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Learning location-invariant orthographic representations 
for printed words

Frédéric Dandurand*, Jonathan Grainger and Stéphane Dufau

Laboratoire de Psychologie Cognitive, CNRS & Aix-Marseille University, 3, place Victor Hugo, 
13331 Marseille, France

Neural networks were trained with backpropagation to map location-specific letter identities (letters coded
as a function of their position in a horizontal array) onto location-invariant lexical representations. Networks
were trained on a corpus of 1179 real words, and on artificial lexica in which the importance of letter order
was systematically manipulated. Networks were tested with two benchmark phenomena – transposed-
letter priming and relative-position priming – thought to reflect flexible orthographic processing in skilled
readers. Networks were shown to exhibit the desired priming effects, and the sizes of the effects were
shown to depend on the relative importance of letter order information for performing location-invariant
mapping. Presenting words at different locations was found to be critical for building flexible orthographic
representations in these networks, since this flexibility was absent when stimulus location did not vary.
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1. Introduction

Several recent computational models of visual object recognition posit a hierarchical system of
processing in which simple and local features are gradually integrated into more abstract and
complex features using receptive fields of increasing size (Riesenhuber and Poggio 1999). These
hierarchical architectures account for the progressive invariance to size, shape, and location,
that is achieved as one moves through the visual pathways from V1, V2 up to occipital and
temporal cortex. The mechanisms that we develop to process printed words while learning to
read, borrow heavily from the basic machinery of visual object recognition (Dehaene, Cohen,
Sigman, and Vinckier 2005; Grainger 2008). Therefore visual word recognition shares many of
the characteristics of object recognition. Location invariance is one such characteristic, since
skilled readers are able to identity words that are displaced relative to a central fixation point
without having to re-fixate the centre of the word. Given that even very small shifts of location
imply a complete change in retinal activity, this implies that some form of non-retinotopic code
is involved in visual word recognition. The key question concerns the precise nature of this
location-invariant, word-centred code, and how it is activated by retinotopic features.

*Corresponding author. Email: frederic.dandurand@univ-provence.fr

DOI: 10.1080/09540090903085768



Some psychological models have postulated that the shift from a location-specific, retinotopic
orthographic code to a location-invariant orthographic code is achieved by coding for combi-
nations of letters in the correct order for both contiguous and non-contiguous letter sequences
(Grainger and Whitney 2004; Dehaene et al. 2005). For example, in the models of Grainger and
van Heuven (2003) and Whitney (2001), the so-called open bigrams code two-letter combinations
in a position-independent yet ordered, but not necessarily contiguous fashion. For example, WITH
is composed of the following open bigrams: WI, WT, WH, IT, IH, and TH. In certain versions of
these models activation of open bigrams can be modulated by distance (i.e., contiguous bigrams
like WI are more active than non-contiguous bigrams such as IH). An important characteristic
of open bigrams is that, while they allow for non-contiguous letter combinations, they preserve
letter order. For example, IW is not an open bigram for the word WITH.

The theoretical backbone of the present study is Grainger and van Heuven’s (2003) model
of orthographic processing (Grainger, Granier, Farioli, Van Assche, van Heuven 2006) illus-
trated in Figure 1. In this model, a bank of location-specific letter detectors perform parallel
independent letter identification. A given configuration of visual features at a specific location
along the horizontal meridian signals the presence of a given letter at that location (see Dufau,
Grainger and Holcomb 2008; Tydgat and Grainger 2009, for evidence in favour of such retino-
topic letter detectors). These location-specific letter detectors then activate location-independent
open-bigram units. Open-bigrams then send activation to all compatible word representations in
an interactive-activation network.

In the present study, we apply backpropagation neural networks to investigate to what extent
the constraints of learning location-invariant lexical representations leads naturally to the devel-
opment of the kind of flexible relative-position code described in the Grainger and van Heuven
model. Following the Grainger and van Heuven model, we implemented location-specific letter
detectors as input, and simulated presentation of the same word at different locations by activating
different sets of letter detectors. The task consisted in recognising these words presented at dif-
ferent locations as identical, location-independent lexical units (orthographic word forms). The
network was trained on a corpus of real words, and on artificial lexica in which the importance
of letter order was manipulated systematically.

