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HÖLDER CONTINUITY OF SOLUTIONS TO

QUASILINEAR HYPOELLIPTIC EQUATIONS

C. IMBERT & C. MOUHOT

Abstract. We prove that L2 weak solutions to a quasilinear hypoellip-
tic equations with rough coefficients are Hölder continuous. The proof
relies on classical techniques developed by De Giorgi and Moser together
with the averaging lemma developped in kinetic theory. The latter tool
is used in the proof of the local gain of integrability of sub-solutions
and in the proof of an “hypoelliptic isoperimetric De Giorgi lemma”,
obtained by combining the classical isoperimetric inequality on the dif-
fusive variable with the structure of the integral curves of the first-order
part of the operator.
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1. Introduction

1.1. The question studied and its history. We consider the following
nonlinear kinetic Fokker-Planck equation

(1.1) ∂tf + v · ∇xf = ρ∇v · (∇vf + vf) , t ≥ 0, x ∈ T
d, v ∈ R

d,

where d ∈ N
∗, Td is the flat d-dimensional torus, f = f(t, x, v) ≥ 0 and

ρ[f ] =
´

Rd f(t, x, v) dv. The construction of global smooth solutions for
such a problem is one motivation for the present paper.

The linear kinetic Fokker-Planck equation ∂tf+v ·∇xf = ∇v ·(∇vf + vf)
is sometimes called the Kolmogorov-Fokker-Planck equation, as it was stud-
ied by Kolmogorov in the seminal paper [9], when x ∈ R

d. In this note,
Kolmogorov explicitely calculated the fundamental solution and deduced
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regularisation in both variables x and v, even though the operator ∇v ·(∇v+
v) − v · ∇x shows ellipticity in the v variable only. It inspired Hörmander
and his theory of hypoellipticity [8], where the regularisation is recovered by
more robust and more geometric commutator estimates (see also [13]).

Another question which has attracted a lot of attention in calculus of vari-
ations and partial differential equations along the 20th century is Hilbert’s
19th problem about the analytic regularity of solutions to certain integral
variational problems, when the quasilinear Euler-Lagrange equations satisfy
ellipticity conditions. Several previous results had established the analytic-
ity conditionally to some differentiability properties of the solution, but the
full answer came with the landmark works of De Giorgi [2, 3] and Nash [11],
where they prove that any solution to these variational problems with square
integrable derivative is analytic. More precisely their key contribution is the
following1: reformulate the quasilinear parabolic problem as

(1.2) ∂tf = ∇v (A(v, t)∇vf) , t ≥ 0, v ∈ R
d

with f = f(v, t) ≥ 0 and A = A(v, t) satisfies the ellipticity condition
0 < λI ≤ A ≤ ΛI for two constants λ,Λ > 0 but is, besides that, merely
measurable. Then the solution f is Hölder continuous.

In view of the nonlinear (quasilinear) equation (1.1) it is natural to ask
whether a similar result as the one of De Giorgi-Nash holds for quasilinear
hypoelliptic equations. In order to avoid unnecessary generality we shall
focus on the following equation motivated by physics:

(1.3) ∂tf + v · ∇xf = ∇v · (A(x, t)∇vf) , t ∈ (0, T ), (x, v) ∈ Ω,

where Ω is an open set of R2d, f = f(t, x, v) ≥ 0 and the d × d symmetric
matrix A satisfies the ellipticity condition

(1.4) 0 < λI ≤ A ≤ ΛI

for two constants λ,Λ but is, besides that, merely measurable. We want
to establish the Hölder continuity of L2 solutions to this problem. In order
to do so, we first prove that L2 sub-solutions are locally bounded; we refer
to such a result as an L2 − L∞ estimate. We then prove that solutions are
Hölder continuous by proving a lemma which is an hypoelliptic counterpart
to De Giorgi’s isoperimetric lemma. We denote by Br(x0) and Br(v0) the
usual Euclidian balls in x and v.

Theorem 1 (Hölder continuity). Let f be a non-negative solution of (1.3)
in a cube Q0 := B2(v0)×B2(x0)× (−1, 0). Then f is α-Hölder continuous
with respect to (x, v, t) in Q1 = B1(v0)×B1(x0)× (−1/2, 0) and

‖f‖Cα(Q1) . ‖f‖L2(Q0)

for some α only depending on dimension and ellipticity constants.

1We give the parabolic version due to Nash here.
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Remark 2. Cubes of general size are then obtained by scaling. Note also
that the equation is translation invariant in x but not in v which explains
why we keep track of the centers of the balls (we could however have reduced
to x0 = 0 without loss of generality in the statement but preferred not to).

We make a rather strong assumption on A by assuming that it does not
depend on v. Indeed, in [12], the authors obtain an L2 − L∞ estimate with
completely different techniques and for A depending on v; however they
cannot reach the Hölder continuity estimate in such a general setting. Our
techniques rely on averaging lemma [4, 5] in order to gain some regularity
Hs

x, s > 0 small, in the space variable x from the natural H1
v estimate. We

emphasize that such Hs
x estimates do not hold for sub-solutions. From this

Sobolev estimate, we can recover a gain of integrability for L2 sub-solutions,
and we then prove the Hölder continuity through a De Giorgi type argument
on the decrease of oscillation for solutions.

