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Abstract

What is the origin of our ability to learn orthographic knowledge? We use deep convolutional networks to emulate the
primate’s ventral visual stream and explore the recent finding that baboons can be trained to discriminate English words
from nonwords [1]. The networks were exposed to the exact same sequence of stimuli and reinforcement signals as the
baboons in the experiment, and learned to map real visual inputs (pixels) of letter strings onto binary word/nonword
responses. We show that the networks’ highest levels of representations were indeed sensitive to letter combinations as
postulated in our previous research. The model also captured the key empirical findings, such as generalization to novel
words, along with some intriguing inter-individual differences. The present work shows the merits of deep learning
networks that can simulate the whole processing chain all the way from the visual input to the response while allowing
researchers to analyze the complex representations that emerge during the learning process.
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Introduction

Baboons can learn to classify strings of letters as real English

words or not [1]. Generalization performance to novel words [1]

and the existence of transposed letter effects in baboons [2] clearly

suggested that the monkeys had learned some kind of orthographic

information. However, there is still considerable debate about the

precise nature of the information that allows monkeys to achieve

such remarkable performance [3,4]. Are they using purely visual

information, unordered strings of letters, or higher-level abstract

letter combinations? To shed light on these mechanisms, we used

state-of-the-art neural networks of invariant object identification

that were designed to simulate the primate’s visual ventral stream.

The networks were trained with an incremental supervised

procedure to perform a lexical decision task on realistic, pixel-

based strings of letters using the exact same stimuli and training

regime as the baboons in the experiment. We first show that the

networks can account for several empirical effects observed in

baboons as well as for intriguing inter-individual differences. We

then establish that the networks developed ordered letter

representations, therefore demonstrating the efficiency of such

representations for a purely visually driven system that must learn

to tell words and nonwords apart. This study allows us to move

one step further towards the goal of separating the ‘‘visual’’ from

the ‘‘linguistic’’ in human reading, while setting a new standard for

more realistic computational models of visual word recognition

and learning.

Because reading is acquired late in development compared to

speech, visual words must map onto pre-existing linguistic

knowledge [5]. Not surprisingly, theories of reading have assumed

an important role of phonology and semantics in orthographic

development [6]. The key finding of the Grainger et al. [1]

experiment is that orthography, that is, information about letter

identity and letter order, can be acquired in the total absence of

prior linguistic knowledge in the primate (because neither sounds

nor meanings were associated with the letter strings processed by

the baboons). How baboons actually performed the task is not

known. Current computational models of orthographic coding in

human adults essentially involve either letter-based schemes,

whereby letters are being assigned positions in the word in more

or less flexible ways, or schemes based on letter combinations,

whereby, for instance, the word ‘‘LIFE’’ would be represented as

the set of bigrams LI, LF, LE, IF, IE, FE (see [7,8] for reviews). A

consensus has not yet emerged within cognitive psychology as to

which scheme captures the data in the most parsimonious way.

However cognitive neuroscience has provided direct evidence

[9,10] that letter combinations, so-called n-grams, are processed in

the Visual Word Form Area - VWFA hereafter, a brain region

that specifically responds to orthographic information in humans

[11]. Given the solid and long standing evidence that primates

represent visual objects by means of combinations of features

[12,13], it appears plausible that baboons might use letter

combinations or ngrams to represent written words.

Deep learning by convolutional networks
In contrast to our claim that baboons use letter combinations or

ngrams to perform word/nonword classifications, several authors

have now suggested that baboons in the Grainger et al. experiment

used exclusively letter-based schemes. For instance, Frost and

Keuleers [4] have argued, without a computational proof, that the
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task could have been performed simply based on the detection of

unordered sets of letters in the stimuli. Others have implemented

offline classification systems that can learn to classify the letter

strings based on letter positions alone, without invoking any type of

ngrams [3]. There is often a host of possible explanations to any

given phenomenon, and orthographic coding in baboons is no

exception. But none of the explanations described above, when

they are actually implemented, brings us any closer to under-

standing how baboons actually solve the task. This is because they

all assume either unlimited computational power, or perfect

memory resources, or the availability of all training stimuli at once.

In addition, these explanations do not attempt to capture the full

range of behavior that has now been documented, but instead,

focus on one aspect of the data at best. What is needed is a

comprehensive computational account consistent with resource-

limited brains, with what we know of the primate’s visual system,

and with systems being subjected to real visual stimuli in an

incremental supervised training procedure. Deep convolutional

networks possess many if not all of these properties, and are

therefore natural candidates for our purpose.

