn can thus be expressed as

Wn(t) ≈ W (|E(tn)|)e−(
t−tn
τn

)
2

, (15)

where τn is interpreted as a characteristic time-length of
the ionization event defined by

1

τ2n
=

β|Ë(tn)|
2|E(tn)|2

=
1

3
Ea(Ui/UH)3/2

|Ë(tn)|
|E(tn)|2

. (16)
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Assuming that the superposition principle holds, we
obtain the evaluation of the ionization rate

W (t) ≈
∑

n

W (|E(tn)|)e−(
t−tn
τn

)
2

. (17)

Free electron density

For hydrogen-like atoms, the free electron density is
given by Eq. (1) of the paper, yielding

ρ(t) = ρ0

[
1− exp

(
−
∫ t

−∞
W (τ) dτ

)]
, (18)

whenever ρ(t → −∞) = 0. Employing Eq. (17) leads to

∫ t

−∞
W (τ) dτ ≈

∑

n

[
W (|E(tn)|)

∫ t

−∞
e−(

t−tn
τn

)2 dτ

]

=
∑

n

[√
πτnW (|E(tn)|)Hn(t− tn)

]
,

(19)

where Hn(t) = 1
2 (1 + erf(t/τn)) tends to the standard

Heaviside step function Θ(t) when τn → 0, i.e.,

lim
τn→0

Hn(t) = Θ(t) =

{
1, if t ≥ 0,
0, if t < 0.

(20)

To evaluate ρ(t) [Eq. (18)] we exploit the limit given
by Eq. (20). First, let us consider a single ionization
event. We substitute Eq. (19) for n = 1 into Eq. (18)
using H1(t− t1) ≃ Θ(t− t1):

ρ(t) = ρ0

(
1− e−

√
πτ1W (|E(t1)|)H1(t−t1)

)

≈ ρ0

(
1− e−

√
πτ1W (|E(t1)|)Θ(t−t1)

)

= ρ0

(
1− e−

√
πτ1W (|E(t1)|)

)
Θ(t− t1) ≈ δρ1H1(t− t1),

(21)

where δρ1 denotes the density jump of the first ioniza-
tion event. Second, for two ionization events a similar
reasoning yields

ρ(t) = ρ0

(
1− e−

√
πτ1W (|E(t1)|)H1(t−t1)−

√
πτ2W (|E(t2)|)H2(t−t2)

)

≈ ρ0

(
1− e−

√
πτ1W (|E(t1)|)Θ(t−t1)−

√
πτ2W (|E(t2)|)Θ(t−t2)

)

= δρ1Θ(t− t1) + ρ0

(
1− e−

√
πτ1W (|E(t1)|)−

√
πτ2W (|E(t2)|) − δρ1

ρ0

)
Θ(t− t2)

≈ δρ1H1(t− t1) + δρ2H2(t− t1),

(22)

where δρ2/ρ0 = e−
√
πτ1W (|E(t1)|) −

e−
√
πτ1W (|E(t1)|)−

√
πτ2W (|E(t2)|) is the density jump

of second ionization event. By a recursive reasoning, we
find the following step-wise model for the density

ρ(t) =
∑

n

δρnHn(t− tn), (23)

where the density jumps for n > 1 are defined by

δρn = ρ0e
−

∑n−1
j=1

√
πτjW (|E(tj)|)

(
1− e−

√
πτnW (|E(tn)|)

)
.

(24)

The free electron density results from the superposition
of all step-like ionization events. Equation (24) guaran-
tees that ρ(t) will saturate for high intensities and/or for
long laser pulse durations.