One prior study has investigated the learning of location-independent orthographic rep-
resentations using backpropagation. Shillcock and Monaghan (2001) used a task that they

Figure 1. Grainger and van Heuven’s model of orthographic processing. Visual features extracted from a printed word
feed activation into a bank of location-specific alphabetic character detectors (the alphabetic array). Each slot in the
array codes for the presence of a given letter identity at a given location along the horizontal meridian. The next level of
processing combines information from different processing slots in the alphabetic array to provide a relative position code
for letter identities. These relative-position coded letter identities control activation at the level of whole-word orthographic
representations (O-words) via bi-directional connections with all units at the relative position level.



called shift invariant identity mapping that consists in mapping location-specific letters into a
location-independent representation of the same letters. For example, a neural network would
learn to associate patterns WITH##, #WITH#, and ##WITH (in which # represent blanks) to
the common output WITH coded as a given letter identity at each of the four possible positions
(slot-coding). In their model, Shillcock and Monaghan simulated visual hemifields by splitting
processing of the input slot at its centre, sending these split inputs to two independent processing
streams. Model splitting accounted for the superiority effect of the exterior (i.e., first and last)
letters of words in reading – network error was lower for the exterior letters in the split model,
but not lower in a non-split model. The present study provides an adaptation of Shillcock and
Monaghan’s modelling strategy, applied here to the learning of location-invariant orthographic
representations.

We present three sets of simulations: (1) artificial lexica with seven locations, (2) real word
lexicon with seven locations, and (3) real word lexicon in a single location. These simulations
were designed to explore the nature of the internal representations that are developed when
learning to map a location-specific orthographic representation onto a location-invariant lexical
representation (whole-word orthographic representation); that is, learning certain ordered com-
binations of letters as representing words. The networks were tested with two key behavioural
effects thought to reflect flexible orthographic coding in human participants: the transposed-letter
priming effect, and the relative-position priming effect. Both effects have been observed, using
a masked priming paradigm that eliminates the role of various types of strategic responding
associated with standard priming. The transposed-letter effect is a superior priming effect from
primes formed by transposing two of the target’s letters (e.g., gadren-garden) compared with a
prime formed by substituting two of the target’s letters (e.g., galsen-garden). The relative-position
priming effect is a processing advantage for targets preceded by primes formed of a subset of
the target’s letters (e.g., grdn-garden) compared with a prime formed of the same subset of let-
ters in the wrong order (e.g., gdrn-garden). Both of these priming effects argue against rigid
slot-based coding schemes for letter encoding and are in favour of proposals for more flexible
orthographic coding (Whitney 2001; Grainger and van Heuven 2003; Gomez, Ratcliff, and Perea
2008; Grainger 2008).

Other research has also investigated flexible coding of letter order, attempting to account for
phenomena such as letter transposition, letter migration, repeated letters, and relative-position
priming. For example, Gomez et al. (2008) account for such flexibility in their model using uncer-
tainty about letter positions. In contrast to rigid, slot-based coding used in interactive-activation
like models, letter position is represented as a probability distribution in their model, so that a
letter present at a given position also provides evidence, albeit to a lesser extent, for the presence
of that letter at neighbouring positions. However, letter position in the overlap model and similar
approaches is defined as letter position in the word, independently of where the word is located.
These models therefore fail to address the difficult issue of how information coded as being present
at a particular location on the retina is mapped onto a word-centred representation. In the present
study, we train networks to map a set of location-specific letter identities (where location refers
to location along the horizontal meridian) onto location-invariant lexical representations via a
layer of hidden representations. We then examine whether these networks can simulate the kind
of flexible orthographic processing seen in human experiments.

2. Methods

All simulations used standard feed-forward neural networks that were trained with a standard
gradient descent technique with momentum (McClelland and Rumelhart 1988).We used a learning



rate of 0.1, and a momentum value of 0.9. The criterion for successful training was reaching a
target level for the sum of squared errors (SSE) between targets and network outputs. For the
number of hidden units, we used the square root of the number of training patterns, rounded up to
the closest integer. Connection weights were initialised randomly within a range of −1.0 and 1.0.

2.1. Input coding

We used sparse, local coding (Quiroga, Kreiman, Koch, and Fried, 2008): each letter slot was
encoded using 26 binary values, indicating the presence or absence of a given letter, in alphabetical
order. For instance, presence of letter A was encoded as [1 0 0 . . . 0], B as [0 1 0 . . . 0], and Z as
[0 0 . . . 1]. Blanks were coded using zeros in all positions [0 0 0 . . . 0]. Words were presented in
seven positions along a 10-slot input vector. As an illustration, Table 1 presents the encoded input
pattern for word WITH in central position (###WITH###). The input pattern presented to the
network would simply have been concatenation of rows 1–10 into a 260 binary-valued vector.

2.2. Output coding

Each word is coded onto an output unit. Presence of the corresponding word is coded using a value
of 1, absence is coded as 0. For example, if target words are ABCD, EFGH, IJKL, MNOP, and
QRST, an input of #ABCD##### would correspond to the output 1 0 0 0 0, whereas ####IJKL##
would be associated with the output vector 0 0 1 0 0. An output value of 1 coded for the presence
of the word in the input vector, and 0 coded for its absence. As an illustration, Table 2 presents a
sample of training patterns from the target words only condition.