Figure 1 illustrates our general approach. The top left panel (1A)

describes the operant-conditioning experiment simulated in this

article, in which baboons were shown strings of letters and were

rewarded when they classified them accurately as words or

nonwords. The top right panel (1B) shows the main pathway

presumed to be involved in the baboon’s brain when solving this

task [14], constituted by a succession of processing stages within

the ventral visual stream from V1 to TEO (posterior inferior

temporal cortex) and from there to the orbito-frontal cortex. The

lower panel (1C) illustrates the convolutional network architecture

of the model.

Convolutional networks were initially inspired by the primate’s

visual system [15,16]. This is visible in the hierarchical organiza-

tion of the network Figure 1C, in the restricted connectivity and

local sampling of units that captures the increasingly large

receptive fields observed from V1 to TEO [17], and in the

alternation of convolutional and sampling layers, which mimic the

simple and complex cells found in the primary visual cortex. These

characteristics have met tremendous success in computer vision

and machine learning, and it is fair to say that today convolutional

networks display state-of-the-art performance [18], including on

tasks such as handwritten character recognition [16], and scene

labeling [19]. Closer to our work, the HMAX model, which has

been presented in computational neuroscience as the ‘‘standard

model’’ of the visual system [20], is very similar in design to

convolutional networks.

The model
The model is a convolutional network with a total of 7 layers, a

simplified version of the LeNet5 network [16] built using the

Theano deep learning libraries [21]. The first layer receives input

images (150630 pixel units) and the output layer produces a

binary decision: Word or Nonword. In between, the S1,C1,S2 and

C2 layers implement the succession of convolutional (hereafter S,

for simple) and sampling (hereafter C, for complex) stages

discussed above.

A convolutional layer consists of a number of feature maps

(here, 20 for S1 and 50 for S2). Each unit in each feature map is

connected to a restricted patch of units lying directly underneath it

in all the maps forming the previous layer (for S1, there is only one

map in the preceding layer: the input). Although units in the same

feature map are connected to different patches of the previous

layer, they all share the same connection weight values, according

to the principle that what is learned at one location must hold for

all locations (i.e. the principle of ‘‘weight sharing’’).

Contrary to convolutional layers, sampling layers reduce the

dimensionality of the preceding layer. In a sampling layer, each

unit in each feature map represents a larger patch from the

preceding layer (in our model, patches of dimensions 262 units

were used), and together all patches form a partition of the

sampled layer. The activation of a sampling unit is obtained in the

model by a max pooling operator, which outputs the maximally

activated unit within the patch considered. After two series of

convolution and sampling, the C2 layer is eventually used as input

to a standard multilayer perceptron, which has full connectivity

from C2 to the hidden layer, and from the hidden layer to the

output layer.

Because baboons in [1] were reinforced on each trial during

training, an incremental supervised learning procedure was also

needed for the networks and we used a stochastic gradient descent

algorithm, with the error gradient being evaluated on each trial

and a fixed learning rate used at all epochs (annealing of the

learning rate may be introduced in future work but was not found

necessary to reproduce the baboons learning curves). The error

signal in the case of a binary word/nonword classification task like

ours amounts to providing always the same reward in case of

success (error of 0) and no reward in case of failure (error of 1),

which was precisely the training by reinforcement that the

baboons had received. In the experiment, new words were

introduced one at a time and interleaved with old words and with

nonwords. They were shown repeatedly until the baboon

succeeded in categorizing a new word more than 80% of the

time, at which point the exemplar became a known word and a

new word was introduced. Likewise, each network was exposed to

exactly the same sequence of word and nonword stimuli as

presented to the corresponding baboon. For instance, the ‘‘DAN

network’’ (simulating the baboon of the same name) was exposed

to 56 689 strings, half being words and half nonwords, with these

categories being balanced for positional letter frequencies but

differenciated by positional bigram frequency distributions. It

should be noted, however, that the six baboons had received

plenty of visual experience before the experiment, whereas our

networks started out as a blank slate, with random connection

weights. We will return to this limit of our model in the Discussion.

For this study, assessment of classification accuracy for both

baboons and networks was done every 1000 trials during training.

Six networks were instantiated, one for each of the six baboons

(DAN, ART, CAU, DOR, VIO, and ARI) trained in the original

study [1]. All networks had two free parameters: learning rate and

convolution filter size. We launched a brute force exploration of

this parameter space on six possible learning rates (from 10{1 to

10{6) and eight possible filter sizes (from 3 to 10 units).

