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We prove that L 2 weak solutions to hypoelliptic equations with bounded measurable coefficients are Hölder continuous. The proof relies on classical techniques developed by De Giorgi and Moser together with the averaging lemma and regularity transfers developed in kinetic theory. The latter tool is used repeatedly: first in the proof of the local gain of integrability of sub-solutions; second in proving that the gradient with respect to the velocity variable is L 2+ε loc ; third, in the proof of an "hypoelliptic isoperimetric De Giorgi lemma". To get such a lemma, we develop a new method which combines the classical isoperimetric inequality on the diffusive variable with the structure of the integral curves of the first-order part of the operator. It also uses that the gradient of solutions w.r.t. v is L 2+ε loc .
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1. Introduction 1.1. The question studied and its history. We consider the following nonlinear kinetic Fokker-Planck equation (1.1)

∂ t f + v • ∇ x f = ρ ∇ v • (∇ v f + vf ) , t ≥ 0, x ∈ R d , v ∈ R d ,
(with or without periodicity conditions with respect to the space variable) where d ∈ N * , f = f (t, x, v) ≥ 0 and ρ[f ] = ´Rd f (t, x, v) dv. The construction of global smooth solutions for such a problem is one motivation for the present paper.

The linear kinetic Fokker-Planck equation

∂ t f + v • ∇ x f = ∇ v • (∇ v f + vf
) is sometimes called the Kolmogorov-Fokker-Planck equation, as it was studied by Kolmogorov in the seminal paper [START_REF] Kolmogoroff | Zufällige Bewegungen (zur Theorie der Brownschen Bewegung)[END_REF], when x ∈ R d . In this note, Kolmogorov explicitely calculated the fundamental solution and deduced regularisation in both variables x and v, even though the operator ∇ v • (∇ v + v) -v • ∇ x shows ellipticity in the v variable only. It inspired Hörmander and his theory of hypoellipticity [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF], where the regularisation is recovered by more robust and more geometric commutator estimates (see also [START_REF] Rothschild | Hypoelliptic differential operators and nilpotent groups[END_REF]).

Another question which has attracted a lot of attention in calculus of variations and partial differential equations along the 20th century is Hilbert's 19th problem about the analytic regularity of solutions to certain integral variational problems, when the quasilinear Euler-Lagrange equations satisfy ellipticity conditions. Several previous results had established the analyticity conditionally to some differentiability properties of the solution, but the full answer came with the landmark works of De Giorgi [START_REF] De Giorgi | analiticità delle estremali degli integrali multipli[END_REF][START_REF] De Giorgi | Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari[END_REF] and Nash [START_REF] Nash | Continuity of solutions of parabolic and elliptic equations[END_REF], where they prove that any solution to these variational problems with square integrable derivative is analytic. More precisely their key contribution is the following1 : reformulate the quasilinear parabolic problem as

(1.2) ∂ t f = ∇ v (A(v, t)∇ v f ) , t ≥ 0, v ∈ R d
with f = f (v, t) ≥ 0 and A = A(v, t) satisfies the ellipticity condition 0 < λI ≤ A ≤ ΛI for two constants λ, Λ > 0 but is, besides that, merely measurable. Then the solution f is Hölder continuous.

In view of the nonlinear (quasilinear) equation (1.1) it is natural to ask whether a similar result as the one of De Giorgi-Nash holds for quasilinear hypoelliptic equations. More precisely, we consider the following Fokker-Planck equation

(1.3) ∂ t f + v • ∇ x f = ∇ v • (A(x, v, t)∇ v f ) , t ∈ (0, T ), (x, v) ∈ Ω,
where Ω is an open set of R 2d , f = f (t, x, v) ≥ 0 and the d × d symmetric matrix A satisfies the ellipticity condition

(1.4) 0 < λI ≤ A ≤ ΛI
for two constants λ, Λ but is, besides that, merely measurable. We want to establish the Hölder continuity of L 2 solutions to this problem. In order to do so, we first prove that L 2 sub-solutions are locally bounded; we refer to such a result as an L 2 -L ∞ estimate. We then prove that solutions are Hölder continuous by proving a lemma which is an hypoelliptic counterpart of De Giorgi's isoperimetric lemma.

Given

z 0 = (x 0 , v 0 , t 0 ) ∈ R 2d+1 , Q = Q r (z 0 ) denotes a cylinder centered at z 0 of "radius" r: it is defined as Q = B r 3 (x 0 ) × B r (v 0 ) × (t 0 -R 2 , t 0 ]
where B r (x 0 ) and B r (v 0 ) denote the usual Euclidian balls in x and v.

