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Minimal geodesics along volume preserving maps,

through semi-discrete optimal transport

Quentin Mérigot∗† Jean-Marie Mirebeau∗‡

August 30, 2016

Abstract

We introduce a numerical method for extracting minimal geodesics along the group of
volume preserving maps, equipped with the L2 metric, which as observed by Arnold [Arn66]
solve the Euler equations of inviscid incompressible �uids. The method relies on the general-
ized polar decomposition of Brenier [Bre91], numerically implemented through semi-discrete
optimal transport. It is robust enough to extract non-classical, multi-valued solutions of
Euler's equations, for which the �ow dimension - de�ned as the quantization dimension of
Brenier's generalized �ow - is higher than the domain dimension, a striking and unavoid-
able consequence of this model [Shn94]. Our convergence results encompass this generalized
model, and our numerical experiments illustrate it for the �rst time in two space dimensions.

1 Introduction

The motion of an inviscid incompressible �uid, moving in a compact domainX ⊆ Rd, is described
by the Euler equations [Eul65]

∂tv + (v · ∇)v = −∇p div v = 0, (1)

coupled with the impervious boundary condition v · n = 0 on ∂Ω. Here v denotes the �uid
velocity, and p the pressure acts as a Lagrange multiplier for the incompressibility constraint.
As observed by Arnold [Arn66], Euler equations (1) yield in Lagrangian coordinates the geodesic
equations along the group SDiff of di�eomorphisms of X with unit jacobian, equipped with the
L2 metric. Indeed, let s : [0, 1]→ SDiff be a smooth time dependent family of di�eomorphisms
of X, describing the evolution over time of the position of the �uid particles. The position of
the particle emanating from x at time t will be denoted indi�erently st(x) or s(t, x), while the
di�eomorphism at time t is denoted s(t) or st. The Eulerian velocity v and acceleration a of
the �uid particles are given by v(t, s(t, x)) = ∂ts(t, x) and a(t, s(t, x)) = ∂tts(t, x). The jacobian
constraint det∇s = 1 yields div v = 0, whereas the equation of geodesics on SDiff merely
states that acceleration is a gradient, a(t, x) = −∇p(t, x), which is equivalent to (1, Left). This
formalism leads to two natural problems for Euler equations:

• The Cauchy problem, forward in time: given the initial position and velocity of the �uid
particles, �nd their subsequent positions at all positive times. This amounts to computing
the exponential map on the lie group SDiff.
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• The boundary value problem: given some observed initial and �nal positions of the �uid
particles, �nd their intermediate states. This amounts to computing a minimizing geodesic
on SDiff.

This manuscript is devoted to the boundary value problem only. More precisely, consider an
inviscid incompressible �uid �owing during the time interval [0, 1], and a map s∗ : X → X giving
the �nal position s∗(x) of each �uid particle initially at position x ∈ X. In this paper, we intro-
duce a new numerical scheme for �nding a minimizing geodesic joining the initial con�guration
s∗ = Id to the �nal one s∗

minimize

ˆ 1

0
‖ṡ(t)‖2dt, subject to

{
∀t ∈ [0, 1], s(t) ∈ S,
s(0) = s∗, s(1) = s∗.

(2)

We denoted by S ⊆ L2(X,Rd) the space of maps preserving the Lebesgue measure on X, which in
dimension d ≥ 3 is the closure of SDiff. More formally, we let Leb denote the Lebesgue measure
on X, rescaled so as to be a probability measure, and we let f#µ denote the push-forward of a
measure µ by a measurable map f , de�ned by f#µ(A) := µ(f−1(A)). Then the space S is the
collection of measurable maps s : X → X obeying s# Leb = Leb.

The motivation for this �rst relaxation � replacing SDiff with the closed subset S of L2 �
is that the optimized functional in (2) does not penalize the spatial derivatives of s, which are
involved in the unit jacobian constraint de�ning SDiff. Despite this relaxation, the optimization
problem (2) needs not have a minimizer in s ∈ H1([0, 1],S) in dimension d ≥ 3 [Shn94], and
minimizing sequences (sn)n∈N may instead display oscillations reminiscent of an homogeneization
phenomenon. A second relaxation is therefore necessary, see [FD12] for a review.

Generalized �ows Brenier introduced in [Bre89] a second relaxation of the minimizing geodesic
problem (2) based on generalized �ows, which allow particles to split and their paths to cross.
This surprising behavior is an unavoidable consequence of the lack of viscosity in Euler's equa-
tions, which amounts to an in�nite Reynolds number. Generalized �ows are also relevant in
dimension d ∈ {1, 2} if the underlying physical model actually involves a three dimensional do-
main X × [0, ε]3−d in which one neglects the �uid acceleration in the extra dimensions [Bre08].
Consider the space of continuous paths (of �uid particles)

Ω := C0([0, 1], X).

A generalized �ow, in Brenier's sense [Bre89], is a probability measure µ over the space Ω of
paths. We denote by et(ω) := ω(t) the evaluation map at time t ∈ [0, 1]. Given a generalized
�ow µ ∈ Prob(Ω), the pushforward measure et #µ can be understood as the distribution of
particles at time t under the �ow. The generalized �ow is incompressible if for every time
t ∈ [0, 1], et #µ coincides with the uniform probability measure on the domain X. Rescaling the
domain if necessary we assume that X has unit area, so that the uniform probability measure
Leb is simply the restriction of the Lebesgue measure to X.

The use of generalized �ows turns the highly non-linear incompressibility constraint s(t) ∈ S
into a linear constraint et #µ = Leb. Note the similarity with Kantorovich's linearization of
the non-linear mass preservation constraint in Monge's optimal transport problem. This idea
leads to a convex relaxation of the minimizing geodesic distance problem (2), linearizing both
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Figure 1: The motion of inviscid incompressible �uids admits three formulations, either (I)
Eulerian based on the local speed v : [0, 1]×X → Rd, (II) Lagrangian based on di�eomorphisms
s(t, ·) which integrate the speed: ∂ts(t, x) = v(t, s(t, x)), or (III) relaxed as a superposition of
individual particles paths ω ∈ Ω, weighted by a measure µ.

the objective and the constraints, and for which the existence of a minimizer is guaranteed:

d2(s∗, s
∗) := min

µ∈Prob(Ω)

ˆ
Ω
A(ω)dµ(ω), where A(ω) =

ˆ 1

0
|ω̇(t)|2dt

and subject to

{
∀t ∈ [0, 1], et #µ = Leb,

(e0, e1)#µ = (s∗, s
∗)# Leb .

(3)

As explained above, the �rst constraint in (3) expresses the incompressibility of the generalized
�ow. The second constraint (e0, e1)#µ = (s∗, s

∗)# Leb rephrases the prescription of the end-
points (s(0) = s∗ and s(1) = s∗) in the minimizing geodesic problem (2) by imposing a coupling
between particle positions at initial and �nal times. This second constraint can equivalently be
phrased in term of test functions: for every f ∈ C0(X ×X,R) one has

ˆ
Ω
f(ω(0), ω(1)) dµ(ω) =

ˆ
X
f(s∗(x), s∗(x)) dx.

In other words, ω(1) = s∗(s−1
∗ (ω(0))) for µ-almost any particle path ω ∈ Ω. Any classical

�ow s ∈ H1([0, 1], S) can be represented by a generalized �ow µs, supported on the paths
ωx : t 7→ s(t, x), weighted by the Lebesgue measure on x ∈ X. In this case, if F : Ω → R is a
bounded and continuous functional (or a lower-semi-continuous non-negative functional such as
A) one has

ˆ
Ω
F (ω) dµs(ω) =

ˆ
X
F (ωx) dx. (4)

In particular,

ˆ
Ω
A(ω) dµs(ω) =

ˆ
X

ˆ 1

0
|ṡ(t, x)|2 dt dx =

ˆ 1

0
‖ṡ(t)‖2dt. (5)

In other words, the µ-average of the particles paths energy, is the time average of the �uid kinetic
energy. Note that in this paper, ‖·‖ stands for the L2(X,Rn) norm, and |·| for the Euclidean norm
on Rd. Our discretization truly solves Brenier's relaxation (3), rather than Arnold's formulation
(2), and convergence is established in this relaxed setting.