Recognition accuracy was collected every 1000 training trials,

compared to the corresponding baboon performance, and the

parameter values that minimized this distance for each monkey/

model pair were selected. Therefore, the models were not fitted to

display any generalization, transposition, or letter similarity effect,

but only to match the global performance of the baboons during

training.

Results

Figure 2A shows the evolution of performance across the first 40

000 trials, averaged over all fitted networks (black crosses) or

baboons (gray filled circles). The main feature of a noisy overall

increase in correct responses is captured, and a simple similarity

index between model and data based on the absolute difference in

Deep Orthographic Learning in Baboons
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performance every 1000 trials approaches the maximal value of 1.

By the end of training (not shown in Figure 2A), performance

levels were similar though slightly higher for networks (mean

accuracy 80.9%) than for baboons (mean accuracy 73.6%).

Figure 2B reports on generalization effects in the networks, that

is, the finding that baboons were more likely to classify a real word

seen for the first time as a word than a nonword. It can be seen

that networks slightly overestimate baboons’ performance, but that

both are in very close agreement, with much less nonword

responses being made upon encountering for the first time a new

word (mean baboons 44.8%, mean networks 39.5%) than the next

nonword in the sequence (mean baboons 75.6%, mean networks

71.4%). A one-way analysis of variance (ANOVA) on nonword

responses for new word stimuli versus nonword stimuli yielded

significant differences both for baboons and the model (both

ps,.0001). Although a strong similarity in accuracy during

training was expected from (indeed the purpose of) our parameter

fitting phase, we note that there was no a priori reason why the

networks should have displayed quantitatively similar generaliza-

tion behavior as the baboons, as networks were not fitted to do so.

We then tested whether the networks displayed letter transpo-

sition or letter similarity effects, using the exact same stimuli and

conditions as in [2]. Letter transposition effects reflect the finding

that transposed-letter (TL) nonwords, such as ‘‘caniso’’, are more

likely to be misclassified as words than controls like ‘‘caviro’’ [22].

80 nonwords were constructed from four-letter English words for

each monkey: 20 were obtained by substituting two letters

(condition DS, e.g. LGAE), 20 by transposing two letters

(condition TL, e.g. LFIE), 20 by substituting a single letter by

another that was visually dissimilar (condition Dis, e.g. LOFE),

and 20 by substituting a single letter by a visually similar one

(condition Sim, e.g. LJFE). Figure 2C shows the results of our TL

simulations, along with the experimental data. The baboons

showed a significant TL effect, making more word responses in the

TL condition than in the DS but no Visual similarity effect

(F(1,5) = 5.2, p = 0.046). The networks also made on average more

word responses in the TL than in the DS condition, although this

did not reach significance (F(1,5) = 1.56, p = 0.24). Figure 3D

reports on the Visual similarity effect: the results show that an

equal number of word responses in the Sim and Dis conditions

both by baboons (F(1,5) = 0.04, p = 0.84) and by the networks

(F(1,5) = 0.09, p = 0.77). Table 1 presents the individual parame-

ters of the networks, their performance on accuracy, generaliza-

tion, transposition effect, and visual similarity effects, along with

the corresponding baboon performance.

Figure 1. (A) Word-Nonword classification by operant conditioning in baboons [1]. Six baboons were trained to distinguish English words
(such as ‘‘LIFE’’) from nonwords (such as ‘‘LEFE’’), by touching either the cross or the oval shape presented immediately after the word or nonword. A
correct response was followed by a blank screen and a food reward, whereas an incorrect response prompted a green screen to appear for 3s. (B)
Main cortical network presumed to be involved in distinguishing between words and nonwords, formed by a succession of increasingly selective
regions throughout the ventral stream (LGN-V1-V3-V4-TEO) towards the orbito-frontal cortex (OF). (C) Deep learning convolutional network
implementing the local and hierarchical connectivity found in the ventral pathway, through a succession of alternating simple convolution and
complex pooling levels (cortical regions not mapped to network levels).
doi:10.1371/journal.pone.0084843.g001
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Analysis

The fact that deep learning convolutional networks can

reproduce several of our key experimental findings, without being

fitted to do so, forces us to ask how they achieved this feat. There

are a number of properties over and above a deep architecture and

supervised learning that might explain the success of these

networks in capturing the results —namely the use of weight

sharing, feature maps, and interleaved convolutional/pooling

stages involving in particular the Max operator. Some of these

assumptions are not beyond criticism from the point of view of

neuroscience. For instance, doubts have been raised about the

classification of cells into simple and complex types [23] —a

classification which inspired the convolutional and pooling

stages— and even assuming such a classification, there is no

evidence for layers of simple and complex cells being interleaved

throughout the ventral stream [24,25]. Other assumptions of

convolutional networks appear to be better motivated. For

example, Léveillé and Hannagan [26] recently provided a formal

analysis of how connection weights suitable for a max operation

could arise in networks trained under a Hebbian learning rule with

a temporal window. Yet other assumptions, such as weight

sharing, are intriguing and would deserve empirical investigation.