Theorem 1 (Hölder continuity). Let f be a solution of (1.3) 

in Q 0 = Q(z 0 , R 0 ) and Q 1 = Q(z 0 , R 1 ) with R 1 < R 0 . Then f is α-Hölder continuous with respect to (x, v, t) in Q 1 and f C α (Q 1 ) ≤ C f L 2 (Q 0 )
for some α universal, i.e. α = α(d, λ, Λ), and

C = C(d, λ, Λ, Q 0 , Q 1 ).
In [START_REF] Pascucci | The Moser's iterative method for a class of ultraparabolic equations[END_REF], the authors obtain an L 2 -L ∞ estimate with completely different techniques; however they cannot reach the Hölder continuity estimate. Our techniques rely on averaging lemmas [START_REF] Golse | Contribution à l'étude des équations du transfert radiatif[END_REF][START_REF] Golse | Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale d'un opérateur de transport[END_REF] in order to gain some regularity H s x , s > 0 small, in the space variable x from the natural H 1 v estimate. We emphasize that such H s x estimates do not hold for sub-solutions. From this Sobolev estimate, we can recover a gain of integrability for L 2 sub-solutions, and we then prove the Hölder continuity through a De Giorgi type argument on the decrease of oscillation for solutions.

In [START_REF] Wang | The C α regularity of a class of non-homogeneous ultraparabolic equations[END_REF][START_REF] Wang | The C α regularity of weak solutions of ultraparabolic equations[END_REF], the authors get a Hölder estimate for L 2 weak solutions of so-called ultraparabolic equations, including (1.3). Their proof relies on the construction of cut-off functions and a particular form of weak Poincaré inequality satisfied by non-negative weak sub-solutions. Our paper proposes a new, short and simple strategy, that, we hope, sheds new light on the regularizing effect for hypoelliptic equations with bounded measurable coefficients and provide tools for further applications.

We finally mention that Golse and Vasseur proved independently a similar result [8].

1.2. Plan of the paper. In Section 2, we first explain how to get a universal gain of regularity for (signed) L 2 solutions; we then exhibit a universal gain of integrability for non-negative L 2 sub-solutions; we finally explain how to derive from this gain of integrability a local upper bound of such non-negative L 2 subsolutions by using Moser iteration procedure. In Section 3, we prove that the v-gradient of solutions is L 2+ε loc . In Section 4, the Hölder estimate is derived by proving a reduction of oscillation lemma.

Local gain of regularity / integrability

We consider the equation (1.3) and we want to establish a local gain of integrability of solutions in order to apply Moser's iteration and get a local L ∞ bound. Since we will need to perform convex changes of unknown, it is necessary to obtain this gain even for (non-negative) sub-solutions.

In the two following theorems, we consider cylinders with a scaling corresponding to the hypoelliptic structure of the equation. For

z 0 = (x 0 , v 0 , t 0 ) ∈ R 2d+1 , Q R (z 0 ) = B R 3 (x 0 ) × B R (v 0 ) × (t 0 -R 2 , t 0 ].
The next theorem is stated in cylinders centered at the origin.

Theorem 2 (Gain of integrability for non-negative sub-solutions). Consider two cylinders

Q 1 = Q R 1 (0) and Q 0 = Q R 0 (0) with R 1 < R 0 .
There exists q > 2 (universal) such that for all non-negative L 2 sub-solution f of (1.3) in Q 0 , we have

(2.1) f L q (Q 1 ) ≤ C f L 2 (Q 0 )
where

C = C 1 R 2 0 -R 2 1 + R 0 R 3 0 -R 3 1 + 1 (R 0 -R 1 ) 2 and C = C(d, λ, Λ).
This result is a consequence of the comparison principle and the fact that, for weak signed solutions f , we can even get a gain of regularity. This gain of regularity will be important in the proof of the decrease of oscillation lemma to get compactness of sequences of equi-bounded solutions. This is the reason why it is necessary to state it in cylinders not necessarily centered at the origin.

Theorem 3 (Gain of regularity for signed solutions). Consider z 0 ∈ R 2d+1 and two cylinders

Q 1 = Q R 1 (z 0 ) and Q 0 = Q R 0 (z 0 ) with R 1 < R 0 . There exists s > 0 (universal) such that for all (signed) L 2 weak solution f of (1.3) in Q 0 , we have (2.2) f H s x,v,t (Q 1 ) ≤ C f L 2 (Q 0 ) where and C = C(d, λ, Λ, Q 0 , Q 1 ).
2.1. Gain of integrability with respect to v and t. The gain of integrability with respect to v and t is classical. It derives from the natural energy estimate, after truncation.

We follow here [START_REF] Moser | A Harnack inequality for parabolic differential equations[END_REF] in order to get the following lemma.