Table 1. Example of encoded input pattern for word WITH presented in central position (###WITH###).

Presence of letter coding (1 bit per letter)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
5 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Note: The first column indicates slot position. In this example, slots 1–3 and 6–10 contain blanks. This input vector is 260 bits long (10
slots × 26 letters per slot × 1 bit per letter).

Table 2. Example of input and output for different words presented at different locations (#s represent blanks).

Input vector Output vector

A B C D # # # # # # 1 0 0 0 0
# A B C D # # # # # 1 0 0 0 0
# # # # A B C D # # 1 0 0 0 0
E F G H # # # # # # 0 1 0 0 0
# # # # # # E F G H 0 1 0 0 0
# # # M N O P # # # 0 0 0 1 0



2.3. Composition of the training sets

In building training sets, we presented target words in different contexts to investigate if letter
sequence or order influenced the representation built by backpropagation networks. We presented
two types of training sets: (1) artificial lexica of four-letter strings in order to manipulate the
relative importance for letter order for determining lexical identity, and (2) a realistic corpus of
1179 real four-letter words.

2.3.1. Artificial lexica

We used four types of artificial lexica. All these lexica comprised the following five target words:
ABCD, EFGH, IJKL, MNOP, and QRST. They also optionally included filler patterns designed
to manipulate the importance of letter order, as illustrated in Figure 2.

The first training set contained the five target words only, which were the same across repli-
cations: (1) ABCD, (2) EFGH, (3) IJKL, (4) MNOP, and (5) QRST, for a total of 35 training
patterns (5 words × 7 positions). Networks learning this training set had six hidden units (i.e., the
square root of 35, rounded up). Replications differed in the networks’ initial conditions (random
weights) only.

The second training set, dubbed ‘target words and letter recombinations’ or ‘recombinations’
for short, included five filler words made of the same letters as the target words, but randomly
recombined. This was done by pooling lettersA to T and making filler words by randomly drawing
letters, without replacement. Although target words were the same across replications, due to
random selection, filler words were different in each replication. An example of a recombinations
training set is as follows: (1) ABCD, (2) EFGH, (3) IJKL, (4) MNOP, (5) QRST, (6) TMEK, (7)
QGAP, (8) CHNI, (9) BJFS, and (10) RDOL, for a total of 70 training patterns (10 words × 7
positions). Networks trained under this condition had nine hidden units. Replications differed in
the composition of the filler words, and in network initial conditions (random weights).

The third training set, dubbed ‘target words and anagrams’ or simply ‘anagrams’ for short,
included one anagram for each of the five target words. To maximise distance, we built the
anagram by reversing the letter order (i.e., ABCD → DCBA). The anagrams training set was the
same across replications, and contained the following words: (1) ABCD, (2) EFGH, (3) IJKL, (4)
MNOP, (5) QRST, (6) DCBA, (7) HGFE, (8) LKJI, (9) PONM, and (10) TSRQ, for a total of 70

Training sets

min max
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Examples
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Figure 2. Importance of letter order in the artificial lexica.



training patterns (10 words × 7 positions). Networks trained under this condition had nine hidden
units (i.e., the square root of 70, rounded up). Replications differed in network initial conditions
(random weights) only.

The fourth training set, dubbed ‘target words, anagrams and letter recombinations’, or ‘combo’
for short, included the five target words, five anagrams (as described above) and five recombina-
tions (as described above). Combo sets contained 105 training patterns (15 words × 7 positions),
and replications differed in the composition of the filler words, and in the network initial conditions
(random weights). Networks trained under this condition had 11 hidden units.

With the target words only training set, a single letter determines lexical identity (for instance,
letter A is evidence for one and only one word, ABCD, therefore letter combinations are not a
requisite for successful learning). This is not the case with the recombinations training set that
also requires coding of letter combinations for successful learning, as the same letter appears in
different words, but precise order information is not a requisite for successful encoding. Finally,
the anagrams training set where letter order becomes critical for determining lexical identity,
Therefore, the different training sets impose different levels of relevance of order information
in learning to map location-specific letter identities onto location-invariant word representations.
Order is least relevant in the target words only training set, more relevant in the recombinations
condition and most relevant to the anagrams and combo conditions.

2.3.2. Real word lexicon

We also trained networks using a realistic corpus of 1179 real four-letter words, previously used
by McClelland and Rumelhart (1988).

2.4. Discrimination of words and non-words

As a general evaluation of a network’s success in correctly learning to map letter representations
onto lexical identity, we measured how well the network could discriminate words from non-
words. For a word to be considered correct, the activation of the correct corresponding lexical
output unit had to be higher than a threshold value, empirically found to be appropriate at a level
of 0.99. For a non-word to be considered correctly rejected, activations of all output lexical units
had to be below this threshold.