But regardless of how well-established or plausible they are

however, all of these network characteristics fall short of describing

the exact learned mechanism or coding scheme whereby the

Figure 2. (A) Learning curves in the fitted model, showing the evolution in performance across traning trials in the networks (black
crosses) and the baboons (gray dots). Only the first 40 000 trials are shown. (B) Generalization effect: percentage of nonword responses for
baboons and networks upon presentation of a new word (white) during training, as opposed to the next nonword (black) in the sequence
(experimental data from [1]). (C) Transposition effect: percentage of word responses produced in the networks and in the baboons upon presentation
of nonword stimuli that differed from known words by two transposed letters (TL, white bars) or two letter substitutions (DS, black bars)
(experimental data from [2]). (D) Visual similarity effect: word responses made on nonword stimuli that were visually similar (Sim, gray bars) or
dissimilar (Dis, white bars) to known words (experimental data from [2]).
doi:10.1371/journal.pone.0084843.g002
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model succeeds in solving the task. Hence a dedicated analysis is

called for.

In recent years, the representations formed by deep learning

networks have been analyzed in a number of ways. Erhan,

Courville, and Bengio [27] proposed, among other strategies, to

circumscribe the function of any network unit by launching a

systematic exploration of input space in search of the patterns that

would maximize the unit’s activation. Stoianov and Zorzi [28]

Figure 3. (A) Performance in the normal (Full) and lesioned model, when the 20% intact connections are either chosen at random
(Rand), or to be the weakest (Weak) or as the strongest (Strong) connections. (B) Contribution of extremal network units to the lexical
decision. Word stimuli occupy the upper left half of the circle, nonwords the upper right half, and the ‘‘extremal’’ units from the last-but-one layer
occupy the lower half. A green connection (resp. red) between a unit and a stimulus signifies that this unit contributes a word signal (resp. nonword)
to the decision node upon presentation of this stimulus —only 20 units out of 100 are shown. (C) Number of extremal units selective for at least one
letter, bigram or trigram, according to a d-prime statistics. A unit was deemed selective for an entity (letter, bigram or trigram) if upon presentation of
a word containing or not this entity, the d-prime defined as the difference of z-values for hit rate and false alarm rate reached an arbitrary common
threshold. (D) Global proportion of letters, bigrams and trigrams coded for across all extremal units.
doi:10.1371/journal.pone.0084843.g003

Table 1. Summary of networks parameters and performance.

Train. Base
Network
Parameters Network Selectivity Network Performance Baboon Performance

Trials Voc. CFilter LRate Let. Big. Tri. Acc. Gen. TL VS Acc. Gen. TL VS

DAN 56 689 308 9 1E-4 12 63 43 91.5 57.09 5 5 79.81 33.7 35 225

ARIELLE 55 407 87 3 1E-5 6 19 11 68.4 9.20 210 24.74 71.14 29.7 30 20

ARTICHO 61 142 112 3 1E-4 15 37 20 92 40.98 20 20 73.41 26.4 25 215

CAUET 49 608 121 6 1E-5 9 25 11 70.4 15.18 30 210 72.43 27.0 0 20

DORA 43 041 81 3 1E-4 9 34 20 82.1 35.54 10 210 73.15 29.5 40 20

VIOLETTE 50 985 125 3 1E-4 14 23 6 80.8 33.33 0 15 71.55 38.0 25 210

Trials: number of trials. Voc: number of words in the training base. Conv. Filter: convolutional filter size. Learn. rate: learning rate. Let, Big and Tri: number of units
respectively selective to letters, bigrams and trigrams in the penultimate layer. Acc: accuracy. Gen: generalization effect. TL: transposed letter effect. VS: visual similarity
effect.
doi:10.1371/journal.pone.0084843.t001

Deep Orthographic Learning in Baboons

PLOS ONE | www.plosone.org 5 January 2014 | Volume 9 | Issue 1 | e84843



were able to determine the selectivity of network units by

regressing their activations against some continuous properties of

the stimulus, in their case numerosity and cumulative surface area.