Lemma 4 (Gain of integrability w.r.t. v and t). Under the assumptions of Theorem 2, the function

f satisfies ˆQ1 |∇ v f | 2 ≤ C ˆQ0 f 2 (2.3) f 2 L 2 t L 2 x L q v (Q 1 ) ≤ C ˆQ0 f 2 f 2 L ∞ t L 2 x L 2 v (Q 1 ) ≤ C ˆQ0 f 2 for some q > 2 and C = C 1 R 2 0 -R 2 1 + R 0 R 3 0 -R 3 1 + 1 (R 0 -R 1 ) 2 and C = C(d, λ, Λ). Proof. Consider Ψ ∈ C ∞ c (R 2d × R) and integrate the inequation satisfied by f against 2f Ψ 2 in R 2d × [t 1 , 0] = R with t 1 ∈ (-R 2 1 , 0] and get ˆR ∂ t (f 2 )Ψ 2 + ˆR v • ∇ x (f 2 )Ψ 2 ≤ 2 ˆR ∇ v (A∇ v f )f Ψ 2 . Add ´R f 2 ∂ t (Ψ 2 ),

integrate by parts several times and use the upper bound on

A in order to get

ˆR ∂ t (f 2 Ψ 2 ) + 2 ˆR(A∇ v f • ∇ v f )Ψ 2 ≤ ˆR f 2 (∂ t + v • ∇ x )(Ψ 2 ) + 2 ˆR Ψ √ A∇ v f • f √ A∇ v Ψ ≤ ˆR f 2 (∂ t + v • ∇ x )(Ψ 2 ) + ˆR(A∇ v f • ∇ v f )Ψ 2 + ˆR f 2 (A∇ v Ψ • ∇ v Ψ).
We thus get

ˆR ∂ t (f 2 Ψ 2 ) + λ ˆR |∇ v f | 2 Ψ 2 ≤ C ∂ t Ψ ∞ + R 0 ∇ x Ψ ∞ + ∇ v Ψ 2 ∞ ˆR∩supp Ψ f 2 with C = C(Λ, d). Choose next Ψ 2 such that Ψ(t = 0) = 0 and supp Ψ ⊂ Q 0 and get ˆx,v f 2 Ψ 2 (t 1 ) + λ ˆ|∇ v f | 2 Ψ 2 ≤ CC 0,1 ˆQ0 f 2 . If Ψ 2 additionally satisfies Ψ 2 ≡ 1 in Q 1 , we get (2.
3). The Sobolev inequality then implies the estimate for f 2

L 2 t L 2 x L q v (Q 1 ) . If now t 1 ∈ [t 0 -r 2 1 , t 0 ] is arbitrary, we get the estimate for f 2 L ∞ t L 2 x L 2 v (Q 1 )
. The proof is now complete. 2.2. Gain of regularity with respect to x for signed weak solutions.

Lemma 5 (Gain of regularity w.r.t. x). Under the assumptions of Theorem 2, if f is a signed weak solution to (1.3), (2.4)

D 1/3 x f L 2 (Q 1 ) ≤ C f L 2 (Q 0 ) with C = C 1 R 2 0 -R 2 1 + R 0 R 3 0 -R 3 1 + 1 (R 0 -R 1 ) 2 and C = C(d, λ, Λ). In the case q > 1 with Q 1 instead of Q 1 , we have (2.5) D 1/3 x f L q (Q 1 ) ≤ C ∇ v f L q (Q 0 ) with C = C(d, λ, Λ, Q 0 , Q 1 ). Proof. Let R 1 2 = R 1 +R 0 2 and Q 1 2 = Q R 1 2
. In particular,

Q 1 ⊂ Q 1 2 ⊂ Q 0 . For i = 1, 1 2 , consider f i = f χ i where χ 1 and χ 1 2
are two truncation functions such that

χ 1 ≡ 1 in Q 1 and χ 1 ≡ 0 outside Q 1 2 χ 1 2 ≡ 1 in Q 1 2 and χ 1 2 ≡ 0 outside Q 0 .
We get

(∂ t + v • ∇ x )f 1 = ∇ v • H 1 + H 0 in R 2d × (-∞; 0] with      H 1 = χ 1 A∇ v f 1 2 H 0 = -∇ v χ 1 • A∇ v f 1 2 + α 1 f 1 2 α 1 = (∂ t + v • ∇ x )χ 1 .
The previous equation holds true in R 2d × (-∞; 0] since f 1 , H 0 and H 1 are supported in Q 0 . We remark that using (2.3),

H 0 L 2 + H 1 L 2 ≤ C f L 2 (Q 0 )
with C as in the statement. Applying [1, Theorem 1.3] with p = 2, r = 0, β = 1, m = 1, κ = 1 and Ω = 0 yields (2.4). To get (2.5), we simply use a cut-off function such that α 1 ≡ 0 and we apply [1, Theorem 1.3] with p = q, r = 0, β = 1, m = 1, κ = 1 and Ω = 0. The proof is now complete.

2.3.