2.5. Network evaluation

We investigated the nature of the internal representations built by the backpropagtion algorithm
while learning to map location-specific letter representations onto location-invariant lexical rep-
resentations. More precisely, we wanted to know whether the model would develop some form of
flexible orthographic code similar to the type of code revealed in recent research on orthographic
processing in skilled readers (Grainger 2008). We investigated these representations using test sets
based on priming. In humans, priming effects are often explained by spreading activation among
related or shared cognitive representations. These activation spreads may facilitate or hinder sub-
sequent access to these related representations. This is generally measured as faster reaction times
for better primes. In our models, operational definitions of priming are based on the principle that
the more a given input primes a given target item, the more that target output will be activated.
More specifically, we measured the amount, or quality, of priming using two methods (note that
primes were never seen during training). First, the prime-target output discrepancy, dubbed ‘dis-
crepancy’ for short, measures the mean square difference between network output for the prime
and the vector for the corresponding target word (a single one for the target word in a vector of



zeros). In other words, the better the input prime, the closer we expect network output to be to the
target word. Second, the target supremum measure quantifies the ability of the prime to activate
the output unit associated with the target word more than any other output unit. For a given prime
given as input, the item-level target supremum value was set to 1 when the prime activated the out-
put unit associated with the target lexical item more than any other unit; it was set to 0 otherwise.
The target supremum measure of a set of primes was computed as the mean of item-level values
for the primes in the set. This simulates a winner-takes-all, lateral-inhibition-driven process in
which network output units would compete to produce a single system response.

We manipulated two factors: the composition of the training set (four levels of artificial lexica:
(1) target words only; (2) target words and recombinations; (3) targets words and letter anagrams;
(4) target words, letter recombinations and anagrams; and (5) a real word lexicon), and the priming
regime used for testing (two levels: relative-position priming, and transposed-letter priming). We
combined train and test regimes in a combinatorial fashion, for a total of 10 simulations.

We tested model performance under two priming manipulations: relative-position priming and
transposed-letter priming.

2.5.1. Relative-position priming

We studied a network’s ability to simulate relative-position priming using primes formed of a
subset of the target’s letters, namely three-letter sequences from four-letter target words. We
manipulated two parameters of the prime letters: (1) order (two levels: forward and backward)
and (2) contiguity (two levels: contiguous and non-contiguous). The exhaustive set of test patterns
is given in Table 3.

During training, input words were presented at seven locations but, as shown in Table 4,
networks were tested on central locations only (i.e., slots no. 5, 6, and 7). With this design, each
letter of some training word was seen exactly once at each testing location. Therefore, letters were
seen equally frequently in any position they may appear in a test prime (i.e., regardless of contiguity
and order). Thus, differences in network performance could not be attributed to certain letter-slot
combinations trained more than others, and would therefore reflect relationships between letters.

2.5.2. Transposed-letter priming

A network’s ability to simulate transposed-letter priming was examined using primes formed by
transposing the two central letters of targets (e.g., ABCD–ACBD) and comparing the effects of
these primes with primes formed by replacing the two central letters with letters from a different

Table 3. Exhaustive set of test patterns for the relative-position priming task.

Order of letters in primes

Contiguity Forward Backward Target word

Contiguous ABC, BCD CBA, DCB ABCD
EFG, FGH GFE, HGF EFGH
IJK, JKL KJI, LKJ IJKL
MNO, NOP ONM, PON MNOP
QRS, RST SRQ, TSR QRST

Non-contiguous ABD, ACD DBA, DCA ABCD
EFH, EGH HFE, HGE EFGH
IJL, IKL LJI, LKI IJKL
MNP, MOP PNM, POM MNOP
QRT, QST TRQ, TSQ QRST



Table 4. Illustration of training and test data for the relative-position priming task.

1 2 3 4 5 6 7 8 9 10

Relative-position test prime (three characters)
# # # # X X X # # #

Training patterns
1 A B C D # # # # # #
2 # A B C D # # # # #
3 # # A B C D # # # #
4 # # # A B C D # # #
5 # # # # A B C D # #
6 # # # # # A B C D #
7 # # # # # # A B C D

Note: Xs indicate where the three letters of the test strings were presented (always in the centre). Each word in the training
set was presented in the seven locations of the table. We see that central locations (slots 5–7) were trained on all the letters
of the training data.

word (e.g., AGFD). These priming effects were compared with simple repetition priming where
the prime is the same stimulus as the target (e.g., ABCD) and another prime condition with
different central letters (e.g., AFGD). Therefore two factors were manipulated. First, the origin
of central, or inner, letters: (1) from the target word, or (2) from a different word from the target
word. Second, the order of central letters: (1) forward, or (2) backward. The exhaustive set of test

Table 5. Primes in the transposed-letter priming experiment.