Pressure. The incompressibility constraint in (3) gives rise to a Lagrange multiplier, called the
pressure and which generalises the �eld p in (1). Pressure turns out to be the unique maximizer
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Figure 2: The geodesic distance d2(s∗, s
∗) along the �manifold� S of volume preserving maps,

represented as a blue curve, is estimated (9) as the length of a chain (mi)
T
i=0 in the linear subspace

MN , represented as a black line, plus penalizations for the boundary values and the distance from
the chain elements to S.

to a concave optimization problem dual to (3), see [Bre93]. Note that, in contrast, the primal
problem (3) may have several minimizers � up to the notable exception [BFS09] of smooth �ows
in dimension d = 1. The pressure is a classical function p ∈ L2

loc( ]0, 1[, BV(X)), at least when
the domain X is a d-dimensional torus [AF07]. This regularity is su�cient to show that any
solution s to (2) (resp. µ-almost any path ω, for any solution µ to (3)) satis�es

∂tts(t, x) = −∇p(t, s(t, x)), resp. ω̈(t) = −∇p(t, ω(t)). (6)

This implies that the support of µ is contained in the space of solutions to a second-order Ordinary
Di�erential Equation (ODE), a fact that we will use later in our convergence estimates. In other
words, �uid particles move by inertia, only de�ected by the force of pressure. Assume that the
Hessian of the pressure is su�ciently small, namely that

∀t ∈ [0, 1], ∀x ∈ X, ∇2p(t, x) ≺ π2 Id (7)

in the sense of symmetric matrices1. Then using the path dynamics equation (6) Brenier [Bre89]
proved that the relaxed problem (3) admits a unique minimizer µ ∈ Prob(Ω), which is deter-
ministic. In other word, the generalized �ow µ stems as in (4) from a possibly non-smooth but
otherwise classical minimizer s ∈ H1([0, 1], S) of (2). Inequality (7) is sharp, and several families
of examples are known for which uniqueness and/or determinism are lost precisely when the
threshold (7) is passed. We present in �5 the �rst numerical illustration of this phenomenon.

1.1 Numerical scheme

We introduce a new discretization for the relaxation (3) of the shortest path formulation (2) of
Euler equations (1). Our approach is numerically tractable in dimension 2, and is the �rst to
illustrate the transition between classical and generalized solutions occurring at the threshold
(7) on the pressure regularity.

For that purpose we need to introduce some notation. As before, we denote Leb the Lebesgue
measure restricted to the domain X, which by assumption is a probability measure on X. De-
note M := L2(X,Rd), and recall that S ⊆ M is the collection of maps s ∈ M preserving the
Lebesgue measure on the domain X, i.e. s# Leb = Leb. For every N ∈ N, we let PN be a
partition of X into N regions of equal area 1/N , with respect to the Lebesgue measure, and

with diameter ≤ CPN−
1
d . Finally, we let MN ⊆ M be the N -dimensional subspace of functions

which are piecewise constant over this partition. Given two measure-preserving maps s∗, s
∗ ∈ S,

1We write A ≺ B, where A and B are two symmetric matrices, if B −A is positive de�nite.
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discretization parameters T,N ∈ N, and a penalization factor λ� 1, we introduce the functional
which to m ∈MT+1

N associates

E(T,N, λ; m) := T
∑

0≤i<T
‖mi+1 −mi‖2 + λ

(
‖m0 − s∗‖2 + ‖mT − s∗‖2 +

∑
1≤i<T

d2
S(mi)

)
. (8)

We denoted by d2
S the squared-distance to the space S of measure-preserving maps, de�ned

as usual by d2
S(m) = infs∈S ‖m − s‖2. Comparing this with (2), we recognize the standard

discretization of the length of the discrete path (m0, · · · ,mT ), as well as an implementation by
penalization of the boundary value constraints. The last term corresponds to a penalization
of the incompressibility constraints, or more precisely a penalization of the squared distance
between the maps mi and the set S of measure preserving maps. The discrete optimization
problem we consider is then

E(T,N, λ) := min
m∈MT+1

N

E(T,N, λ;m) (9)

The problem (9), considered as a function ofm ∈MT+1
N , is anN(T+1)d-dimensional optimization

problem. It makes sense to consider (8) and (9) whenever one attempts to approximate a shortest
path joining two points s∗, s

∗ of a subset S of a Hilbert space H, internally approximated by
subspaces (MN )N≥0. Our �rst result Proposition 1.1 uses no additional assumptions. In contrast,
the numerical implementation strategy, and the other results �1.2, crucially rely on the speci�c
properties of the set S of measure preserving maps.

The key properties of the functional (8) follow from those of the squared distance function d2
S,

which are established in Proposition 5.1. It is continuously di�erentiable on an open dense set.
However it is non-convex (in fact semi-concave) due to the non-convexity of the set S, forbidding
us to guarantee that the global minimum of (9) is found by our numerical solver. Nonetheless,
our numerical experiments show that quasi-Newton methods give convincing results, see �5.

Distance to S and semi-discrete optimal transport. Before entering the analysis of (9), we
want to emphasize that the inner-subproblems, namely the computation of the squared distances
d2
S(mi), are numerically tractable thanks to two main ingredients: Brenier's polar factorization
[Bre91], and semi-discrete optimal transport. Brenier's polar factorization theorem asserts that
the distance between any m ∈ M and the set S of measure-preserving maps equals the cost of
transporting the image measure m# Leb back to the Lebesgue measure, namely

d2
S(m) = inf

s∈S
‖m− s‖2 = W 2

2 (m# Leb,Leb), (10)

where W2 is the Wasserstein distance for the quadratic transport cost. Given any m ∈ MN ,
the pushforward measure m# Leb is the sum of N Dirac measures of mass 1/N , located at
the N values of the piecewise constant map m on the partition PN . Computing (10) therefore
amounts to the computation of the Wasserstein distance between a �nitely supported measure
and the Lebesgue measure, a special instance of a problem called semi-discrete optimal transport.
E�cient computational methods for this problem have been proposed [AHA98, Mer11, Lév14],
relying on Kantorovich duality and on tools from computational geometry. Let η be the uniform
probability measure over a �nite set Y ⊆ Rd with cardinal N . Kantorovich duality asserts that

W 2
2 (η,Leb) = sup

f :X→R,g:Y→R
f(x)+g(y)≤‖x−y‖2

ˆ
X
f(x) dLeb(x) +

ˆ
X
g(y) dη(y).
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For any �xed g : Y → R the largest f : X → R obeying the constraint is given by

f(x) := min
y∈Y
‖x− y‖2 − g(y).

This function is piecewise quadratic over a partition (Lagy(g))y∈Y of X into convex polyhedra

Lagy(g) :=
{
x ∈ X | ∀z ∈ Y, ‖x− y‖2 − g(y) ≤ ‖x− z‖2 − g(z)

}
.

Eliminating the optimization variable f , Kantorovitch duality reads

W 2
2 (η,Leb) = sup

g:Y→R

∑
y∈Y

ˆ
Lagy(g)

(‖x− y‖2 − g(y)) dx+
1

N

∑
y∈Y

g(y). (11)

This partition of X is called the Laguerre diagram of (Y, g) in computational geometry and
can be computed in near-linear time in R2 using existing software2 [cga]. Speci�cally, we use
the 2D regular triangulations package in CGAL [Yvi13]. The maximization problem (11) is an
unconstrained, concave and twice continuously di�erentiable maximization problem, which is
e�ciently solved via Newton or quasi-Newton methods. Semi-discrete optimal transport has
become a reliable and e�cient building block for PDE discretizations [BCMO14].

As discussed above, the chosen discretization of the Euler equations intrinsically leads to an
optimal transport problem of semi-discrete type - from a �nite collection of Diracs playing the
role of �uid particles to the standard Lebesgue measure - hence our choice of discretization (11).
A variety of alternative approaches have been developed for other instances of computational
optimal transport, based for instance on a pressure-less �uid model [BBG02, PPO13], mono-
tone discretizations of Monge-Ampere equation [BFO14, BCM14], regularization via entropy
penalization [BCC+15, CPR15], or adaptive strategies for the linear programming discretization
[OR15, Sch15].

1.2 Main results

Our results on the proposed discretization (8) are split into two parts. A convergence analysis
�rst shows how to construct discrete generalized �ows out of minimizers of E(T,N, λ), supported
on �nitely many piecewise linear paths and which converge to a solution µ ∈ Prob(Ω) of (3).
This analysis requires upper bounds on the discrete energies E(T,N, λ), which are established in
a second part and under adequate a-priori assumptions on the continuous solution. Importantly,
two sets of assumptions are considered, encompassing the favorable case where a classical solution
to Arnold's formulation (2) exists, and the general case where only Brenier's relaxation (3) is
well posed.

Convergence analysis. We present two results establishing the convergence of the discretized
problem (9) minimizers towards solutions of (3) as the number of timesteps T grows to in�n-
ity. The �rst proposition shows that one can build short chains of incompressible maps out of
minimizers of (9). It involves the quantity

E ′(T,N, λ;m) := (1 + 4T/λ)E(T,N, λ;m). (12)

2In R3 the worst-case complexity of the Laguerre diagram is quadratic in the number of points, but this
corresponds to degenerate cases, so that semi-discrete optimal can also be solved e�ciently on R3 [Lév14].
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Figure 3: (Left) A partition PN cuts the domain X into N region of equal area and roughly
isotropic shape. (Right) To a sequence (mi)

T
i=0 ∈ MT+1

N one can associate N piecewise linear
paths (ωj)

N
j=1, by interpolating the map values at the times {0, 1/T, · · · , T/T} for each region

of the partition PN .

Proposition 1.1. Let m = (mi)
T
i=0 ∈MT+1

N and let (si)
T
i=0 be the chain of incompressible maps

de�ned by: s0 = s∗, sT = s∗, and si is a projection of mi onto S for all 1 ≤ i < T . Then

T
∑

0≤i<T
‖si+1 − si‖2 ≤ E ′(T,N, λ;m).