Gain of integrability with respect to x for non-negative sub-solutions. Lemma 6 (Gain of integrability w.r.t. x). Under the assumptions of Theorem 2, there exists p > 2 such that

(2.6) f L 2 t L p x L 1 v (Q 1 ) ≤ C f L 2 (Q 0 ) with C = C 1 R 1 -R 0 + 1 (r 1 -r 0 ) 2 + 1 τ 1 -τ 0 and C = C(d, λ, Λ).
Proof. We follow the reasoning of Lemma 5. The function f 1 now satisfies the following inequation

(∂ t + v • ∇ x )f 1 ≤ ∇ v • H 1 + H 0 in R 2d × R. If g solves (∂ t + v • ∇ x )g = ∇ v • H 1 + H 0 g(x, v, -R 2 1 ) = f 1 (x, v, -R 2 1 )
then the comparison principle implies that

f 1 ≤ g in R 2d × [-R 2 1 , 0]
. Applying Lemma 5 and Sobolev inequality, we get

f 1 L 2 t L p x L 1 v ≤ g L 2 t L p x L 1
v ≤ CC 0,1 f 0 2 (where p = 2d/(d -2/3) > 2) which yields the desired estimate. Proof of Theorem 3. We first prove the result when cylinders are centered at the origin. In this case, it is enough to combine Lemmas 4 and 5, Aubin's lemma and use interpolation to get the result.

For cylinders that are not centered at the origin, we use slanted cylinders of the form:

QR (z 0 ) = {(x, v, t) : |x -x 0 -(t -t 0 )v 0 | < R 3 , |v -v 0 | < R, t ∈ (t 0 -R 2 , t 0 ]}.
Now we cover Q 0 and Q 1 with such slanted cylinders, we get the gain of regularity (whose exponent remains universal) and we get the desired result.

2.5.

Local upper bounds for non-negative sub-solutions. In this subsection, we iterate the local gain of integrability to prove that non-negative L 2 sub-solutions are in fact locally bounded (with an estimate).

Theorem 7 (Upper bounds for non-negative L 2 sub-solutions). Given two cylinders

Q 0 = Q R 0 (z 0 ) and Q ∞ = Q R∞ (z 0 ), let f be a non-negative L 2 sub-solution of (∂ t + v∇ x )f ≤ ∇ v (A∇ v f ) in Q 0 .
Then sup

Q∞ f ≤ C f L 2 (Q 0 )
for some

C = C(d, λ, Λ, Q 0 , Q ∞ ).
Proof. We first prove the result for cylinders centered at the origin. To do so, we first remark that, for all q > 1, the function f q satisfies

(∂ t + v∇ x )f q ≤ ∇ v • (A∇ v f q ) in Q 0 .
We now rewrite (2.1) from Q q = Q Rq (z 0 ) to Q q+1 with R q+1 < R q as follows:

(2.7)

(f q ) κ 2 L 2 (Q q+1 ) ≤ C q+1 f q 2κ L 2 (Qq)
where κ = p/2 > 1 and

C q+1 = C 1 R 2 q -R 2 q+1 + R q R 3 q -R 3 q+1 + 1 (R q -R q+1 ) 2 κ with C = C(d, λ, Λ).
Choose now q = q n = 2κ n for n ∈ N, simply write Q n for Q qn and C n for C qn and get from (2.7)

(2.8) f q n+1 2 L 2 (Q n+1 ) ≤ C n+1 f qn 2κ L 2 (Qn) .
Moreover, we choose

R n+1 = R n - 1 a(n + 1) 2 for some a > 0 so that C n ∼ C(a 2 n 4 + bn 2 ) κ
with b = 5a 6R∞ . Applying iteratively (2.8), we get the result if

+∞ n=0 C 1 2κ n n < +∞
which indeed holds true. This yields the desired result in the case of cylinders centered at the origin.

For cylinders that are not centered at the origin, we argue as in the proof of Theorem 3. The proof is now complete.

Gain of integrability for the gradient w.r.t. the velocity variable

This subsection is devoted to the proof of the following theorem.

Theorem 8 (Gain of integrability for ∇ v f ). Let f be a solution of (1.3) in some cylinder Q 0 = Q R 0 (z 0 ). There exists a universal ε > 0 such that for all

Q i = Q R i (z 0 ), i = 1, 2 with R 2 < R 1 < R 0 , ∇ v f ∈ L 2+ε (Q 2 ) (3.1) ˆQ2 |∇ v f | 2+ε dz ≤ C ˆQ1 |∇ v f | 2 dz 2+ε 2 with C = C(d, λ, Λ, Q 2 , Q 1 , Q 0 ).
The proof follows along the lines of the one of [5, Theorem 2.1]. It consists in deriving a reverse Hölder inequality which in turn implies the result thanks to the analogous of [5, Proposition 1.3]. Lemma 9 (A Gehring lemma). Let g ≥ 0 in Q such that there exists q > 1 such that for all z 0 ∈ Q and R such that

Q 4R (z 0 ) ⊂ Q, Q R (z 0 ) g q dz ≤ b Q 8R (z 0 ) g dz q + θ Q 8R (z 0 )
g q dz for some θ > 0. There exists θ 0 = θ 0 (q, d) such that if θ < θ 0 , then g ∈ L p loc (Q) for p ∈ [q, q + ε) and

Q R g p dz 1 p ≤ c Q 4R g q dz 1 q
, the constants c and ε > 0 depending only on b, q, θ and dimension.