Order of central letters

Origin of central letters Forward Backward Target word

Same word ABCD ACBD ABCD
EFGH EGFH EFGH
IJKL IKJL IJKL

MNOP MONP MNOP
QRST QSRT QRST

Different word AFGD AGFD ABCD
EJKH EKJH EFGH
INOL IONL IJKL
MRSP MSRP MNOP
QBCT QCBT QRST

Table 6. Illustration of training and test data for the transposed-letter priming task.

1 2 3 4 5 6 7 8 9 10

Transposed-letter priming test patterns (four characters)
# # # X X X X # # #

Training patterns
1 A B C D # # # # # #
2 # A B C D # # # # #
3 # # A B C D # # # #
4 # # # A B C D # # #
5 # # # # A B C D # #
6 # # # # # A B C D #
7 # # # # # # A B C D

Note: Xs indicate where the four letters of the test strings were presented (always in the centre). Each word in the training set was
presented in the seven locations of the table. We see that central locations (slots 4–7) were trained on all the letters of the training data.



patterns is presented in Table 5. It should be noted that in the condition with the same letters in
the correct direction the prime is the same word as the target, a condition referred to as repetition
priming in behavioural literature.

Similarly to the experiment with relative-position priming, we presented primes in central
locations, as shown in Table 6, such that letters in test patterns were seen exactly once per location
during training.

3. Results

3.1. Artificial lexica

For the artificial lexica, a sample of 20 networks was generated for each condition. The target SSE
for successful completion was 1. We measured the network’s ability to discriminate words from
non-words in the combo condition. Networks’ accuracy for words was 98.0% while correctly
rejecting 98.0% of non-words.

3.1.1. Relative-position priming

A summary of target supremum results for the relative-position task are presented in Figure 3. As
we can see, the target supremum measure for the backward primes decreases as the importance
of letter order increases (left to right), while the target supremum measure for the forward primes
remains high. The networks therefore reveal a relative-position priming effect, the size of which is
determined by the importance of letter order in the training set. Contiguity had an overall smaller
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Table 7. Network error (mean squared error, or MSE) for the relative-position priming task by training condition.

Order

Training condition Contiguity Forward Backward

Target words only Contiguous 0.3 (0.1) 2.8 (2.5)
Non-contiguous 1.7 (1.6) 2.7 (2.9)

Recombinations Contiguous 1.2 (0.9) 11 (9)
Non-contiguous 6 (4) 12 (9)

Anagrams Contiguous 28 (8) 125 (9)
Non-contiguous 14 (5) 140 (10)

Anagrams and Contiguous 22 (6) 89 (6)
recombinations (combo) Non-contiguous 16 (5) 89 (9)

Note: Values presented in parentheses represent standard deviations. Values presented in table should be multiplied by 10−3.

influence on network performance, with an advantage for non-contiguous primes emerging in
certain conditions. Prime-target output discrepancy results are presented in Table 7.

With the relative-position priming task and the training set containing target words only, target
words were always the most active lexical items in all four conditions (i.e., target supremum values
of 1). A two-way ANOVA on discrepancy with contiguity and order as repeated factors revealed
a main effect of order, F(1, 19) = 8.5, p < 0.01, a significant interaction, F(1, 19) = 5.2, p <

0.05, but no effect of contiguity, F(1, 19) = 3.4, p > 0.05. Discrepancy was lower in forward
(M = 1.0 × 10−3) than backward (M = 2.7 × 10−3) primes, and the difference between forward
and backward primes was larger in the contiguous (2.4 × 10−3) condition than the non-contiguous
condition (0.1 × 10−3).

With the relative-position priming task and the training set containing recombinations, a two-
way ANOVA on the target supremum measure with contiguity and order as factors revealed a
main effect of order, F(1, 19) = 12.8, p < 0.01, but no effect of contiguity, F(1, 19) < 1, and no
interaction, F(1, 19) < 1. In contrast, a two-way ANOVA on discrepancy revealed a main effect
of order, F(1, 19) = 31, p < 0.001, an effect of contiguity, F(1, 19) = 5.9, p < 0.05, and no
interaction, F(1, 19) = 4.8, p < 0.05. The target supremum measure was larger for the forward
primes (M = 1.0) than backward primes (M = 0.97) and discrepancy was lower for forward
primes (M = 0.003) than backward primes (M = 0.012). In addition, discrepancy was lower in
contiguous (M = 6.1 × 10−3) than non-contiguous primes (M = 9 × 10−3), and the difference
between contiguous and non-contiguous primes was larger in the forward condition (4.8 × 10−3)

than the backward (1.0 × 10−3) condition.
With the relative-position priming task and the training set containing anagrams, a two-way

ANOVA on the target supremum measure with contiguity and order as factors revealed a main
effect of order, F(1, 19) = 1777, p < 0.001, and a significant interaction, F(1, 19) = 96, p <

0.001, but no effect of contiguity, F(1, 19) = 1.1, p > 0.05. Similarly, a two-way ANOVA on
discrepancy revealed a main effect of order, F(1, 19) = 2935, p < 0.001, no effect of contiguity,
F(1, 19) = 2.2, p > 0.05, and a significant interaction, F(1, 19) = 94, p < 0.001. The target
supremum measure was larger for forward primes (M = 0.88) than backward primes (M = 0.14),
and discrepancy was lower for forward primes (M = 0.02) than backward (M = 0.13) primes.
The interaction stems from the fact that these differences were larger for non-contiguous primes
than for contiguous primes.