Unfortunately, such discrete chains of incompressible maps need not converge as T → ∞
to a continuous path s : [0, 1] → S, due to the lack of compactness of S. Note also that the
interpolates (1− δ)si + δsi+1, 0 ≤ δ ≤ 1, 0 ≤ i ≤ T , need not belong to the non-convex set S.

The next proposition establishes, under condition, convergence towards a solution of (3) in
the sense of generalized �ows, a framework which enjoys the desired convexity and compactness
properties. In order to state this result, we associate to each m = (mi)

T
i=0 in MT+1

N a generalized

�ow µm ∈ Prob(Ω) uniformly supported on N paths. For every j ∈ {1, . . . , N}, we denote mj
i

the (constant) value of mi on the j-th region of the partition PN of X and we de�ne a path ωj
by interpolating linearly between these points, that is

∀0 ≤ i ≤ N, ωj(i/t) = mj
i .

The construction of these paths is illustrated in Figure 3. Finally µm ∈ Prob(Ω) is the uniform
probability measure over the �nite set of paths {ω1, . . . , ωN} ⊆ Ω. We present in �2.2 a refor-
mulation of the discrete energy (8) based on the generalized �ow µm ∈ Prob(Ω), which mimics
Brenier's linear relaxation (3) of Euler's equations.

Proposition 1.2. Assume that E ′(Tk, Nk, λk;mk) → D∗ and Tk, Nk, λk → +∞ as k → ∞.
Then a subsequence of the generalized �ows µk associated to mk weak-* converges to a �ow
µ ∈ Prob(Ω) satisfying

´
ΩA dµ ≤ D∗ and obeying the constraints of (3).

Corollary 1.3. Under the assumptions of Proposition 1.2, one has D∗ ≥ d(s∗, s
∗). If equality

holds, then the limit µ is a solution to (3).

Interestingly, the proof of Proposition 1.2, presented �2.2, relies on a reinterpretation of the
discretization (8) of Arnold's geodesic formulation (2) of Euler equations, which turns out to be
the natural discretization of Brenier's relaxation (3) as well.
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m0

m1
· · ·

mT
m0
m1

mT

Figure 4: Illustration of Remark 1.6. The set S is the red curve and the set SN is composed
of the four large dots. The discretized geodesics is displayed as a dotted line. On the left, the
penalization parameter λ is too small and the discretized geodesics takes �shortcuts�, while on
the right λ is too large, leading to over�tting.

Upper bounds on the discrete energy. Our main theorem establishes upper bounds on the
discrete energies E(N,T, λ), for adequate values of the parameters, as required by the convergence
result Proposition 1.2. It relies on a-priori assumptions on the structure of solutions to the
continuous problem. The �relaxed� part of this result addresses the general case, based on
Brenier's linear relaxation (3) of the Euler equations, and only requires on an assumption on the
pressure regularity. The �classical� part provides a faster convergence rate under the assumption
that Arnold's geodesic formulation (2) admits a minimizer s : [0, 1] × X → X, of suitable
regularity. At a given time t, the �uid velocity ṡ(t, x) is uniquely determined by position x ∈ X
in the classical case, whereas in the relaxed case it is a probabilisitic superposition ω̇(t) of
velocities, weighted by the generalized �ow solution µ ∈ Prob(Ω) conditional to ω(t) = x; this is
in a sense reminiscent of non-classical, quantum mechanics, hence the choice of adjective.

Recall that the classical (2) and relaxed (3) distances are automatically equal in dimension
d ≥ 3, and that the pressure �eld gradient ∇p is uniquely determined by the boundary values
s∗, s

∗.

Theorem 1.4. Let s∗, s
∗ ∈ S, let T,N ∈ N, and λ ≥ 0. The relaxed geodesic distance (3) and

the discretized minimum (9) satisfy

E(T,N, λ) ≤ d(s∗, s
∗) +O(Th2

Nλ),

• (Classical estimate) with hN = N−
1
d assuming that the classical geodesic distance (2) equals

the relaxed distance (3), and admits a minimizer with regularity s ∈ L∞([0, 1], H1(X)).

• (Relaxed estimate) with hN = N−
1
2d (resp. N−

1
2

√
lnN if d = 1), if the pressure �eld

gradient ∇p is Lipschitz on [0, 1]×X, and the boundary data s−1
∗ , s∗ are Lipschitz on X.

Remark 1.5 (Optimal choice of the parameter λ). Since the natural quantity occurring in the

convergence analysis is E ′(T,N, λ), see (12), it is natural to choose λ = h−1
N = N

1
D so that by

Theorem 1.4

E ′(T,N, λ) ≤ d2(s∗, s
∗) +O(T/λ+ Th2

Nλ) ≤ d2(s∗, s
∗) +O(TN−

1
D ).

From this point, choosing N,T → ∞ in such way that TN−
1
D → 0, will ful�ll the assumptions

required by Proposition 1.2 for convergence.

Remark 1.6 (Finite-dimensional analogy for the choice of λ). Consider a �nite d-dimensional
manifold S embedded in a Hilbert space M , whose minimising geodesics one wishes to approxi-
mate. The minimising geodesics between two points s∗, s

∗ ∈ S can be approximated by minimisers
of the energy

(m0, . . . ,mT ) ∈MT+1 7→ T
∑

0≤i<T
‖mi+1−mi‖2+λ

‖m0 − s∗‖+ ‖mT − s∗‖+
∑

1≤i<T
dSN (mi)

 ,

8



where SN is a sampling of the manifold S with N points. The choice of the optimal λ in term of
convergence speed depends on the dimension of the manifold S and on the number of points N .
Figure 4 illustrates that if λ is too small, the discrete geodesics takes �shortcuts�, while if λ is too
large it forms clusters around points in the discretization SN . Note also that, for a �xed N and
λ→∞, the optimization problem becomes combinatorial.

Establishing the upper bounds of Theorem 1.4 requires one to construct, for each choice of
N,T , a candidate m ∈MT+1

N for the discrete problems (9) from a minimizer µ ∈ Prob(Ω) of the
continuous problem (3). To do so, we approximate the probability measure µ by a measure µN
uniformly supported over N paths. This amounts to solving a quantization problem [GG92] in
the in�nite-dimensional space Ω. Fortunately, the optimal speed of convergence of µN towards
µ can be bounded in terms of the box dimension D of the support of µ (see De�nition 4.1). This

explains why the decay rate hN = N−
1
D in Theorem 1.4 depends, through the constant D, on

the structure of the problem solution µ.
When the generalized �ow µ is induced by a classical solution, as in (4), the particle tra-

jectories are determined by their initial position x ∈ X ⊆ Rd, so that µ is supported on a
d-dimensional manifold, implying D = d. In the relaxed estimate however, the trajectories par-
ticles obey a second order ordinary di�erential equation (6) and are thus determined by their
initial position and velocity (x, v) ∈ X ×Rd ⊆ R2d provided Picard-Lindelof/Cauchy-Lipschitz's
theorem applies [CL55]. The quantization dimension of the generalized �ow is thus 2d in the
worst case, but intermediate dimensions d < D < 2d are also common, see �5.

Outline. Propositions 1.1 and 1.2 are proved in �2. Theorem 1.4 is established in �3 (Classical
estimate) and in �4 (Relaxed estimate). Numerical experiments are presented �5.

Remark 1.7 (Monge-Ampere gravitation). Some models of reconstruction of the early universe
[Bre11] involve actions of a form closely related to our discrete energy functional (9), for the
parameter value λ = 2: ˆ 1

0

(
1

2
‖ṁ(t)‖2 + inf

s∈S
‖m(t)− s‖2

)
dt.

2 Convergence analysis

We prove Proposition 1.1 in �2.1 and Proposition 1.2 in �2.2, on the length of chains of incom-
pressible maps, and the convergence of generalized �ows respectively.

2.1 Length of a chain of incompressible maps

The announced Proposition 1.1 immediately follows from Lemma 2.1 below. It relies on a the
following identity, valid for any elements a, b of a Hilbert space, and any ε > 0:

(1 + ε)−1‖a+ b‖2 ≤ ‖a‖2 + ε−1‖b‖2. (13)

Indeed subtracting the LHS to the RHS of (13) we obtain (1 + ε)−1‖ε 1
2a− ε− 1

2 b‖2 ≥ 0.

Lemma 2.1. For any T ∈ N∗, any penalization λ > 0, and any (m, s) ∈ (M× S)T+1 one has

T
∑

0≤i<T
‖si+1 − si‖2 ≤ (1 + 4T/λ)

T ∑
0≤i<T

‖mi+1 −mi‖2 + λ
∑

0≤i≤T
‖mi − si‖2

 . (14)

9



Proof. Let 0 ≤ i < T . Choosing a := si+1 − si, and b := mi+1 −mi − a, we obtain

(1 + ε)−1‖mi+1 −mi‖2 ≤ ‖si+1 − si‖2 + ε−1‖(si −mi)− (si+1 −mi+1)‖2

≤ ‖si+1 − si‖2 + 2ε−1(‖si −mi‖2 + ‖si+1 −mi+1‖2).