The proof of Lemma 9 is an easy adaptation of the one of [4, Proposition 5.1], by changing Euclidian cubes with cylinders Q R .

The proof of Theorem 8 is a consequence of some estimates involving weighted means of the solution. Given z 0 ∈ R 2d+1 , they are defined as follows of f are defined as follows:

f2R (t) = (cR 4d ) -1 ˆf (t, x, v)χ 2R (x, v, t)dxdv
(for some c defined below) where χ 2R is a cut-off function such that

χ 2R (x, v, t) = φ R 3 ((x -x 0 ) -(t -t 0 )(v -v 0 ))φ R (v -v 0 ) with φ R (a) = φ(a/R) for some φ such that √ φ ∈ C ∞ (R d ) and φ ≡ 1 in B 1 and supp φ ⊂ B 2 . In particular, (∂ t + v • ∇ x )χ R = 0 and ˆχR (x, v, t) dxdv = ˆφR 3 ˆφR = cR 4d with c = ( ´φ) 2 . We now introduce "sheared" cylinders Q R (z 0 ) = z 0 + Q R with Q R = {(x, v, t) : |x -tv| < R 3 , |v| < R, t ∈ (-R 2 , 0]}. Remark that (3.2) Q 2 -1/3 R ⊂ Q R ⊂ Q 2 1/3 R . Remark also that χ 2R ≡ 1 in Q R and χ 2R ≡ 0 outside Q 2R .
Lemma 10 (Estimates). Let f be a solution of

(1.3) in Q 0 . Then for Q 3R (z 0 ) ⊂ Q 0 , ˆQR (z 0 ) |∇ v f | 2 dz ≤ CR -2 ˆQ2R (z 0 ) |f -f2R | 2 dz (3.3) sup t∈(t 0 -R 2 ,t 0 ] ˆQt R (z 0 ) |f (t) -fR (t)| 2 ≤ CR 2 ˆQ3R (z 0 ) |∇ v f | 2 dz (3.4) where Q t R (z 0 ) = z 0 + {(x, v) : |x -tv| < R 3 , |v| < R}. Remark 11. This lemma corresponds to [5, Lemmas 2.1 & 2.2].
Proof. For the sake of clarity, we put

z 0 = 0. Consider τ 2R ∈ C ∞ (R, R) such that 0 ≤ τ 2R ≤ 1, τ 2R ≡ 0 in (-∞, -(2R) 2 ] and τ 2R ≡ 1 in [-R 2 , 0]. Use 2(f -f2R )χ 2R τ 2R as a test function for (1.3) and get ˆ(f (0) -f2R (0)) 2 χ 2R dxdv + 2 ˆ(A∇ v f • ∇ v f )χ 2R τ 2R dz = ˆ(f -f2R ) 2 χ 2R (∂ t τ 2R ) -ˆv • ∇ x (f -f2R ) 2 χ 2R τ 2R -2 ˆ(f -f2R )A∇ v f • ∇ v χ 2R τ 2R .
Remark that the definition of f2R implies that the remaining term

-2 ˆ(∂ t f2R )(f -f2R )χ 2R τ 2R vanishes. This equality yields ˆ(f (0) -f2R (0)) 2 χ 2R dxdv + λ ˆ|∇ v f | 2 χ 2R τ 2R dz ≤ ˆ(f -f2R ) 2 χ 2R |∂ t τ 2R | + |v • ∇ x χ 2R |τ 2R + Λ 2 λ |∇ v √ χ 2R | 2 τ 2R
which yields (3.3). Changing the final time, we also get

sup t∈(-R 2 ,0] ˆ(f (t) -f2R (t)) 2 χ 2R (t) dxdv ≤ CR -2 ˆQ2R |f -f2R | 2 dz.
Now the function F = f -f2R is such that ´F (x, v, t)dxdv = 0. In particular, we have

ˆQ2R (f -f2R ) 2 dz ≤ C ˆQ2R (R 2 |∇ v f | 2 + R 2s |D s x f | 2 ) dxdvdt.
Arguing as in the proof of Lemma 5 with a cut-off function