THz contribution from d

dt
JB(t)

Following Ref. [17] of the main article, J(t) expresses
as

J(t) = JA(t) + JB(t), (25)

JA(t) = q
∑

n

[δρnvf (t)Hn(t− tn)] , (26)

JB(t) = −q
∑

n

[
δρnvf (tn)e

− t−tn
τc Hn(t− tn)

]
. (27)

JA(t) is expected to dominate in the high-frequency
part of the spectrum, although for some pulse configu-
rations it may also affect the THz band. In contrast,
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the component JB(t) contributes mostly to low frequen-
cies. According to the LC photo-current model, the
field radiated by accelerated electrons is proportional to

the derivative of the current. We thus take the time-
derivative of Eq. (27) and then apply a Fourier transform,
yielding

F (∂tJB(t)) = −q
∑

n

[
δρnvf (tn)√

πτn
F
(
e−

t−tn
τc

−( t−tn
τn

)2
)
− δρnvf (tn)

τc
F
(
e−

t−tn
τc Hn(t− tn)

)]
, (28)

where, by definition, F (f(t)) = 1√
2π

∫ +∞
−∞ f(t)eiωt dt.

The first Fourier transform in the right-hand side

(RHS) of Eq. (28) is

F
(
e−

t−tn
τc

−( t−tn
τn

)2
)
=

τn√
2
e
itnω− 1

4 (τ
2
nω

2− τ2
n

τ2
c
+

2iτ2
n

τc
ω) ≈ τn√

2
eitnω, (29)

which we approximate in the THz-band (ω → 0) using
ω2 ≪ ω and τn ≪ τc. THz generation due to this com-
ponent proceeds from constructive interference of contri-
butions in eitnω.

We filter this component in the interval [0, ωco], where
ωco is the cut-off frequency in the THz band, by using the

rectangular filter Π(ω) = Θ(ω + ωco) (1−Θ(ω − ωco)),
such that

F−1

(
τn√
2
eitnωΠ(ω)

)
=

τnωco√
π

sinc (ωco(t− tn)) . (30)

The second Fourier transform in the RHS of Eq. (28)
expresses as

F
(
e−

t−tn
τc Hn(t− tn)

)
=

iτce
iωtn− τ2

n(i+τcω)2

4τ2
c

√
2π (i+ τcω)

≈ iτce
iωtn

√
2π(i+ τcω)

, (31)

which is a peak function lying, in the case of ωco ≫ 1/τc,
already in the low frequency domain and will thus not be

filtered. Eq. (31), together with Eq. (29) gives Eq. (10a)
of the main paper.
The THz component of ∂tJB(t) reads as

∂tJ
THz
B (t) = −q

∑

n

[
δρnvf (tn)

(
ωco sinc (ωco(t− tn))

π
− e−

t−tn
τc Hn(t− tn)

τc

)]
. (32)

THz contribution from d

dt
JA(t)

Due to the complexity of its expression, we propose an
approximate model of ∂tJ

THz
A (t) based on Taylor series

and the following approximations:

1. For technical convenience, the slowly-varying en-
velopes Ek(t) in Eq. (11) of the main article are

square cosinus with compact support:

Ek(t) ≈ E0 cos
2

(
πt

2τk

)
Θ(t+ τk) (1−Θ(t− τk)) , (33)

where τk denotes the duration of the kth color.

2. The pulse has a large number of cycles:

1

ωk
≪ τk. (34)
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3. We simplify more the free electron density
[Eq. (23)] and consider standard Heaviside step
functions:

ρ(t) =
∑

n

δρnΘ(t− tn). (35)

By integrating by parts Eq. (8) of the paper and ne-
glecting time-derivatives of the envelope, we get

vf (t) ≈
q

m

N∑

k=1

akEk(t)
sin(kω0t+ (−1)kφk)

kω0
. (36)

We take the Fourier transform of Eq. (26) in which we
apply Eqs. (35) and (36) with the envelope Eq. (33) to
obtain

F (JA(t)) =q
∑

n

[
δρn√
2π

∫ +∞

−∞
vf (t)Hn(t− tn)e

iωt dt

]

≈ q
∑

n

[
δρn√
2π

∫ +∞

tn

vf (t)e
iωt dt

]

≈ q2E0

m

∑

n

∑

k

[
δρnak√
2πkω0

×

∫ +∞

tn

cos2
(

πt

2τk

)
Θ(t+ τk) (1−Θ(t− τk))×

sin(kω0t+ (−1)kφk)e
iωt dt

]
=

q2E0

m

∑

n

∑

k

[
δρnak√
2πkω0

×
∫ τk

tn

cos2
(

πt

2τk

)
sin(kω0t+ (−1)kφk)e

iωt dt

]
.