With the relative-position priming task and the training set containing anagrams and recombi-
nations (combo), a two-way ANOVA on the target supremum measure with contiguity and order
as factors revealed a main effect of order, F(1, 19) = 1650, p < 0.001, and a significant interac-
tion, F(1, 19) = 9.4, p < 0.01, but no effect of contiguity, F(1, 19) = 2.1, p > 0.05. Similarly, a



two-wayANOVA on discrepancy revealed a main effect of order, F(1, 19) = 2045, p < 0.001, no
effect of contiguity, F(1, 19) = 3.8, p > 0.05, and a significant interaction, F(1, 19) = 8.4, p <

0.01. This pattern of results is identical to the anagrams condition: larger target supremum mea-
sure for forward primes (M = 0.86) than backward primes (M = 0.10), and lower discrepancy
for forward primes (M = 0.02) than backward (M = 0.09) primes. The interaction stems from
the fact that these differences were larger for non-contiguous primes than for contiguous primes.

Finally, we tested for a three-way interaction between order, contiguity and training regime –
an independent factor of four levels: target words only, recombinations, anagrams and combo.
We found the interaction to be significant for both the target supremum measure, F(3, 76) =
34.22, p < 0.001, and for discrepancy, F(3, 76) = 57.3, p < 0.001.

In sum, we found a robust effect of letter order (namely, a higher target supremum measure on
forward than on backward primes), a relative-position priming effect, whereby an ordered subset
of the target’s letters provides a better match to the target than the same subset of letters in reversed
order. As expected and supported by significant three-way interactions, this effect was strongest
in the anagrams and combo conditions where letter order matters the most, but it was also present
in the recombinations condition. It was nearly inexistent for the condition in which letter order
does not matter, that is the target words only condition. We also found an order by contiguity
interaction, which was significant only in the anagrams and combo conditions, and reflected an
advantage for the non-contiguous primes in the forward condition.

3.1.2. Transposed-letter priming

A summary of target supremum results for the transposed-letter priming task are presented in
Figure 4. As can be seen in this figure, the networks successfully simulated the transposed-letter
priming effect, and the size of this effect was practically as large as the effect of repetition priming.
Prime-target output discrepancy results are presented in Table 8.

With the transposed-letter priming task and the training set composed of the target words only, a
two-wayANOVA on the target supremum measure with origin and order as factors revealed a main
effect of origin, F(1, 19) = 107, p < 0.001, but no main effect of order, F(1, 19) < 1, and no
interaction, F(1, 19) < 1. Similarly, a two-way ANOVA on discrepancy revealed a main effect
of origin, F(1, 19) = 187, p < 0.001, but no main effect of order, F(1, 19) = 3.8, p > 0.05,
and no interaction, F(1, 19) = 4.0, p > 0.05, although the latter two effects were trending. The
target supremum measure was higher for primes with central letters from same word as the target
(M = 1.0) than from a different word (M = 0.49) and discrepancy was smaller (M = 1.7 × 10−4

for same, and M = 0.13 for different).
With the transposed-letter priming task and the training set comprising recombinations, the two-

way ANOVAs revealed a similar pattern of results as for the target words only condition: a main
effect of origin on the target supremum measure, F(1, 19) = 268, p < 0.001, and on discrepancy,
F(1, 19) = 386, p < 0.001, but no effect of order, nor interactions, F s < 2.6, ps > 0.1.

With the transposed-letter priming task and the training set comprising anagrams, a two-way
ANOVA on the target supremum measure revealed a similar pattern of results, that is, a main
effect of origin, F(1, 19) = 73, p < 0.001, but no effect of order and no interaction, Fs < 1.1.
However, a two-way ANOVA on discrepancy revealed an additional significant effect of order,
F(1, 19) = 5.4, p < 0.05, in addition to the main effect of origin, F(1, 19) = 267, p < 0.001.
The interaction between order and origin was not significant, but trending, F(1, 19) = 3.7,

p > 0.05.
The pattern of results is the same with the training set comprising anagrams and recombina-

tions (combo) as with the training set comprising only anagrams: a main effect of origin on the
target supremum measure, F(1, 19) = 180, p < 0.001, but no effect of order nor interactions



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Forward Backward Forward Backward Forward Backward Forward Backward

M
ea

n 
ta

rg
et

 s
u

pr
em

u
m

 m
ea

su
re

Same Different

ComboAnagramsRecombinationsTarget words only

Figure 4. Summary of target supremum results for the transposed-letter priming task. Example primes for the tar-
get ABCD are: ABCD for the forward and same condition, AFGD for the forward and different condition, ACBD
for the backward and same condition, and AGFD for the backward and different condition. The forward-same vs.
forward-different comparison measures repetition priming, and the backward-same vs. backward-different comparison
measures transposed-letter priming.