χ 1 = χ 2R which satisfies (∂ t + v • ∇ x )χ 1 = 0, we get ˆQ2R R 2s |D s x f | 2 dxdvdt ≤ C ˆQ3R R 2 |∇ v f | 2 dxdvdt.
Combining the three previous estimates yields

sup t∈(-R 2 ,0] ˆ(f (t) -f2R (t)) 2 χ 2R (t) dxdv ≤ CR 2 ˆQ3R |∇ v f | 2 dxdvdt.
Finally, we write for t

∈ (-R 2 , 0] 1 2 ˆQt R (f (t) -fR (t)) 2 χ 2R (t) ≤ ˆQt R (f (t) -f2R (t)) 2 χ 2R (t) + ˆQt R ( f2R (t) -fR (t)) 2 χ 2R (t) ≤ ˆ(f (t) -f2R (t)) 2 χ 2R (t) + |Q t R | (cR 4d ) -1 ˆ(f -f2R (t))χ R (x, v, t) dxdv 2 ≤ C ˆQt R (f (t) -f2R (t)) 2 χ 2R (t)
and we get the second desired estimate since χ 2R ≡ 1 in Q R .

We now turn to the proof of Theorem 8. The use of (2.5) is the main difference with [START_REF] Giaquinta | On the partial regularity of weak solutions of nonlinear parabolic systems[END_REF].

Proof of Theorem 8. Pick p > 2 and let q denotes its conjugate exponent: 1 q + 1 p = 1. We follow [START_REF] Giaquinta | On the partial regularity of weak solutions of nonlinear parabolic systems[END_REF] in writing (omitting the center of cylinders z 0 ),

ˆQ2R |f -f2R | 2 ≤ sup t∈(t 0 -(2R) 2 ,t 0 ] ˆQt 2R |f -f2R | 2 1 2 ˆt0 t 0 -(2R) 2 dt ˆQt 2R |f -f2R | 2 1 2 R ˆQ4R |∇ v f | 2 1 2 ˆt0 t 0 -(2R) 2 dt ˆQt 2R |f -f2R | q 1 2q ˆQt 2R |f -f2R | p 1 2p
where (3.4) and Hölder inequality are used successively. We now use Sobolev inequalities and Hölder inequality (twice) successively to get

ˆQ2R |f -f2R | 2 R ˆQ4R |∇ v f | 2 1 2 × ˆt0 t 0 -(2R) 2 dt ˆQt 2R R q |∇ v f | q + R q/3 |D 1/3 x f | q 1 2q ˆQt 2R R 2 |∇ v f | 2 + R 2/3 |D 1/3 x f | 2 1 4 R ˆQ4R |∇ v f | 2 1 2 × ˆQ2R R q |∇ v f | q + R q/3 |D 1/3 x f | q 1 2q   ˆt0 t 0 -(2R) 2 ˆQt 2R R 2 |∇ v f | 2 + R 2/3 |D 1/3 x f | 2 q 2(2q-1)   2q-1 2q R ˆQ4R |∇ v f | 2 1 2 × ˆQ2R R q |∇ v f | q + R q/3 |D 1/3 x f | q 1 2q ˆQ2R R 2 |∇ v f | 2 + R 2/3 |D 1/3 x f | 2 1 4 R 3 2 q-1 .
We now use (2.5) and get

ˆQ2R |f -f2R | 2 R 3 2 q+1 ˆQ4R |∇ v f | 2 1 2 ˆQ2R |∇ v f | q 1 2q ˆQ2R |∇ v f | 2 1 4 R 3 2 q+1 ˆQ4R |∇ v f | 2 3 4 ˆQ2R |∇ v f | q 1 2q
. Now use (3.3) and get for all ε > 0,

Q R |∇ v f | 2 R 3 2 q-1 |Q 2R | 1 2q -1 4 Q 4R |∇ v f | 2 3 4 Q 4R |∇ v f | q 1 2q R γ d Q 4R |∇ v f | 2 3 4 Q 4R |∇ v f | q 1 2q ε Q 4R |∇ v f | 2 + c ε R 4γ d Q 4R |∇ v f | q 2 q
where γ d = (4d + 2)( 1 2q -1 4 ) + 3 2 q -1 > 0. Using (3.2), we finally get

Q R |∇ v f | 2 ε Q 8R |∇ v f | 2 + c ε R 4γ d Q 8R |∇ v f | q 2 q
.

Apply now Proposition 9 in order to achieve the proof of Theorem 8.

The decrease of oscillation lemma

It is classical that Hölder continuity is a consequence of the decrease of the oscillation of the solution "at unit scale".

Lemma 12 (Decrease of oscillation). Let f be a solution of (1.3) 

in Q 2 = B 2 (x 0 ) × B 2 (v 0 ) × (-2, 0) with |f | ≤ 1. Then osc Q 1 2 f ≤ 2 -λ with Q 1 2 = B 1 2 (x 0 ) × B 1 2 (v 0 ) × (-1
2 , 0) for some λ ∈ (0, 2) only depending on dimension and ellipticity constants.