For practical use, we only consider the first two terms in
the Taylor expansion of the previous expression around
ω = 0. After cumbersome calculations (not detailed), we
get

F (∂tJA(t)) = −iωF (JA(t)) ≈ −iωC̃0 + ω2C̃1, (37)

C̃0 =
q2√
2πm

∑

n

∑

k

[
δρn

Ek(tn)

k2ω2
0

]
, (38)

C̃1 =
q2√
2πm

∑

n

∑

k

[
δρntn

Ek(tn)

k2ω2
0

]
. (39)

This approximation is applicable if the low-frequency
range we consider is small compared to ω0, that is,
ωco ≪ ω0. Finally, we filter out Eq. (37) using the cut-off
frequency ωco to obtain

∂tJ
THz
A (t) ≈ C0ω

2
co dsinc(ωcot) + C1ω

3
co ddsinc(ωcot),

(40)

C0 =
q2

πm

∑

n

∑

k

[
δρn

Ek(tn)

k2ω2
0

]
, (41)

C1 = − q2

πm

∑

n

∑

k

[
δρntn

Ek(tn)

k2ω2
0

]
, (42)

where dsinc(x) and ddsinc(x) denote the first two suc-
cessive x-derivatives of the function sinc(x). Equation
(10b) of the main paper follows from Eq. (37) and the
inequality |C1ω

3
co| ≪ |C0ω

2
co|.

Growth of the THz energy with N for fixed

ionization degree

The N -color approximation of the sawtooth waveform
without envelope is given by

E(t) = aN

N∑

k=1

(−1)k+1

k
sin(kω0t), (43)

where aN is adjusted to the desired ionization degree.
The absolute extrema of Eq. (43) are attained at the
instants

ω0tn = ± N

N + 1
π + 2πn. (44)

After easy manipulations assuming τc → ∞ for sim-
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plicity, the free electron velocity at t = tn reads as

vNf (tn) ∝ aNχ(N) ≡ aN

N∑

k=1

(−1)k

k2
cos

(
N

N + 1
kπ

)
.

(45)

Similarly, the value of E(tn) only depends on the number
of color N and so do the maximum ionization rate W (tn)
and the density jumps δρn. Besides, from Eqs. (28) and
(37), one has in Fourier domain

F [∂tJ ](ω) ≈
−q√
2π

∑

n

δρnvf (tn)e
itnω

ω

i/τc + ω
− iC̃0ω + C̃1ω

2. (46)

0 20 40 60 80 100
0

5

10

15

20

N

U
T

H
z(N

)/
U

T
H

z(2
)

FIG. 4. Growth of the THz energy with the number of har-
monics.

For ω ' 1/τc, every of the first N terms has approxi-
mately constant amplitude, whereas the last two terms
are ∼ O(ω) and thus typically negligible in THz range.

Thus, to some approximation we can write

F [∂tJTHz](ω) ∝
∑

n

δρnvf (tn)e
iωtn ≡ B(ω). (47)

Furthermore,
∫ ωco

0 BB∗dω should give the emitted THz
energy flux UTHz up to a constant factor. For short
enough pulses, we assume that the inverse of time in-
tervals 1/(tn − tm) lies outside the THz range whatever
n,m may be, and thus

UTHz ∝
(
∑

n

δρnvf (tn)

)2

. (48)

Accounting for the pulse envelope, UTHz is mostly
yielded by the contribution, UTHz(N), when Eq. (43) is
maximum close to the instants t = ±Nπ/[(N + 1)ω0]
over the sawtooth period. By taking into account Eq.
(45) and the hypothesis of constant ionization level,∑

n δρn = constant, we obtain UTHz(N) ∝ vNf (tn)
2.