Table 8. Network error (mean squared error, or MSE) for the transposed-letter priming task by training
condition.

Order of central letters

Training condition Origin of central letters Forward Backward

Target words only Same 0.04 (0.01) 0.3 (0.3)
Different 140 (60) 130 (40)

Recombinations Same 0.007 (0.003) 0.12 (0.2)
Different 80 (20) 90 (20)

Anagrams Same 0.014 (0.010) 11 (10)
Different 60 (20) 60 (20)

Anagrams and Same 0.0028 (0.0016) 9 (7)
recombinations (combo) Different 51 (12) 54 (10)

Note: Values presented in parentheses represent standard deviations. Values presented in table should be multiplied by 10−3.

F s < 1.9. For discrepancy, we found main effects of order, F(1, 19) = 26, p < 0.001, and of
origin, F(1, 19) = 564, p < 0.001, but no interaction between order and origin, F(1, 19) = 3.1,

p > 0.05.
In short, the pattern across artificial lexica was consistent: higher target supremum measure

and lower prime-target output discrepancy when central letters were from the same word (i.e.,
the target) than from a different word, an intuitively appealing conclusion (see Figure 4). We also
found a weaker effect of direction, which turned out to be significant only for discrepancy and
when order was most relevant to the task (i.e., in conditions in which anagrams were included as



fillers). This effect of direction reflects the stronger effects of repetition priming compared with
effects of transposed-letter priming.

3.2. Real word lexicon

A single network was trained with the real word training set of 1179 words of four letters in length.
The target SSE for successful completion was 30. The training set contained 7 × 1179 = 8253
patterns, and the backpropagation network had 91 hidden units. In order to test word–non-word
discrimination in this network a set of non-words were derived from each real word by changing
one letter (e.g., darm, stob), for a total of 1179 non-words. The replacement location and identity of
the substitution letter were randomly chosen. Our model exhibited perfect recognition accuracy for
words (100.0%). The rate of correctly rejecting non-words was 94.1%. Most incorrectly accepted
non-words (92.3%) were anagrams of real words (e.g., UDLY for DULY and ICOL for COIL).

3.2.1. Relative-position priming

Target supremum results for relative-position priming are presented in Figure 5 and prime-target
output discrepancy results in Table 9. The results show a relative-position priming effect with an
advantage of forward primes over backward primes.

3.2.2. Transposed-letter priming

Target supremum results for transposed-letter priming are presented in Figure 6 and prime-target
output discrepancy results in Table 10. The results show a transposed-letter priming effect. The

Figure 5. Target supremum results for the relative-position priming task, and the training set containing real words. No
error bar is provided for these single data points. Examples are given for real word ABLE.



Table 9. Network error (mean squared error, or MSE) for the relative-position 
priming task, and the training set containing real words.

Order

Contiguity Forward Backward
Contiguous 0.77 0.81
Non-contiguous 0.68 0.78

Note: Values presented in table should be multiplied by 10−3.

Figure 6. Target supremum results for the transposed-letter priming task, and the training set containing real words. No
error bar is provided for these single data points. Examples are given for the target word ABLE.

Table 10. Network error (mean squared error, or MSE) for the transposed-letter
priming task and the training set composed of real words.

Origin of central Order of central letters

Letters Forward Backward
Same 0.0 0.1
Different 1.1 1.1

Note: Values presented in table should be multiplied by 10−3.

target supremum measure is higher when central letters are from the target word than when they
are from a different word even when the order of letters is reversed (backward condition). For
the target supremum measure, this transposed-letter priming effect is practically as strong as the
repetition priming effect.



3.2.3. Priming effects in a network trained with words at a single location

The network trained with a real word training set exhibited relative-position and transposed-
letter priming effects. We interpret this ability to simulate such priming effects as reflecting an
intervention of the type of flexible orthographic code that is developed when learning to map
location-specific orthographic representations onto location-invariant representations. More pre-
cisely, the key hypothesis here is that it is the constraints involved in mapping totally independent
sets of letter identities (i.e., the same letters appearing at different locations) onto the same lexical
identity that forces the network to develop intermediate orthographic representations that acquire
the kind of flexibility that is seen in experiments testing skilled readers. Therefore, such flexibility,
as reflected in the simulated priming effects, should not be visible when the network is only trained
at one location. Our final simulation study puts this prediction to test by training the network on
only the central location.