Remark 13. The equation is "invariant" under the following scaling (x, v, t) → (r -3 x, r -1 v, r -2 t); indeed, it changes A(x, v, t) into A(r -3 x, r -1 v, r -2 t) which still satisfies (1.4). This lemma is an immediate consequence of the following one.

Lemma 14 (Decrease of the supremum bound). Let f be a solution of

(1.3) in Q 2 with |f | ≤ 1. If |{f ≤ 0} ∩ Q 1 | ≥ 1 2 |Q 1 | with Q 1 = B 1 (x 0 ) × B 1 (v 0 ) × (-1, 0), then sup Q 1 2 f ≤ 1 -λ
for some λ ∈ (0, 2) only depending on dimension and ellipticity constants.

As explained in [START_REF] Vasseur | The De Giorgi method for elliptic and parabolic equations and some applications[END_REF] for instance, this lemma itself is a consequence of the following one. The details are given in Appendix for the reader's convenience.

Lemma 15 (A De Giorgi-type lemma). For all δ 1 > 0 and δ 2 > 0, there exists α > 0 such that for all solution f of (

1.3) in Q 2 with |f | ≤ 1 and |{f ≥ 1 2 } ∩ Q 1 | ≥ δ 1 |{f ≤ 0} ∩ Q 1 | ≥ δ 2 we have |{0 < f < 1 2 } ∩ Q 1 | ≥ α.
Remark 16. It is important to emphasize that the lemma is stated for solutions of (1.3), not sub-solutions.

Remark 17. The idea of proving such a generalization of the classical isoperimetric lemma of De Giorgi is reminiscent of an argument of Guo [START_REF] Guo | The Vlasov-Poisson-Boltzmann system near Maxwellians[END_REF]. See also the very nice survey by Vasseur [START_REF] Vasseur | The De Giorgi method for elliptic and parabolic equations and some applications[END_REF].

Proof. We argue by contradiction by assuming that there exists a sequence f k of solutions of (1.3) for some diffusion matrix A k such that |f k | ≤ 1 and

|{f k ≥ 1 2 } ∩ Q 1 | ≥ δ 1 |{f k ≤ 0} ∩ Q 1 | ≥ δ 2 |{0 < f k < 1 2 } ∩ Q 1 | → 0 as k → +∞. Compactness in L 2 . Since the sequence f k is bounded in L 2 (Q 2 ), Theorem 2 implies that it is relatively compact in L 2 (Q 1 ) for any Q 1 ⋐ Q 2 . With thus can assume that f k converges in L 2 (Q 1 ) towards f as k → +∞. In particular, it satisfies |{f ≥ 1 2 } ∩ Q 1 | ≥ δ 1 2 |{f ≤ 0} ∩ Q 1 | ≥ δ 2 2 |{0 < f < 1 2 } ∩ Q 1 | = 0. (4.1)
Moreover, the natural energy estimate for solutions of (1.3) implies that f ∈ L 2 t,x H 1 v by weak limit. Hence, by the classical de Giorgi isoperimetric inequality, for almost every (t, x) ∈ B 1 (x 0 ) × (-1, 0), we have

   either for almost every v ∈ B 1 (v 0 ), f (t, x, v) ≤ 0 or for almost every v ∈ B 1 (v 0 ), f (t, x, v) ≥ 1 2 .
Truncation. Consider now a smooth non-decreasing function T

: [-1, 1] → R such that T ≡ 0 in [-1, 0] and T ≡ 1 2 in [ 1 2 , 1]. We have that fk = T (f k ) satisfies fk → f in L 2 (Q 1 ) such that    either for almost every v ∈ B 1 (v 0 ), f (t, x, v) = 0 or for almost every v ∈ B 1 (v 0 ), f (t, x, v) = 1 2 .
In particular,

∇ v f = 0 in L 2 (Q 1 )
i.e. the function is everywhere a local equilibrium in the terminology of kinetic theory. Hence,

f (t, x, v) = f (t, x) ∈ {0, 1 2 } and (4.2) 
       |{ f = 1 2 } ∩ B 1 × (-1, 0)| ≥ δ 1 |B 1 | |{ f = 0} ∩ B 1 × (-1, 0)| ≥ δ 2 |B 1 | Passage to the limit. The function fk satisfies in Q 1 , (4.3) 
∂ t fk + v • ∇ x fk = ∇ v • (A k ∇ v fk ) -T ′′ (f k )A k ∇ v f k • ∇ v f k .
For a test function φ supported in Q 1 , we can write