In what follows we choose a different approach. We contend that a

key step towards understanding the model can be taken by partly

destroying it. In neuropsychology and computational modeling,

lesion studies have provided important insights into cognition [29–

31], and accordingly we start by asking how the model performs

when deprived of 80% of its connections in the penultimate layer

— that is, the connections coming from the 500 units that entirely

and directly subserve lexical decision.

Figure 3A shows the results of our simulated lesion study. We

first tested each trained network’s performance on all the words in

its training base, and on an equal number of nonwords (condition

‘‘Full’’). Intact networks reached performance levels that were

quantitatively very close to observed accuracies for baboons, both

for words and for nonwords (Network mean word accuracy

77.9%, Network mean nonword accuracy 67.0%; Baboons mean

word accuracy 76.6%, Baboons mean nonword accuracy 70.0%).

We then considered three lesioning conditions, ‘‘Rand’’, ‘‘Weak’’,

and ‘‘Strong’’, which had in common the removal of 400

connections and only differed in the 100 being left intact. It can

be seen that a lesioned model with all but its strongest connections

lesioned (condition Strong) retained essentially the same perfor-

mance on the training base as an intact model. If anything,

performance was slightly improved for words and diminished for

nonwords (mean word accuracy 80.8%, mean nonword accuracy

61.2%). When all but 100 randomly selected connections were

lesioned (condition Rand), network performance on both words

and nonwords was impaired (mean word accuracy 84.1%, mean

nonword accuracy 52.2%). Finally when all but the 100 weakest

connections were lesioned, performance on words approached

chance level whereas performance on nonwords increased

(condition Weak, mean word accuracy 54.9%, mean nonword

accuracy 77.1%). This analysis suggests that the knowledge used

by the model in order to tell whether a stimulus is a word or not is

essentially embodied in the 100 strongest connections. Therefore,

in order to characterize this knowledge, it is sufficient to restrict the

analysis to these 100 ‘‘extremal’’ units that correspond to the

strongest connections to the output node. The fact that networks

restricted to extremal units can still operate very well is less

surprising than it may seem at first blush, being in line with at least

one deep learning study, which has found that adequate selection

of features in the penultimate stage could actually improve

network performance on a task of generic visual object classifica-

tion [32].

We analyze the connectivity pattern of these extremal units in

Figure 3B, where extremal units all lie in the lower half of the

circle, word stimuli are in the upper left half, and nonword stimuli

in the upper right half. The color of the connection between a

given unit and stimulus shows the kind of signal sent by this unit to

the decision output upon presentation of the stimulus: a green

connection for a positive word signal, and a red connection for a

negative word signal. The one fact that immediately stands out in

Figure 3B is that word and nonword signals coming from this

sample of extremal units are very well matched to word and

nonword stimuli. The fact that extremal signals are well matched

to lexical status explains why these units are so important in

decision making.

Next we assessed the selectivity of extremal units. In this

analysis, we exposed each network successively to all the words it

had been exposed to and asked whether the observed activity

patterns in extremal units showed any regularity with the presence

of letters, bigrams, and trigrams in the stimuli at specific positions.

We restricted our search to position-specific letters, bigrams, and

trigrams, and we adopted two operational definitions for the

activity and selectivity of a unit. First, we called a unit active if upon

presentation of a stimulus, the signal it sent forward to the output

layer had a magnitude three standard deviations above the mean

across all units and stimuli. Under this count, we found that 15

units were active on average upon presentation of any stimulus,

and that a unit was active for on average 22 stimuli. On the other

hand, a unit was deemed selective for a given entity (letter, bigram,

or trigram) if it was mostly active for stimuli that contained this

entity and inactive for stimuli that did not contain this entity. We

formalized this notion using the d-prime statistic, and granted

selectivity to a unit if the difference in Z-scores between hit rate

and false alarm rate for the considered entity was superior to an

arbitrary and constant threshold (see Methods section for more

details).

Figure 3C reports the number of units selective for any letters,

bigrams, or trigrams, for each network. It can be seen that every

simulated baboon had selective units, with some networks having a

majority of their extremal units selective (as in the case of DAN). It

is also apparent in this case, because the total sums up to more

than 100, that the same same unit can be multiplex, in the sense

that it can be selective for several different entities simultaneously.