Summing over 0 ≤ i < T yields

(1 + ε)−1
∑

0≤i<T
‖mi+1 −mi‖2 ≤

∑
0≤i<T

‖si+1 − si‖2 + 2ε−1
∑

0≤i≤T
αi‖si −mi‖2,

with α0 = αT = 1, αi = 2 otherwise. Choosing ε = 4T/λ concludes the proof.

2.2 Convergence towards generalized solutions

This subsection is devoted to the proof of Proposition 1.2. The discrete optimization problem (9)
is inspired by Arnold's formulation (2) of Euler equations as a minimizing geodesic problem over
S. Our �rst lemma shows that, in the equivalent form (24), it could as well be regarded as a dis-
cretization of Brenier's relaxation (3). The terms W 2

2 (et#µm,Leb), where m ∈MT+1
N and µm is

the induced generalized �ow, can indeed be regarded as penalizations of the relaxed incompress-
ibility constraint et#µ = Leb in (3). The other term W 2

2 ((e0, e1)#µm, (s∗, s
∗)# Leb) enforces

the proximity between the two couplings (e0, e1)#µm and (s∗, s
∗)# Leb on X2 as required in (3).

Lemma 2.2. Let m = (mi)
T
i=0 ∈MT+1

N and µm ∈ Prob(ω) be the induced generalized �ow. Then
E(T,N, λ;m) equals

ˆ
Ω
A(ω)dµm(ω)+λ

(ˆ
X
|m0(x)−s∗(x)|2 + |mT (x)−s∗(x)|2dx+

∑
1≤i<T
t=i/T

W 2
2 (et#µm,Leb)

)
. (15)

In addition,

W 2
2 ((e0, e1)#µm, (s∗, s

∗)# Leb) ≤
ˆ
X
|m0(x)− s∗(x)|2 + |mT (x)− s∗(x)|2dx. (16)

Proof. Mimicking (5) at the discrete level, we obtain

ˆ
Ω
A(ω)dµ(ω) =

1

N

∑
1≤j≤N

ˆ 1

0
|ω̇j(t)|2dt =

T

N

∑
0≤i<T
1≤j≤N

|mj
i+1 −m

j
i |2 = T

∑
0≤i<T

‖mi+1 −mi‖2,

On the other hand, Brenier's polar factorization theorem (10) yields W 2
2 (et #µm,Leb) = d2

S(m),
which gives (24).

The Wasserstein distance from (e0, e1)#µm = (m0,m1)# Leb to (s∗, s
∗)# Leb appears on

the LHS of (16). By de�nition, it is indeed bounded by the cost, appearing on the RHS,
of the explicit transport plan π = ((m0,mT ), (s∗, s∗))# Leb ∈ Prob(X2 × X2), which sends
(m0(x),mT (x)) 7→ (s∗(x), s∗(x)) for all x ∈ X.

Our next step is to estimate the average violation of incompressibility by the discrete solution.

Lemma 2.3. Let µm be the generalized �ow associated to some m ∈MT+1
N . Then

ˆ 1

0
W 2

2 (et #µm,Leb) dt ≤ 1

4T 2
E ′(T,N, λ;m).

10



Proof. Let t ∈ [0, 1], which we write t = (i+ α)/T with 0 ≤ i < T , 0 ≤ α ≤ 1. Then using (13)
we obtain for any ε > 0,

W 2
2 (et #µm,Leb) = inf

s∈S
‖(1−α)mi+αmi+1−s‖2 ≤ (1+ε)

(
‖α(mi+1 −mi)‖2 + ε−1 inf

s∈S
‖mi − s‖2

)
Integrating over t ∈ [0, 1], and using that either α ≤ 1/2 or 1− α ≤ 1/2, we obtain

ˆ 1

0
W 2

2 (et #µ,Leb)dt ≤ 1 + ε

T

∑
0≤i<T

(
1

4
‖mi+1 −mi‖2 + ε−1 inf

s∈S
‖mi − s‖2

)

which is precisely the announced estimate when ε = 4T/λ.

The convergence announced in Proposition 1.2, �nally results from general compactness and
continuity arguments.

Proof of Proposition 1.2. Let Tk, Nk, λk,mk, µk and D∗ be as in the statement of Proposition
1.2. The sublevel sets of the action, such as for any ε > 0

{µ ∈ Prob(Ω);

ˆ
Ω
A(ω)dµ(ω) ≤ D∗ + ε}.

are weak-* sequentially compact by [Bre93]. Taking a subsequence if necessary, we assume that
(µk) converges towards a µ∗ ∈ Prob(Ω), which thus satis�es

´
ΩA dµ∗ ≤ D∗ + ε for any ε > 0,

hence
´

ΩA dµ∗ ≤ D∗ as announced.
The functional F : µ 7→ W 2

2 ((e0, e1)#µ, (s∗, s
∗)# Leb) is weak-* continuous on Prob(Ω). By

(16) one has F (µk) ≤ 1
λk
E(Tk, Nk, λk;mk)→ 0 as k →∞, hence F (µ∗) = 0 which implies

(e0, e1)#µ∗ = (s∗, s
∗)# Leb .

Similarly, the functional G : µ 7→
´ 1

0 W
2
2 (et #µ,Leb) dt is weak-* lower semi-continuous on

Prob(Ω), as follows from Fatou's lemma and the continuity of µ 7→ W 2
2 (et #µ,Leb) for any

t ∈ [0, 1]. By Lemma 2.3 one has G(µk)→ 0 as k →∞, hence G(µ∗) = 0 and therefore the limit
generalizered �ow obeys the incompressibility constraints

∀t ∈ [0, 1], et #µ = Leb .

3 Classical estimate

We establish in this section the �rst part of our main result, Theorem 1.4. By assumption,
we consider a minimizer s of the shortest path problem (2), and assume that it has regularity
s ∈ L∞([0, 1], H1(X)). Let also T,N, λ be the discrete problem parameters.

De�ne si := s(i/T ) for all 0 ≤ i ≤ T , and note that s0 = s∗ and sT = s∗. Let also
mi := PN (si), for all 0 ≤ i ≤ T , where PN : M → MN denotes the orthogonal projection. This
construction is illustrated on Figure 5. The proof, short and elementary, proceeds by estimating
the distance from mi to si and to mi+1, and then summing over the index 0 ≤ i ≤ T .

11



s0 = s∗
si = s(i/T )

mi := πMN
(si)

S

MN

Figure 5: The classical estimate in Theorem 1.4 is based on projecting the measure preserving
maps (si)

T
i=0 ∈ ST+1 onto the �nite dimensional space MN . This procedure is symmetrical to

the projection of (mi)
T−1
i=1 ∈ MT−1

N onto S involved in the discrete energy optimization (9), see
Figure 2.

Distance from mi to the set of incompressible maps. Denote by hN := N−
1
d the dis-

cretization scale, and recall that each region of the partition PN of X has area 1/N and diameter
≤ CPhN . Let s

P
i denote the mean of si on the region P of the partition PN , for all 0 ≤ i ≤ T .

Then

‖si −mi‖2 =
∑
P∈PN

ˆ
P
|si(x)− sPi |2dx ≤ Csb(CPhN )2

∑
P∈PN

ˆ
P
|∇si(x)|2dx = Ch2

N‖∇si‖2,

(17)

where the Sobolev inequality constant Csb only depends on the dimension, and C := CsbC
2
P .

Distance from mi to mi+1. The map PN is 1-Lipschitz, as it is the orthogonal projection
onto the linear subspace MN . Hence for any 0 ≤ i < T

‖mi −mi+1‖2 ≤ ‖si − si+1‖2 ≤
1

T

ˆ i+1
T

i
T

‖ṡ(t)‖2dt. (18)

Summation and conclusion. Summing (17) and (18) over 0 ≤ i ≤ T we obtain

E(T,N, λ;m) ≤ T
∑

0≤i<T
‖mi+1 −mi‖2 + λ

∑
0≤i≤T

‖mi − si‖2

≤
∑

0≤i<T

ˆ i+1
T

i
T

‖ṡ(t)‖2dt+ λ
∑

0≤i≤T
Ch2

N‖∇si‖2

≤ d2(s∗, s
∗) + C ′Th2

Nλ,

where C ′ = C‖s‖L∞([0,1],H1(X)), which concludes the proof.

4 Relaxed estimate

We prove the relaxed estimate in Theorem 1.4 using a quantization of the generalized �ow
minimizing the relaxed geodesic distance (3), in other words we approximate the solution µ ∈
Prob(Ω) with probability measures (µN )N≥1 equidistributed on a family of N paths. This
quantization is a counterpart of the partition PN of the domain (X,Leb) used for the classical
estimate �3, which amounts to quantize the initial positions of the �uid particles.
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Figure 6: Left: Illustration of measure quantization. Two absolutely continuous probability mea-
sures over the disk (with constant density and a truncated Gaussian density) are approximated
by �nite collections of Dirac masses (shown as black dots) using the algorithm of De Goes et al
[dGBOD12]. Right: Covering of the coast of England with N balls of minimal radius, as in (19).
Image by A. Monnerot-Dumaine, source Wikipedia.

The proof is split into four parts. In �4.1, we introduce the framework of measure quanti-
zation. In �4.2, we specialize it to the case of Brenier's generalized �ows. In �4.3 we perform
a permutation of the obtained quantization, so as to match the boundary conditions. The an-
nounced energy estimate is �nally proved in �4.4.