To preserve constant ionization, the amplitude aN must
smoothly decrease with the number of colors N . There-
fore, using χ2(2) = 9/64, we can bound from above the
growth of the THz energy as

UTHz(N)

UTHz(2)
≤ 64

9
χ2(N) =

64

9

(
N∑

k=1

(−1)k

k2
cos

(
N

N + 1
kπ

))2

. (49)

Equation (49) is plotted in Fig. 4. Due to the assump-
tions done, the values are larger than those of Fig. 2(d)
in the main paper. Equation (49), however, justifies the
saturation in the THz yields reported by the latter figure.

Optimality of sawtooth-like waveforms

In this section we consider another approach to justify
the optimality of the sawtooth shape. We consider a sin-

gle cycle of the pump field oscillation and assume a single
ionization event there. We optimize vf (tn) by varying the
wave shape. For technical convenience, we keep both the
whole pump intensity and δρn constant. We also apply
the limit of an infinite decay time τc → +∞. The “input”
for our optimization procedure is the pump waveform

E(t) = E0

N∑

k=1

ak cos(kω0t+ φk), (50)
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where ωk ≡ kω0 is the kth harmonic of the fundamen-
tal frequency ω0. Eq. (50) is obtained from Eq. (11) of
the main article assuming constant envelope amplitudes
Ek(t) ≡ E0. Importantly, we consider waveforms having
the same average intensity over the pump period:

I =

∫ T0/2

−T0/2

E2(τ)dτ ∝
∑

k

a2k = 1. (51)

The exact value of the constant on the right hand side is
not important, since we optimize the wave shape and not
its intensity value. Without loss of generality we assume
an extremum of E(t) at t = 0 such that

∂tE(0) = −
∑

k

kakω0 sinφk = 0. (52)

The quantity to be maximized is then

vf (0) =
q

m

∑

k

ak
kω0

sinφk, (53)

after choosing the initial time t0 such that∑
k

ak

kω0
sin (kω0t0 + φk) = 0.

It is then evident that, since vf (0) is linear in sinφk

and assuming all ak’s having the same sign, the extrema
of Eq. (53) are achieved at the phase values φk = ±π/2,
as expected for the sawtooth phases.
Furthermore, we can rewrite the optimization problem

Eq. (53) with constraints Eqs. (51)-(52) in a vectorial
form. We introduce the vectors a = {a1, a2, . . . , aN},
b = ω0{1, 2, . . . , N} and c = (1/ω0){1, 1/2, . . . , 1/N}.
In the limit of large N , we determine the extremum of
(c, a), where (., .) mean scalar multiplication of two vec-
tors, assuming (b, a) = 0 and |a| = 1.
The optimum of such a problem is achieved on the

vector a defined by

a = C

(
c− b

(b, c)

(b,b)

)
, (54)

where the constant C is selected to assure |a| = 1, while
(b, c) = N and |b|2 ≡ ω2

0S with

S =

N∑

k=1

k2 = N(N + 1)(2N + 1)/6. (55)

With the previous relations we get

ak =
C

ω0

(
1

k
− kN

S

)
. (56)

Moreover, one has |a|2 = 1 = C(c, a) and in the limit of
large N it is straightforward to obtain

C ≃ (c, a)ω2
0∑

k k
−2

≡ ω2
0

C
∑

k k
−2

, (57)

yielding at leading order

ak ≃ 1

k
√∑N

j=1 j
−2

, (58)

which is the right normalization of the sawtooth ampli-
tude.
For finite N it is easy to show that Eq. (56) ap-

proaches the N -truncation of the ideal sawtooth rapidly
as N increases. Indeed, from Eq. (56) the deviation in
amplitude from the ideal sawtooth profile is yielded by
δak = −kN/S, i.e.,

|δa|2 =
N2

S2

N∑

k=1

k2 =
N2

S
. (59)

With S ∼ N3, |δa|2 ∼ 1/N vanishes as N increases.
That is, in this limit, ak → const/k, which means that
for large enough number of harmonics the optimal wave
shape approaches the sawtooth one.
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