Notably enough, the number of bigram and trigram-selective units

in a network did not correlate with the size of the training sets

(rbi = 0.29; rtri = 0.29), but it strongly correlated with the number

of words in them (rbi = 0.87; rtri = 0.84), with network accuracy

(rbi = 0.78; rtri = 0.68), and with generalization performance

(rbi = 0.88; rtri = 0.79). These relations extended to the experi-

mentally observed values in baboons as for accuracy (rbi = 0.98;

rtri = 0.97), but not for generalization (rbi = 0.12; rtri = 0.03). The

number of letter-selective units correlated globally in the same way

with these variables, only consistently weaker (number of words,

rlet = 0.3; model accuracy, rlet = 0.79; baboon accuracy, rlet = 0.27;

model generalization rlet = 0.69; baboon generalization rlet = 0.30).

Finally Figure 3D provides an overview of selectivity for each

baboon, by displaying the probability that a given selective unit

will code for a letter, a bigram, or a trigram. Unlike the absolute

number of selective units, it can be seen that the portfolio of

entities selected for in each model is quite similar.

Individual differences: The case of Dan
In our experimental studies, one baboon, Dan, stood out as

having acquired the largest vocabulary of all (308 words, more

than twice the vocabulary of any other subject), reaching the best

accuracy on words (80.0%) and nonwords (79.6%), and showing

massive generalization and strong TL effects (33.7 and 35

percentage points, respectively). This is especially puzzling given

that Dan was not the baboon who was trained the most (see

Table 1). It is striking in Figure 3C and Table 1 that the Dan

network is precisely the one that has developed the largest number

of bigram and trigram-selective units (resp. 63 and 43 units out of

the 100 considered). It appears that the uniqueness of this network

can be traced back to the parameter search phase. Although the

search yielded a perfectly unremarkable learning rate of 0.0001 for

Dan, the size of the convolutional filter was by far the largest,

covering 9 units in radius. The straightforward consequence of

using a wide convolutional filter is that it allows for a much larger

context to be integrated at every convolutional stage, thereby

explaining the high number of bigram and trigram selective units

that are ultimately available for the Dan network to take decisions

upon. Indeed convolutional filter size in the model bore no

relationship to the final number of letter-selective units (rlet = 0.03),

Deep Orthographic Learning in Baboons
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but correlated strongly with the number of bigram (rbi = 0.76) and

trigram (rtri = 0.75) selective units.

Discussion

This computational study allowed us to propose a general

explanation for how baboons can learn to distinguish words from

nonwords. Our results suggest that after tens of thousands of

training trials the baboons have developed banks of position-

specific letter combination detectors. Because words and nonwords

in the training base were explicitly designed so as to maximize the

difference in bigram frequencies at specific positions, such a

strategy explains the baboons’ good performance on the training

base as well as their ability to generalize to new stimuli, and is well

supported by the strong correlation between both of these abilities

and the number of bigram selective units. Likewise, our modeling

explains why no visual effect was obtained in baboons: if the final

decisions were only based on highly selective letter combination

detectors in the top layer of the network, then one would expect

that the details pertaining to the specific shapes of the letters would

have disappeared at this late stage of integration.

Let us now discuss our findings in the light of other recent

computational studies of orthographic coding. Two independent

analyses on different word recognition networks have now failed to

found any support for the emergence of letter combinations, and

have instead reported solid evidence for letter-based schemes

[33,34]. Although both networks used artificial letter strings as

inputs, the first had a shallow architecture [33], whereas the

second used a deep architecture [34]. This suggests that in itself a

deep learning design is not sufficient to trigger the emergence of

such detectors, and the use of pixel-based visual inputs is unlikely

to make a difference in this respect because of one very

constraining and critical property shared by these networks: the

use of full connectivity between layers. Indeed in both networks,

every unit at a given layer was connected to every unit in adjacents

layers, effectively forcing every unit to take all the information

from the preceding layer into account. In contrast the sparse

connectivity used in convolutional networks and in the primate

ventral visual stream frees the network from this constraint, and

allows each unit to only analyze a limited patch of information.

This encourages the specialization of units on different fragments

of the pattern from the previous layer, and these fragment

detectors in turn get combined to form more complex fragment

detectors at the next convolutional step. According to this view,

the presence of two critical factors, sparse connectivity and deep

architecture, is required in order to produce letter combination

detectors.