4.1 Box and quantization dimensions

In sampling theory, a natural objective is to approximate a given measure with a �nite sum of
Dirac masses in the Wasserstein distance, or to approximate a given set with a �nite point set
in the Haussdor� distance, see Figure 6. The quantization dimension of a measure, and the
box dimension of a set, are de�ned as the optimal convergence rates of these approximation
procedures.

We denote by δx the Dirac probability measure concentrated at a point x. The Haussdor�
distance between two closed non-empty subsets A,B of a metric space is de�ned by

Hauss(A,B) := max

{
sup
a∈A

dB(a), sup
b∈B

dA(b)

}
, where dY (x) := inf

y∈Y
d(x, y).

De�nition 4.1. Let H be a metric space, let µ be a probability measure on H, and let Γ ⊆ H be
closed and non-empty. For all N ≥ 1 denote

hN (µ) := inf
ω∈HN

W2

(
µ,

1

N

∑
1≤i≤N

δωi

)
, rN (Γ) := inf

ω∈HN
Hauss

(
Γ, {ωi}Ni=1

)
.

The quantization dimension of µ, and the (upper) box dimension of Γ, are de�ned by

Dquant(µ) := lim sup
N→∞

lnN

− lnhN (µ)
, Dbox(Γ) := lim sup

N→∞

lnN

− ln rN (Γ)
.

The box dimension Dbox of a set � also called the Minkowski dimension � is a variant of
the Haussdor� dimension in which the set of interest if covered with balls of identical radius.
Indeed, one easily shows that rN (Γ) is the minimal radius allowing to cover Γ with N balls

rN (Γ) := inf
ω∈HN

min

{
r ≥ 0; Γ ⊆

⋃
1≤i≤N

B(ωi, r)

}
. (19)

13



Box and Haussdor� dimension coincide for compact manifolds, but di�er in general. For instance,
all countable sets have Haussdor� dimension zero, whereas one can check that

Dbox

(
([0, 1] ∩Q)d

)
= d, Dbox

({
1

n
; n ∈ N∗

})
=

1

2
.

The quantization dimension of a measure is bounded above by the box dimension of its
support, as shows the following elementary result of quantization theory. We refer the reader to
[GG92] for more details on this rich subject.

Proposition 4.2. Let H be a metric space, and let µ ∈ Prob(H) be supported on a set Γ. Then
Dquant(µ) ≤ max{2, Dbox(Γ)}. More precisely for any D > 0, one has as N →∞

rN (Γ) = O(N−
1
D ) ⇒ hN (µ) = O


N−

1
D if D > 2,

N−
1
2

√
lnN if D = 2,

N−
1
2 if D < 2.

(20)

Proof. Let N ∈ N be �xed. For each 1 ≤ i ≤ N let Mi ⊆ H be a set of i points such that
Γ ⊆ ∪ω∈MiB(ω, 2ri), with ri := ri(Γ). We construct a sequence of points ωi ∈ H, and an
increasing sequence of measures ρi supported on Γ and of mass i/N , inductively starting with
i = N and �nishing with i = 1. Initialization: ρN := µ.

Induction: for each 1 ≤ i ≤ N , we construct ωi and ρi−1 in terms of ρi. Let indeed ωi ∈Mi

be such that Bi := B(ωi, 2ri) satis�es ρi(Bi) ≥ 1/N . Such a point exists since |ρi| = i/N ,
#(Mi) = i, and supp(ρi) ⊆ Γ. Then let ρi−1 := ρi− 1

Nρi(Bi)
ρi, so that ρi−ρi−1 is a non-negative

measure of mass 1
N supported on Bi. One has

hN (µ)2 ≤W 2
2

(
µ,

1

N

∑
1≤i≤N

δωi

)
≤

∑
1≤i≤N

W 2
2

(
ρi − ρi−1,

1

N
δωi

)
≤ 1

N

∑
1≤i≤N

(2ri)
2.

The comparison (20) of the decay rates of hN (µ) and rN (Γ) immediately follows. Finally the
comparison of the dimensions follows from (20).

4.2 Quantization dimension of a generalized �ow

We specialize in this subsection the measure µ, support Γ and embedding metric space H to
which we apply the results of �4.1. Let µ ∈ Prob(Ω) be a generalized �ow minimizing the
relaxed geodesic distance (3). This measure is concentrated on the set Γ of paths obeying
Newton's second law of motion

Γ := {ω ∈ C2([0, 1], X); ∀t ∈ [0, 1], ω̈(t) = −∇p(t, ω(t))}, (21)

where the pressure gradient ∇p : [0, 1] × X → Rd is assumed to have Lipschitz regularity,
following the assumptions of Theorem 1.4. We regard Γ as embedded in the Hilbert space
H := H1([0, 1],Rd), which plays a natural role in the problem of interest (3) and is equipped
with the norm

‖ω‖2H :=

ˆ 1

0
|ω|2 + |ω̇|2.

Note that H continuously embeds in C0([0, 1],Rd), hence the evaluation maps et : H→ Rd : ω 7→
ω(t) are continuous with a common Lipschitz constant denoted Ce.
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Notation 4.3 (Problem constants). The following quantities are referred to as the problem
constants: the dimension d, the constant CP related to the partitions, the Lipschitz regularity
constants C∗ and C

∗ of the boundary conditions s−1
∗ and s∗, the maximum norm and the Lipschitz

regularity regularity constant of the pressure gradient ∇p. Given two expressions A,B, we write
A . B i� A ≤ CB for some constant C that only depends on the problem constants.

Using a general existence and stability result for ODEs, Lemma 4.4, we show that Γ is in
bijection with a compact subset of R2d, in Lemma 4.5.

Lemma 4.4. Let F ∈ C0([0, 1] × Rn,Rn) be Lipscshitz in the second variable, uniformly with
respect to the �rst variable: ∃L,∀t ∈ [0, 1],∀y1, y2 ∈ Rn, |F (t, y1)−F (t, y2)| ≤ L|y1−y2|. Then the
map Rn → L2([0, 1],Rn), associating to each y0 ∈ Rn the solution to the ODE y′(t) = F (t, y(t))
with initial condition y(0) = y0, is bi-Lipschitz onto its image with regularity constant eL.

Proof. The Picard-Lindelof/Cauchy-Lipschitz Theorem [CL55] guarantees the existence of a
unique solution to the considered ODE. If y1, y2 are two such solutions, then for any t ∈ [0, 1]

|ẏ1(t)− ẏ2(t)| = |F (t, y1(t))− F (t, y2(t))| ≤ L|y1(t)− y2(t)|

Thus for any t ∈ [0, 1]

e−Lt|y1(0)− y2(0)| ≤ |y1(t)− y2(t)| ≤ eLt|y1(0)− y2(0)|,

hence by integration over t ∈ [0, 1], as announced

e−L|y1(0)− y2(0)| ≤ ‖y1 − y2‖L2([0,1]) ≤ eL|y1(0)− y2(0)|.

The image of the generalized �ow µ by the map of initial position and momentum, used in
the next lemma, is often called a minimal measure [BFS09].

Lemma 4.5. The map E0 : Γ→ X ×Rd : ω 7→ (ω(0), ω̇(0)) is bijective and bi-Lipschitz onto its
image, which is a compact set. The Lipschitz régularity constants, and the image diameter, can
be bounded in terms of the problem constants, see Notation 4.3.

Proof. The function F (t, x, v) := (v,−∇p(t, x)) is Lipschitz on [0, 1]×X ×Rd, with a regularity
constant determined by that of ∇p. It can be extended to [0, 1]× R2d. Applying Lemma 4.4 to
F in dimension n = 2d, we obtain as announced that E0 is bi-Lipschitz onto its image. Note
that the norm ‖(ω, ω̇)‖L2([0,1]) appearing in this estimate is precisely ‖ω‖H.

By construction, ω(t) and ω̈(t) are uniformly bounded for all ω ∈ Γ, and all t ∈ [0], respec-
tively by the diameter of X and the maximum norm of ∇p. This implies an upper bound on
ω̇(0), observing for instance that

|ω(0)− ω(1)| =
∣∣∣∣ˆ 1

0
ω̇(t) dt

∣∣∣∣ ≥ |ω̇(0)| −
ˆ 1

0
|ω̇(t)− ω̇(0)|dt ≥ |ω(0)| −

ˆ 1

0
|ω̈(t)|dt.

As announced, the image of Γ by E0 is bounded, hence compact since it is clearly closed.

Since there is no ambiguity, we denote in the rest of this section hN := hN (µ). The infor-
mation gathered on the set Γ supporting µ yields upper and lower bounds on the decay rate of
(hN ), obtained respectively in Corollary 4.6 and Proposition 4.7.

Corollary 4.6. One has hN . N−
1
2d (resp. hN . N−

1
2

√
lnN if d = 1) for all N ≥ 2.
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Proof. By Lemma 4.5, the set Γ is in bi-Lipschitz bijection with a compact set K ⊆ R2d. Hence
rN (Γ) . rN (K) . N−

1
2d , and the upper estimate follows from (20).