In Figure 7, we present target supremum results for the relative-position priming task and
the training set containing real words when words are only presented at the central location
during training. As we can see, the priming effect is still present, as illustrated by a higher target
supremum measure with forward than backward primes. However, the target supremum measure
for non-contiguous primes is now very small (<5%) suggesting that networks have not developed
orthographic representations that are as flexible as when words are presented at different positions
(compare Figures 5 and 7).

In Figure 8, we present target supremum results for the transposed-letter priming task and the
training set containing real words when words are only presented at the central location during
training. As we can see, the transposed-letter priming effect effectively disappears when training
only the central location (compare Figures 6 and 8). This confirms our hypothesis that networks

Figure 7. Target supremum results for the relative-position priming task using the training set comprising real words
but trained on central positions only. Examples are given for real word ABLE.



Figure 8. Target supremum results for the transposed-letter priming task using the training set comprising real words
but trained on central positions only. Examples are given for real word ABLE.

develop flexible orthographic representations only when the task involves processing input words
presented in different positions.

4. General discussion

Neural networks were trained using backpropagation networks to map location-specific letter
identities onto location-invariant lexical identities. The location-specificity of letter representa-
tions implied that when the same ‘word’ input was presented at different locations, the network
had to learn to map completely independent input representations onto the same output. In other
words, the networks were trained to recognise that a given word is the same word independently of
its location (location-invariance). According to one account of orthographic processing in skilled
readers (Grainger and van Heuven 2003), location-invariance is already achieved at a prelexi-
cal level of orthographic representation, where letter identities are coded independently of their
position on the retina but relative to their position in the word. Furthermore, at this level of rep-
resentation, letter position information is thought to be coded in a flexible manner, contrary to
the rigid position-specific coding used in slot-based approaches. It is this flexibility that enables
the Grainger and van Heuven model to capture empirical phenomena such as transposed-letter
priming and relative-position priming.

The present study examined whether neural networks trained to map location-specific letter
identities onto location-invariant lexical representations would acquire intermediate representa-
tions that would allow the network to exhibit the properties associated with flexible orthographic
processing. The networks were trained with a variety of training regimes, including a real word
lexicon, and artificial lexica in which the importance of letter order was systematically mani-
pulated. These artificial training regimes forced the network to pay varying levels of attention to



order information by varying the relevance of this information for the task. All networks were
successful in learning the task, and the real word lexicon as well as the most complete artifi-
cial lexicon (the combo training set) exhibited accurate word–non-word discrimination following
training. The networks were further evaluated on the two benchmark phenomena: transposed-
letter priming and relative-position priming. The target supremum measure (percentage of trials
in which the target is the most activated output representation) and the prime-target output dis-
crepancy revealed transposed-letter priming and relative-position priming. In the simulations run
on the networks trained with artificial lexica, transposed-letter priming effects were found even
when letter order was not important to solve the task (the target words only condition). In contrast,
relative-position priming effects increased as the importance of letter order increased. The effects
were small in the target words only condition, larger in the recombinations condition and largest
in the conditions containing anagrams.

The simulations run on the network trained with a corpus of real words showed very large
effects of transposed-letter priming that were practically as large as the effects of repetition
priming. Relative-position priming effects were also evident, but the size of the priming effect
was much smaller than that found with transposed-letter primes. This is in line with the results
typically found with human participants (Grainger 2008). Furthermore, relative-position priming
effects were, if anything, greater for non-contiguous primes, a result that is in line with certain
models of orthographic processing (Whitney 2001; Grainger and van Heuven 2003). However,
it could be the case that the advantage for non-contiguous primes is the result of these primes
having both of the target’s outer letters appearing as outer letters in the prime (i.e., preceded or
followed by a space). This was not the case for contiguous primes for which the last letter in
the prime stimulus was not the last letter in the target word. Finally, both transposed-letter and
relative-position priming effects disappeared with the network trained on words presented at a
single location, thus demonstrating the importance of shifts in location at the input for generating
flexible, intermediate orthographic representations.

Summing up, two critical elements were found to be necessary for networks to develop flexible
orthographic coding: (1) learning to map location-specific representations onto a location-invariant
representation (i.e., having the same word presented at multiple locations in the input), and (2)
training the network on a corpus in which letter position provides important information for con-
straining lexical identity. The real corpus had this characteristic, as many words differed only
by a single letter, and the corpus included several anagrams. The results of the present simula-
tions therefore suggest that, given the characteristics of natural language, flexible orthographic
processing might emerge as a natural consequence of having to learn to map location-specific
letter identities onto location-invariant lexical representations during reading acquisition.
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