ˆT ′′ (f k )A k ∇ v f k • ∇ v fk φ ≤ Λ T ′′ ∞ φ ∞ ˆBk |∇ v f k | 2
where

B k = {0 < fk < 1 2 } ∩ Q 1 .
In view of (4.1), we know that |B k | → 0 as k → +∞. In view of Theorem 8, this implies that

(4.4) ˆT ′′ (f k )A k ∇ v f k • ∇ v f k φ → 0 as n → +∞.
We also know that ∇ fk is bounded in L 2 (Q 1 ). Hence, we can assume that

(4.5) hk := A k ∇ v fk ⇀ h in L 2 (Q 1 ).
In view of (4.3), (4.4) and (4.5), we thus have

(4.6) (∂ t + v • ∇ x ) f = ∇ v h. Identification of h. Given φ ∈ D(Q 1 )
, we can on one hand use f φ as a test function in (4.6) and get after integrating in all variables,

1 2 ˆ( f ) 2 (∂ t + v • ∇ x )φ = ˆh∇ v ( f φ).
On the other hand, we can use fk φ as a test function in (4.3) and get at the limit 1 2

ˆ( f ) 2 (∂ t + v • ∇ x )φ = lim k→+∞ ˆh k • ∇ v ( fk φ).
In particular, ˆh∇ v ( f φ) = lim In particular, rewriting the equation for -v, summing and using all v ∈ B 1 (0), we get ∂ t f + v 0 • ∇ x f ≡ 0, ∇ x f ≡ 0 which, in turn, yields that f is constant (i.e. is a global equilibrium in the terminology of kinetic theory), which contradicts the lower bounds on the measure of the sets above. We thus get the desired contradiction. The proof is complete.

Appendix A. Isoperimetric lemma implies decrease of the upper bound

Proof of Lemma 14. We follow the nice exposition of [START_REF] Vasseur | The De Giorgi method for elliptic and parabolic equations and some applications[END_REF]. Let C 0 be the universal constant such that solutions f of (1.3) in Q 2 satisfy

f + L ∞ (Q 1 2 ) ≤ C 0 f + L 2 (Q 1 )
.

We now define f 1 = f and f k+1 = 2f k -1. Remark that

|{f 1 ≤ 0} ∩ Q 1 | ≥ δ 1 {f k+1 ≤ 0} ⊃ {f k ≤ 0}
with δ 1 = |Q 1 |/2 (remark it is universal). Our goal is to prove that there exists k 0 universal such that |{f k 0 ≥ 0} ∩ Q 1 | ≤ δ 2 with δ 2 = (4C 2 0 ) -1 (remark it is universal). Indeed, this implies

(f k 0 ) + L ∞ (Q 1 2 ) ≤ C 0 (f k 0 ) + L 2 (Q 1 ) ≤ C 0 |{f k 0 ≥ 0} ∩ Q 1 | 1 2 ≤ 1 2 which, in turn, yields f ≤ 1 -2 -k 0 -1 in Q 1 2 .
Assume that for all k ≥ 1,

|{f k ≥ 0} ∩ Q 1 | ≥ δ 2 .
Since f k+1 = 2f k -1, this also implies

|{f k ≥ 1 2 } ∩ Q 1 | ≥ δ 2 .
But we also have

|{f k ≤ 0} ∩ Q 1 | ≥ |{f ≤ 0} ∩ Q 1 | ≥ δ 1 .
Hence Lemma 15 implies that

|{0 ≤ f k ≤ 1 2 } ∩ Q 1 | ≥ α.

Now remark that

|Q 1 | ≥ |{f k+1 ≤ 0} ∩ Q 1 | = |{f k ≤ 0} ∩ Q 1 | + |{0 ≤ f k ≤ 1 2 } ∩ Q 1 | ≥ |{f k ≤ 0} ∩ Q 1 | + α ≥ kα
which is impossible for k large enough.

2. 4 .

 4 Proof of Theorems 2 and 3.Proof of Theorem 2. Combine Lemmas 4 and 6, use interpolation to get the result through a covering argument.

  k→+∞ ˆh k • ∇ v ( fk φ). Since f k → f strongly in L 2 we have lim k→+∞ ˆh k • fk ∇ v φ = ˆh • f ∇ v φ. and then since ∇ v f = 0, this implies lim k→+∞ ˆh k • ∇ v fk φ = 0. Hence, for φ ≥ 0, ˆ|h | 2 φ ≤ lim inf k→+∞ ˆ| Ãk ∇ v fk | 2 φ ≤ Λ lim k→+∞ ˆÃ k ∇ v fk • ∇ v fk φ ≤ Λ lim k→+∞ ˆh k • ∇ v fk φ = 0.which implies that h = 0. Conclusion. We deduce that for a.e. v ∈ B 1 (0), ∂ t f + (v 0 + v) • ∇ x f = 0 in B 1 × (-1, 0).

We give the parabolic version due to Nash here.