The quantization scale hN is also bounded below, and is minimal for classical solutions.

Proposition 4.7. One has hN & N−
1
d for all N ≥ 1. If the generalized �ow µ in fact represents

a classical solution s to Euler's equations, and ∇ṡ is bounded on [0, 1] × X, then this lower

estimate is sharp: hN . N−
1
d .

Proof. Since X is a domain of unit area, there exists c > 0 depending only on the dimension d
and such that W2(Leb, νN ) ≥ cN− 1

d for any measure νN supported at N points of Rd. The �rst
point follows: for any measure µN supported at N points of H

cN−
1
d ≤W2(Leb, e0 #µN ) = W2(e0 #µ, e0 #µN ) ≤ CeW2(µ, µN ) = CehN .

Second point: for each x ∈ X, introduce the path ωx : [0, 1] → Rd : t 7→ s(t, x). Then
Φ : (X,Leb) → (Γ, µ) : x 7→ ωx is measure preserving and Lipschitz, with regularity constant
denoted CΦ (which we regard as a problem constant). Let νN be a discrete probability measure,
with one Dirac mass of weight 1/N in each region of the partition PN . Since these regions have
diameter ≤ CPN−

1
d , we conclude that

hN ≤W2(µ,Φ#νN ) = W2(Φ# Leb,Φ#νN ) ≤ CΦW2(Leb, νN ) ≤ CΦCPN
− 1
d .

4.3 Permutation of the quantization of µ and boundary conditions

We have shown �4.2 that the generalized �ow, solution to Brenier's relaxation of Euler's equations
(3), could be approximated (quantized) by a �nite family of particle paths, with a controlled
convergence rate. This is not yet su�cient however to construct a good candidate for the discrete
energy (8), despite its relaxed reformulation (24). For that purpose one needs to permute the
paths, so as to match the boundary conditions, as required by the energy term (16).

We show in Lemma 4.8 that an optimal quantization exists, we suitably permute it in Lemma
4.9 and estimate a �rst boundary term, and we estimate the second boundary term in Proposition
4.10. In this subsection and the next, we �x the integer N and allow ourselves a slight abuse
of notation: elements ωj , Pj , ρj , . . . indexed by 1 ≤ j ≤ N do implicitly depend on N , although
that second index ωNj , P

N
j , ρ

N
j , . . . is omitted for readability.

Lemma 4.8. The in�mum de�ning hN is attained, see De�nition 4.1. As a result there exists
(ωj)

N
j=1 ∈ HN and probability measures (ρj)

N
j=1 on Γ such that

µ =
1

N

∑
1≤j≤N

ρj h2
N =

1

N

∑
1≤j≤N

ˆ
Γ
‖ω − ωj‖2H dρj(ω) (22)

Furthermore, ωj is the barycenter of ρj for each 1 ≤ j ≤ N .

Proof. Let (ωj)
N
j=1 be a candidate quantization, and let π be the transport plan associated to

W 2
2 ( 1

N

∑N
j=1 δωj , µ). Then the measures ρj : A 7→ N π({ωj} × A), 1 ≤ j ≤ N , are probabilities

which average to µ, and the transport cost is the RHS of (22). The quantization energy, i.e.
the squared Wasserstein distance, is decreased when replacing ωj with the barycenter bj of ρj ,

1 ≤ j ≤ N , by the amount 1
N

∑N
j=1 |ωj−bi|2. Hence ωj = bj for all 1 ≤ j ≤ N if the quantization

is optimal. Note also that the barycenter of ρj belongs to G := Hull(Γ) by construction.
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Since Γ is a compact subset of a Hilbert space, the convex hull closure G is also compact, for
the strong topology induced by ‖ · ‖H. The quantization energy (ωj)

N
j=1 7→ W 2

2 ( 1
N

∑N
j=1 δωj , µ)

attains its minimum on GN by compactness, and by the previous argument it is the global
minimum on HN .

Let µN denote the equidistributed probability on the set {ωj ; 1 ≤ j ≤ N} of Lemma 4.8.

Lemma 4.9. The paths (ωj)
N
j=1 of the quantization µN , and the regions (Pj)

N
j=1 of the partition

PN , can be indexed in such way that∑
1≤j≤N

ˆ
Pj

|ωj(0)− s∗(x)|2dx . h2
N . (23)

Proof. Let (Pj)
N
j=1 be an arbitrary indexation of PN . Let aj be the barycenter of region Pj , and

bj the barycenter of the image region s∗(bj). For any 1 ≤ j ≤ N one has by assumptionˆ
Pj

|bj − s∗(x)|2dx ≤
ˆ
Pj

|s∗(aj)− s∗(x)|2dx ≤ C2
∗

ˆ
Pj

|aj − x|2dx ≤
1

N
(C∗CPN

− 1
d )2,

where C∗ denotes the Lipschitz regularity constant of s−1
∗ . Denoting by νN the discrete measure

equidistributed at the N points (bj)
N
j=1, we obtain

W2(νN ,Leb) ≤
√√√√ ∑

1≤j≤N

ˆ
Pj

|bj − s∗(x)|2dx . N−
1
d .

On the other hand W2(Leb, e0 #µN ) ≤ CeW2(µ, µN ) = CehN . Thus W2(νN , e0 #µN ) . hN ,

since W2 de�nes a distance, and since hN & N−
1
d by Proposition 4.7. This optimal transport

problem between the discrete measures νN and e0 #µN determines an optimal assignment ΓN →
BN . Up to a permutation of the paths (ωj)

N
j=1, we assume that this assignment is represented

by the common indexation (ωj)
N
j=1 of ΓN and (bj)

N
j=1 of BN . Finally∑

1≤j≤N

ˆ
Pj

|ωj(0)− s∗(x)|2dx =
∑

1≤j≤N

ˆ
Pj

|bj − s∗(x)|2dx+W 2
2 (νN , e0 #µN ) . h2

N .

Proposition 4.10. Using the indexation of Lemma 4.9, one has∑
1≤j≤N

ˆ
Pj

|ωj(1)− s∗(x)|2dx ≤ Ch2
N .

Proof. The generalized boundary condition of (3) states that ω(1) = s∗∗(ω(0)) for µ-almost every
ω ∈ Γ, where s∗∗ := s∗ ◦ s−1

∗ . Denoting by C∗∗ the Lipschitz regularity constant of s∗∗, we obtain
for any 1 ≤ j ≤ N and any x ∈ X

|ωj(1)− s∗(x)|2 =

∣∣∣∣ˆ
Γ
s∗∗(ω(0))− s∗(x) dρj(ω)

∣∣∣∣2 ≤ ˆ
Γ
|s∗∗(ω(0))− s∗(x)|2 dρj(ω)

≤ (C∗∗ )
2

ˆ
Γ
|ω(0)− s∗(x)|2 dρj(ω) ≤ 2(C∗∗ )

2

(ˆ
Γ
|ω(0)− ωj(0)|2 dρj(ω) + |ωj(0)− s∗(x)|2

)
.

By summation and integration we conclude, using Lemma 4.9 in the second line,∑
1≤j≤N

ˆ
Pj

|ωj(1)− s∗(x)|2 dx .
∑

1≤j≤N

1

N

ˆ
Γ
|ωj(0)− ω(0)|2 dρj(ω) +

∑
1≤j≤N

ˆ
Pj

|ωj(0)− s∗(x)|2 dx

≤ C2
eW

2
2 (µN , µ) + Ch2

N . h2
N .

17



4.4 Final estimate

We conclude in this subsection the proof of Theorem 1.4 (Relaxed estimate). Let µ ∈ Prob(Ω)
be a generalized �ow minimizing (3), with an associated Lipschitz pressure gradient. We �x the
parameters (T,N), and consider an optimal quantization µN supported on N paths (ωj)

N
j=1 as

in Lemma 4.8. For each 0 ≤ i ≤ T , let mi ∈ N be the piecewise constant map on the partition
PN de�ned by

∀1 ≤ j ≤ N, ∀x ∈ Pj , mi(x) := ωj(i/T ).

In the following, we bound each of the terms of the energy E(T,N, λ;m) ≥ E(T,N, λ). By
Lemma 4.9 and Proposition 1.2, one has respectively

‖m0 − s∗‖2 . h2
N , ‖mT − s∗‖2 . h2

N .

Regarding the distance to incompressible maps, one has for any 1 ≤ i < T , with t := i/T

inf
s∈S
‖mi − s‖ = W2(Leb, et #µN ) = W2(et #µ, et #µN ) ≤ CeW2(µ, µN ) = CehN .

We use the Cauchy-Schwartz inequality to bound the action:

T
∑

0≤i<T
‖mi+1 −mi‖2 =

1

N

∑
1≤j≤N

T
∑

0≤i<T

∣∣∣∣ωj( i+ 1

T

)
− ωj

(
i

T

)∣∣∣∣2 ≤ 1

N

∑
1≤j≤N

ˆ 1

0
|ω̇j(t)|2dt

=
1

N

∑
1≤j≤N

ˆ 1

0

∣∣∣∣ˆ
Γ
ω̇ dρj(ω)

∣∣∣∣2 ≤ 1

N

∑
1≤j≤N

ˆ 1

0

ˆ
Γ
|ω̇|2 dρj(ω) dt = d2(s∗, s

∗).