It coud also be argued that a position-specific letter combination

account of orthographic coding in baboons is not entirely

compelling in that it does not a priori predict any TL effect, and

indeed the networks only showed a non-significant trend towards

one, at odds with the observed data. One way to make sense of this

conflict is that we may be dealing with a very volatile effect, whose

magnitude would depend on minute factors that are not

necessarily captured in the model. According to the model, what

ultimately determines the presence or absence of a TL effect is not

whether the code is position specific or position invariant, but

rather, how many more selective units will send a ‘‘word’’ signal to

the output layer in the TL condition relative to the DS one. This

would depend, first, on the differences in letter, bigram and

trigram frequencies between TL and DS stimuli, and second on

the exact selectivity profile of the network’s units which is a result

of the whole training history. It is possible that we made some

implausible simplifications during the training phase, for instance

by keeping the learning rate and convolution kernel parameters

constant throughout training, or by specifying that the perceived

reward was always constant. One obvious implausible simplifica-

tion of this model is that stimuli were always presented in the same

position and size on the simplistic simulated retina, whereas actual

fixations made by baboons on the letter strings were bound to have

varied in locations. Stochastic presentation went beyond the main

point of our model, which was essentially to acknowledge the

limited resources and hierarchical organization of the primate’s

visual system. In addition, and due to their built-in weight sharing

mechanism for location invariance, deep convolutional networks

may not be the best-suited framework for studying the effects of

stochastic stimulus presentation. Regardless of this, the distribution

of words on the retina may affect orthographic representations,

and indeed the finding that orthographic representations in the

VWFA are location sensitive has lately been a topic of much

interest [35], which some of our computational work has aimed at

explaining [36].

We have also trained our networks on a lexical decision task

without the benefit of any previous visual expertise, whereas

baboons were already experts at recognizing all sorts of visual

objects by the time they started experimental training. Introducing

previous visual training in this model would be very interesting for

a number of reasons, not least because it would allow for the study

of mirror invariance, a general characteristic of the expert visual

system that has been theorized to be lost during the acquisition of

reading [37]. Would the deep learning networks develop mirror-

invariance for generic visual stimuli, and would they lose it upon

exposure to strings of letters? Regardless of what these answers

turn out to be, previous visual training would almost surely impact

on the type of features used to perform lexical decision, but we

would argue that it is unlikely to threaten our main conclusions

here. Indeed, a developmental-like, unsupervised training stage

has already been introduced in extant work with deep learning

networks on visual categorization, and suggests that such training

would result in a dictionary of feature combinations [20]. It is hard

to see how the presence of feature combinations at the beginning

of training on the lexical task could prevent the emergence of letter

combination detectors later on, or could prevent these more

developmentally realitistic networks to display any of the effects

reported in this study.

We may finally speculate on how the penultimate layer, that was

the focus of our analysis, relates to the baboon’s brain or to the

VWFA. The penultimate layer appears late in the processing

stream and its units stand out as the only ones having access to all

the information across all feature maps and all locations in the

preceeding layer. For that reason, it is perhaps more plausibly

related to a region lying between TEO and the orbital frontal

cortex. Alternatively, because clear evidence for letter, bigram and

quadrigram representations has been found in the VWFA [10],

the penultimate layer could be a simplified, structureless homo-

logue of the VWFA itself, whose detailed connectivity is not yet

known. In this case, assuming that the same causes produce the

same effects in a neural hardware shared across baboons and

humans, the model’s prediction would be that a region analogue to

the VWFA should be observed in baboons that would only be

activated for words and legal nonwords but not for false-font letter

strings or for illegal, random strings of letters.

Conclusion

We have used deep learning networks to uncover the nature of

the orthographic code which allows baboons to perform word-

nonword classifications at a high level of accuracy. To do so, we
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have applied a range of techniques inspired from neuroscience,

especially lesion studies and single cell recordings. The under-

standing of the model’s inner workings gained hereby provides

new insights into the nature of the orthographic code in humans.

Under the dual pressure of visual processing constraints shared by

all primates, and of an incremental training procedure, the model

has converged towards a code that uses an assortment of position-

specific letter combination detectors in order to categorize letter

strings. This is in line with a large but still controversial class of

theoretical models of visual word recognition proposed over the

last decade [8,13,38–40], and weighs in favor of similar letter

combinations being involved in the human faculty of reading.

Methods

No new data was collected for this study, this being a

computational modeling article that aims at explaining data

already published [1,2]. The previous experiments on baboons

had the following characteristics:

N Name of the Institutional Animal Care and Use Committee

(IACUC) or ethics committee that approved this study:

‘‘comité d’éthique de Marseille pour l’expérimentation ani-

male’’.

N Details of animal welfare: Housing conditions; 650 m2 outdoor

enclosure with various climbing structures connected by

tunnels to an indoor enclosure.

N Feeding regimens: Baboons were not food deprived, and

received daily food ratio (monkey chow, fruits, vegetables) at 5

pm, water was provided ad libitum.