Concluding, the value E(T,N, λ) is bounded by

T
∑

0≤i<T
‖mi+1−mi‖2+λ

‖m0 − s∗‖2 + ‖mT − s∗‖2 +
∑

1≤i<T
inf
s∈S
‖mi − s‖2

 ≤ d2(s∗, s
∗)+O(Th2

Nλ).

5 Numerical experiments

5.1 Minimization algorithm and choice of penalization

We rely on a quasi-Newton method to compute a (local) minimum of the discretized problem (9),
as summarized in Algorithm 1. This means that we need to compute the value of the functional

m ∈MT+1
N 7→ T

∑
0≤i<T

‖mi+1 −mi‖2 + λ

(
‖m0 − s∗‖2 + ‖mT − s∗‖2 +

∑
1≤i<T

d2
S(mi)

)
. (24)

and its gradient, where d2
S(m) = infs∈S ‖m− s‖2. The only di�culty is to evaluate the squared

distance d2
S to the set of measure-preserving vector �elds and its gradient. As explained in the

introduction, Brenier's Polar Factorization Theorem implies that for any vector-valued function
m ∈M,

d2
S(m) = W 2

2 (m# Leb,Leb).

When m belongs to MN , the measure m# Leb is �nitely supported, and the computation of the
Wasserstein distance can be performed using a solver for semi-discrete optimal transport, such
as [AHA98, Mer11, dGBOD12, Lév14]. The next proposition gives an explicit formulation for
the gradient in term of the optimal transport plan. Note that the expression of the gradient of
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the semi-discrete Kantorovitch functional with respect to the position of the points also appears
in the appendix of [dGBOD12].

Recall thatMN is the set of piecewise constant functions on the tessellation PN := (Pj)1≤j≤N
of X. The diagonal DN in MN is the set of functions m in MN such that m(Pj) = m(Pk) for
some j 6= k. The set MN \ DN is a dense open set in MN .

Proposition 5.1. The functional d2
S is di�erentiable almost everywhere on MN and continuously

di�erentiable on MN \ DN . The gradient of d2
S at m ∈MN \ DN is explicit: with xj = m(Pj),

∇d2
S(m)

∣∣
Pj

= 2(xj − bary(T−1(xj))) (25)

where T : X → m(X) is the piecewise constant optimal transport map between Leb and the
�nitely supported measure m# Leb, and bary(S) =

´
S xdx/Leb(S) is the isobarycenter of S

Proof. The functional F := d2
S − ‖ · ‖2 is concave as an in�mum of linear functions:

F(m) = d2
S(m)− ‖m‖2 = inf

s∈S
‖m− s‖2 − ‖m‖2 = inf

s∈S

[
−2〈m|s〉+ ‖s‖2

]
,

where 〈·, ·〉 denotes the L2(X) scalar product. This implies in particular that F and therefore
d2
S is di�erentiable almost everywhere on MN . Given m in MN \ DN , de�ne xj = m(Pj) and

let T : X → Rd be the optimal transport plan from Leb to m# Leb = 1
N

∑N
j=1 δxj . The

transport plan is indeed always representable by a function when the source measure is absolutely
continuous with respect to the Lebesgue measure. Let Vj = T−1(xj) be the partition ofX induced
by this transport plan. Then

F(m) = W 2
2 (m# Leb,Leb)− ‖m‖2 =

N∑
j=1

ˆ
Vj

‖xj − x‖2 − ‖xj‖2dx

= 〈m|G(m)〉+

N∑
j=1

ˆ
Vj

‖x‖2dx

where G(m) ∈ MN is the piecewise constant function on X given by G(m)|Pj = −2 bary(Vj).

For any m′ in MN and x′j = m′(Vj), one has

F(m′) = W 2
2 (m′# Leb,Leb)− ‖m′‖2 ≤

N∑
j=1

ˆ
Vj

‖x′j − x‖2 − ‖x′j‖2dx

= F(m) + 〈m′ −m|G(m)〉

This shows that G(m) belongs to the superdi�erential to F at m. In addition, by the continuity
of optimal transport plans, the map m ∈MN \DN 7→ G(m) is continuous. To summarize, on the
open domain MN \DN the concave function F possesses a continuous selection of supergradient.
This implies that F is of class C1 on this domain, with ∇F (m) = G, and the result follows.

Remark 5.2 (Computation of d2
S). The computation of the squared distance to measure-preserving

maps d2
S and its gradient rely on the variational approach used in the proof of the above propo-

sition. We use the CGAL library [cga] to evaluate F and its �rst and second derivatives, and a
simple damped Newton's algorithm to compute its maximum. The implementation is available at
https://github.com/mrgt/PyMongeAmpere.
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Construction of the initial solution Since the discrete energy (8) is non-convex, the con-
struction of the inital guess is important. We follow a time-re�nement strategy already used by
Brenier [Bre08] to construct a good initial guess. Assuming that we have already a local mini-
mizer for Tk = 2k+1, we use linear interpolation to construct an initial guess for Tk+1 = 2k+1+1.
The optimization is then performed from this inital guess, using a quasi-Newton algorithm for
the energy (8).

Choice of the penalization parameter The optimal choice of λ in (8) depends on the
quantization dimension D = Dquant(µ) of the generalized solution µ ∈ Prob(Ω) that one expects

to recover: namely λN = N−
1
D , see Remark 1.5. We call D the �ow dimension, and regard it as

as the intrinsic dimensionality of the problem which determines its computational di�culty. For
a classical solution, this dimension agrees with the ambient dimension i.e. D = d, while for a
non-deterministic solution the quantization dimension can be up to 2d. Intermediate dimensions
d < D < 2d are also common [Bre89]. In our numerical experiments we set λN = N

1
3 , a decision

justi�ed a-posteriori by the numerical estimation of the quantization dimension of the computed
solution, see Figure 8.

Note that the numerical error in (1.5) is governed (for a �xed number T of time steps) by

the quantity λ−1 + h2
Nλ, and that hN = O(N−

1
2d ) under the assumptions of Theorem 1.4. The

choice λN = N
1
α thus yields a convergent scheme whenever α > d, although convergence rates

are improved if α is close to the �ow dimension D, so that λN ≈ N
1
D ≈ h−1

N .

Algorithm 1 Computation of a (local) minimizer for (24).

For k = 1 . . . kmax

T := 2k

for all even t ∈ {0, . . . , T}, let mk
i := mk−1

i/2 initialize discrete geodesic

for all odd t ∈ {1, . . . , T}, let mk
i := 1

2(mk
i−1 +mk

i+1)
Until convergence do optimize

for all i, compute dS(mi) and ∇dS(mi) see Rem. 5.2
compute the discrete path energy and its gradient see Eq. (24)
update (mk

i )0≤t≤T using the L-BFGS scheme see [BLNZ95]

5.2 Visualization of generalized solution

The main interest of numerical experimentation is to visualize generalized solutions to Euler's
equation, or equivalently generalized geodesics between two measure-preserving di�eomorphisms
s∗, s

∗ in S.

5.2.1 Gradient of the pressure

Consider a minimizer of the discretized energy (8). Given i ∈ {1, . . . , T − 1}, mi minimizes over
MN the functional m 7→ T (‖m−mi−1‖2 + ‖mi+1 −m‖2) + λd2

S(m). This gives

T 2(mi−1 − 2mi +mi+1) = Tλ∇d2
S(mi). (26)

This equation is a discretized counterpart of the rule that the acceleration of a geodesic on an
embedded manifold, is normal to that manifold (here S plays the role of the manifold, embedded
in M, which is internally approximated by the linear space MN ). The second order di�erence
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T 2(mi−1 − 2mi + mi+1) approximates a second derivative in time. Comparing (26) to (6), we
see that the right hand-side of (26) can be used as an estimation of (minus) the gradient of the
pressure.

5.2.2 Geometric data analysis

As in the proof of Theorem 1.4, the discrete minimizer of (8) can converted to a collection of
N piecewise-linear curves {ω1, . . . , ωN} = ΓN . We recall that the domain X is partitioned into
N subdomains (Pj)1≤j≤N with equal area and we let ωj(i/T ) ∈ Rd be the point corresponding
to the restriction of mi to the subdomain Pj , for each 0 ≤ i ≤ T . Figure 3 illustrates this
construction. We regard ΓN as embedded in the Hilbert space H := H1([0, 1],R2) which plays a
natural role in the problem of interest, as in �4, and apply techniques from the �eld of geometric
data analysis.

Clustering In order to better visualize the solution, we use the k-means algorithm to divide
the set ΓN into k. A distinct particle color is attached to each cluster, see for instance Figure 10.
The k-means algorithm consists in �nding a local minimizer of the optimal quantization problem

min
`1,...`k∈H

1

N

∑
ω∈ΓN

min
1≤i≤k

‖ω − `i‖2H (27)

using a simple �xed point algorithm, and to divide ΓN into clusters (Ci)1≤i≤k with

Ci =

{
ω ∈ ΓN ; ‖ω − `i‖H = arg min

1≤j≤k
‖ω − `i‖H

}
.

Note that l1, · · · , lk automatically belong to Span(ΓN ), hence to the d(T + 1)-dimensional linear
subspace of H consisting of piecewise linear paths with nodes ω(t) ∈ Rd at times t = i/T ,
0 ≤ i ≤ T . This makes (27) tractable.

Let µ be the probability measure supported on the set ΓN ⊆ H, with weight 1/N for each
element. The k-means problem amounts to �nding the probability measure µk, supported on at
most k points of H, which is the closest to µ w.r.t. the Wasserstein distance: (27) equals

min
#(suppµk)≤k

W 2
2 (µ, µk).

This quantization problem is closely related to the one de�ning hN (µ) in De�nition 4.1, up to
the di�erence that the candidate measure µk need not be equidistributed on the k points of its
support.

Box dimension A natural objective is to estimate the quantization dimension Dquant(µ) of
the generalized �ow µ ∈ Prob(Ω) minimizing the relaxed problem (3). The probability measure
µN equidistributed on the set ΓN approximates µ, hence we can expect the set ΓN to also
approximate supp(µ). The quantization dimension Dquant(µ) is di�cult to estimate, but by
Proposition 4.2 it admits the simpler upper bound Dbox(supp(µ)). We estimate the latter by
applying the furthest point sampling algorithm to the �nite metric space ΓN , which de�nes an
ordering on the elements of ΓN as follows: let γ1 be an arbitrary point of ΓN and de�ne by
induction

γi+1 := arg max
γ∈ΓN

d(γ, {γ1, . . . , γi}) (28)
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As in De�nition 4.1, denote by ri = ri(ΓN ) is the smallest r ≥ 0 such that ΓN can be covered by
i balls of radius r. For 1 � i � N , the ratio log(i)/ log(1/ri(ΓN )) is expected to approximate
log(i)/ log(1/ri(supp(µ))) and thus the desired Dbox(suppµ).

Lemma 5.3. Let εi := maxγ∈Γ d(γ, {γ1, . . . , γi}), where γi is de�ned as in (28). Then,(
1− log(2)

log(1/εi)

)
log(i)

log(1/εi)
≤ log(i)

log(1/ri)
≤ log(i)

log(1/εi)

Proof. By construction, ri ≤ εi. Moreover, the balls centered at the points γ1, . . . , γi and with
radius εi/2 are disjoint, so that ri ≥ εi/2.

5.3 Test cases and numerical results

Our two testcases are constructed from two stationary solutions to Euler's equation in 2D. Let
s : R+ → S be a classical solution to Euler equation in Lagrangian coordinates (6), starting from
the identity map. We solve the discretized version (9) of the minimization problem (2)-(3), with
s∗ = s(0) = Id and s∗ := s(tmax), where tmax > 0. For small values of tmax the solution to
this boundary problem is simply the original classical �ow s, but for larger values a completely
di�erent generalized �ow is obtained. In this case the geodesic s in the space of the measure
preserving di�eomorphisms is no longer the unique shortest path between its boundary values
s∗ and s

∗. The �rst classical behavior is guaranteed if the pressure hessian satis�es

∇2p ≺ (π/tmax)2 Id (29)

uniformly on [0, tmax]×X, see (7) and [Bre89]. In all the numerical experiments, the number of
points is set to N = 10 000 and the number of timesteps is T = 24 + 1 = 17.

5.3.1 Rotation of the disk

On the unit disk D = {(x1, x2) ∈ R2; x2
1 + x2

2 ≤ 1}, the simplest stationary solution to Euler's
equation (1) is given by a time-independent pressure �eld and speed:

p(x1, x2) =
1

2
(x2

1 + x2
2), v(x1, x2) = (−x2, x1).

The corresponding Lagrangian �ow s(t) is simply the rotation of angle t. The largest eigenvalue
of ∇2p is 1 at every point in D. Hence by (29) the �ow of rotations is the unique minimizer to
both the variational formulation (2) and its relaxation (3) with boundary values s∗ = s(0) = Id
and s∗ = s(tmax), when tmax < π. Uniqueness is lost at the critical time tmax = π which
corresponds to a rotation of angle π, so that the �nal di�eomorphism becomes s∗ = s(π) = − Id.
In this situation, the minimization problem (2) has two classical solutions, namely the clockwise
and counterclockwise rotations. The relaxation (3) has uncountably many generalized solutions
such as, by linearity, superpositions of these two rotations.

Another explicit example of generalized solution was discovered by Brenier [Bre89]: given a
point x ∈ D and a speed v, denote by ωx,v the curve ωx,v(t) = x cos(t)+v sin(t), t ∈ [0, 1]. Then,
Brenier's solution is obtained as the pushforward by the map (x, v) 7→ ωx,v ∈ Ω of the measure
on D × R2 de�ned by

µ(dx, dv) =
1

π
H2(dx)⊗ 1

2π
√

1− |x|2
H1
∣∣
{|v|=
√

1−|x|2} (dv),
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where Hk denotes the k-dimensional Hausdor� measure. In particular, the quantization dimen-
sion of the solution is 3 = 2 + 1. We refer to [BFS09] for more examples of optimal �ows, and
construct four dimensional one. Let µr be de�ned by combining (i) a classical rotation on the
annulus D \D(r), with D(r) = {x ∈ R2; |x| ≤ r} and (ii) Brenier's solution rescaled by a factor
r on the disc D(r). Then µr is an optimal generalized �ow of quantization dimension 3, whereas
the averaged �ow

´ 1
0 µrdr is also optimal by linearity, and has quantization dimension 4.

Numerical results The numerical solutions computed by our algorithm for the critical time
tmax = π are highly non-deterministic. To see this, we select a small neighborhood around several
points in the unit disk D and look at the trajectories emanating from this small neighborhood.
As shown in Figure 7, the trajectories emanating from each neighborhood at initial time tend
to �ll up the disk at intermediate times before gathering again on a small neighborhood at �nal
time. In addition, each indivual trajectory looks like an ellipse, as in Brenier's explicit solution.
Second, we estimate the box dimension of the support of the numerical solution (as explained in
�5.2). The estimated dimension is slightly above 3.

5.3.2 Beltrami �ow on the square

On the unit square S = [−1/2, 1/2]2, we consider the Beltrami �ow constructed from the time-
independent pressure and speed:

p(x1, x2) =
1

2
(sin(πx1)2 + sin(πx2)2)

v(x1, x2) = (− cos(πx1) sin(πx2), sin(πx1) cos(πx2))

The maximum eigenvalue of the pressure Hessian ∇2p is π2, and [Bre89] implies that the asso-
ciated �ow is minimizing between s∗ = s(0) = Id and s∗ = s(tmax) for tmax ≤ 1. Because the
square has much less symmetries than the disk, generalized solutions constructed from this �ow
are not as well understood as those occuring from rotations of the disk.

Numerical results Our numerical results suggest the following observations. First, as shown
in Figure 9, the computed solutions with boundary values s∗ = Id and s∗ = s(tmax) approximate
the classical �ow if tmax < 1, and are non-deterministic generalized �ows if tmax > 1. This
suggests the sharpness of the bound given by [Bre89]. Interestingly, even for tmax > 1, the
numerical solutions seem to remain deterministic in a neighborhood of the boundary of the cube.
This can be seen more clearly in Figure 10, where the particles have been divided into clusters
using the k-means algorithm (the clustering algorithm is explained in �5.2.2).

The pressure gradient is estimated as in �5.2.1 and is displayed in Figure 11. These pic-
tures seem to indicate a loss of regularity of the pressure near the initial and �nal times. This
corroborates the result of [AF07] according to which the pressure belongs to L2

loc( ]0, T [, BV(X)).
Figure 7 suggests that the even for tmax = 1.5, the reconstructed solution for the Beltrami �ow

are more deterministic than the solution to the disk inversion. We estimate the box dimension
of the support of the solution using the method explained in �5.2.2. The results are displayed
in Figure 8. The estimated dimension is D = 2 for the deterministic solution (tmax = 0.9)
but it increases as the maximum time (and therefore the amount of non-determinism) increases.
Finally, we note that the estimated dimensions for tmax ∈ {1.1, 1.3, 1.5} seem to be strictly
between 2 and 3, suggesting a fractal structure for the support of the solution. This would need
to be con�rmed by a mathematical study.
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Software. The software developed for generating the results presented in this article is publicly
available at https://github.com/mrgt/EulerSemidiscrete

Acknowledgement The authors thank Y. Brenier for constructive discussions and introducing
them to the topic of Euler equations of inviscid incompressible �uids.

(a) (x, y) = (−0.7, 0) (b) (x, y) = (−0.35, 0) (c) (x, y) = (0, 0)

(d) (x, y) = (0.2, 0) (e) (x, y) = (0.35, 0) (f) (x, y) = (0.5, 0)

Figure 7: We select particles whose initial position lie in a small disk, and display their trajectories
according to the computed solution to (8). (Top) For the inversion of the unit disk (Bottom)
For the Beltrami �ow on the square, with tmax = 1.5.
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(a) t = 0.0 (b) t = 0.125tmax (c) t = 0.25tmax (d) t = 0.375tmax (e) t = 0.5tmax
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