N Environmental enrichment: Climbing structures, live in social

group. Use of the ALDM (‘‘Automated Learning Device for

Monkeys’’) is a form of behavioral enrichment.

N Steps taken to alleviate suffering: no suffering.

N Methods of sacrifice: none.

Summary of the experiments
Here, we provide a summary of the two experiments modeled in

this paper, and we refer the interested reader to the original studies

for more details about the material and procedure [1,2] Six guinea

baboons (Papio papio; 3 females) living in semi-freedom partic-

ipated in the original word learning experiment of [1]. Baboons

were free to access and leave the automated experimental booths

whenever they wanted. Self-initiated trials began with the

presentation of a stimulus (word or nonword) until the baboon

touched the screen, at which point the screen displayed a dark blue

cross on the left (correct nonword response) and a light blue oval

shape on the right (correct word response). Response was followed

by a food reward (dry wheat) when a correct word or nonword

response had been given, or followed by a 3 sec delay with a green

screen if the response was incorrect. Words and nonwords were

four letter strings designed so as to differ in bigram frequencies.

Each baboon saw an equal number of words and nonwords, but

because of the self-initiated nature of the trials, their total number

differed across baboons (DAN: 56 689, ART: 50 985, CAU: 61

142, DOR: 49 608, VIO: 43 041, ARI: 55 407).

Immediately after training, baboons were tested for effects of

visual similarity and transposition [2]. The test items were

constructed individually for each monkey on the basis of the

words that he or she had learned (e.g. LIFE), by substituting two

letters (condition DS, e.g. LGAE), transposing two letters

(condition TL, e.g. LFIE), by substituting a single letter with

another that was visually dissimilar (condition Dis, e.g. LOFE),

and by substituting a single letter with a visually similar one

(condition Sim, e.g. LJFE). All of these items were reinforced as

nonword trials.

Statistical analysis of the models
For each model, accuracy on word/nonword discrimination

and generalization performance were calculated as described in

[1], with the only difference being that for practical reasons in our

paper these calculations were done every 1000 trials, both for

networks and for baboons. Generalization scores were computed

as the proportion of nonword responses made for first words minus

the proportion of nonword responses made for nonwords.

Transposed-letter effects were calculated as the number of word

responses produced by TL nonwords minus the number of word

responses produced by double substitution nonwords. Visual

similarity effects were obtained as the number of word responses

made on nonword stimuli that were visually similar to a word,

minus the number of word responses made on nonwords that were

visually dissimilar to known words. Following Ziegler et al. [2], the

statistical analysis performed across models was a standard one-

way analysis of variance.

Lesion analyses
Networks were lesioned after training was complete, by

removing 400 connections out of the 500 arriving at the output

node. The 100 connections left intact were either chosen to be the

strongest (condition ‘‘strong’’), the weakest (condition ‘‘weak’’), or

random (condition ‘‘random’’). Strong and weak connections were

defined by the absolute value of their weights: the weight of a

strong connection had a large absolute value whereas the weight of

a weak connection had a small absolute value (i.e. close to zero).

Sparseness, activity, and selectivity analyses
For each model, we first collected the activation patterns in all

100 extremal units in the last-but-one layer, upon presentation of

all the words in the dataset, and of an equal number of nonwords.

Because datasets differed across baboons but were exactly identical

for a baboon and for its model, the number N of pairs of word/

nonword presented varied across models (NDAN~308;

NART~125; NCAU~112; NDOR~121; NVIO~81; NARI~87).

We then computed the mean activation level and standard

deviation of all activities across all extremal units and all patterns,

and thresholded activation patterns to three standard deviations

above the mean - an arbitrary threshold for what counts as an

active unit in the model. The resulting Nx100 binary matrix of

words-by-units activity served as a base for the computation of

sparseness and selectivity in each model (see Figures 3B, 3C and

3D).

Selectivity of a unit to a particular entity (letter, bigram or

trigram) was quantified by the d-prime statistic, a signal detection

procedure based on the calculation of two quantities: the hit rate

(HR), defined as the number of times the unit was active upon

presentation of this specific entity divided by the total number of

times the entity had been seen, and the false alarm rate (FAR),

defined as the number of times the unit was active despite the

absence of the entity in the stimulus, divided by this number plus

the number of times the unit was not active in the absence of the

stimulus (correct rejection). The d-prime was then simply obtained

as the difference of z-scores for HR and for FAR, and a unit was

deemed selective for an entity if its d-prime was above a common

arbitrary value of 2.

All networks were built, trained, and tested using the Theano

library [21] running on the Enthought Python Distribution.
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