In [16] (see also [15, 17]), the authors get a Hölder estimate for L2 weak
solutions of so-called ultraparabolic equations, which include (1.3) with v-
depending A’s. Their proof relies on the construction of cut-off functions
and a particular form of weak Poincaré inequality satisfied by non-negative
weak sub-solutions. However, we were not able to check their proof entirely
and the meaning of the latter estimate is not clear to us. We hope that the
method presented in the present article, in a more restrictive setting, sheds
a new light on the regularizing effect for hypoelliptic equations with rough
coefficients and provide tools for further applications. With this respect, we
mention that we plan to use the main result of this paper in a future work
to study (1.1) thoroughly.

We finally mention that Golse and Vasseur told us that they proved in-
dependently a similar result [6], also assuming that A is independent of
v.

1.2. Plan of the paper. In Section 2, we exhibit the scaling of the equa-
tion, introduce some notation and recall an averaging lemma. In Section 3,
we explain how to get a universal gain of integrability for non-negative L2

sub-solutions; we also explain how to get a gain of regularity for (signed)
L2 solutions. Section 4 is dedicated to deriving a local upper bound of such
non-negative L2 sub-solutions by using Moser iteration procedure. In the
final section 5, the Hölder estimate is derived by proving a reduction of
oscillation lemma.

2. Preliminaries

2.1. Scaling and neighbourhoods. The scaling

(x, v, t) 7→ (r−3x, r−1v, r−2t)

only changes A(x, t) into A(r−3x, r−2t) which still satisfies (1.4). We use it
to construct local neighborhoods around a point z := (x, v, t):

(2.1) Qz,r = Br3(x)×Br(v)× (t− r2, t].
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2.2. Truncation. For z0 = (x0, v0, t0) and 0 < R < S and 0 < r < s and

0 < τ < σ <
√

3
2τ , we consider

χz0(x, v, t) = χ̄R,S(x− x0)χ̄r,s(v − v0)θ̄τ,σ(t− t0)

where

• for 0 < a < b, χ̄a,b : R
d → [0, 1] is C∞, equals 1 in Ba and 0 outside

Bb;
• for 0 < τ < σ, θ̄τ,σ : R → [0, 1] is C∞, equals 1 in [−τ, 0] and 0
outside [−σ, 0].

Lemma 3 (Truncation of sub-solutions). Given a cube Q, if f : Q → R

solves
(∂t + v · ∇x)f ≤ ∇v · (A∇vf)

and χ : Q→ R is smooth, non-negative and compactly supported in Q, then
f̃ = fχ satisfies

(∂t + v · ∇x)f̃ ≤ ∇v(A∇vf̃) +∇v(fΓ) + αf

where

Γ = 2A∇vχ and α = (∂t + v · ∇x)χ−∇v(A∇vχ).

Remark 4. The proof is a straightforward calculation. Note that we use
here the fact that A does not depend on v. This is the only moment in the
proof where it is used.

2.3. An averaging lemma. This result is a consequence of [1] for instance.

Lemma 5 (An averaging lemma). There exists η > 0 universal (η = 1
7)

such that for all h ∈ L2
t,x,v satisfying

(∂t + v · ∇x)h = ∇2
vH2 +∇v ·H1 +H0

where ∇2
vH2 = ∂vi∂vjH

ij
2 with H0,H1,H

ij
2 ∈ L2, the function

ρφ(t, x) =

ˆ

Rd

h(t, x, v)φ(v) dv

(for φ ∈ C2
c (R

d)) satisfies

‖ρφ‖L2
tH

η
x
≤ Cd‖φ‖2,∞ max

{

R
1

2

φ , 1

}

R
d−1

2

φ

(

‖h‖2 + ‖H0‖2 + ‖H1‖2+ ‖H2‖2
)

where Cd only depends on dimension and Rφ > 0 is such that suppφ ⊂ BRφ
.

3. Local gain of regularity / integrability

We consider the equation (1.3) and we want to establish a local gain
of integrability in order to apply Moser’s iteration. Since we will need to
perform convex changes of unknown, it is crucial to obtain this gain on (non-
negative) sub-solutions. We will see that we can in fact also obtain a gain
of regularity for signed weak solutions.
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Theorem 6 (Gain of integrability for non-negative sub-solutions). Consider
two cubes Q1 ⊂⊂ Q0, both centered at (x0, v0, t0) ∈ R

2d × (0,+∞). There
exists q > 2 (universal) such that for all non-negative L2 sub-solution f of
(1.3) in Q0, we have

(3.1) ‖f‖Lq(Q1)
≤ C‖f‖L2(Q0)

where and C = C̄C0C0,1 with






C0 = max
{

(|v0|+ r0)
1

2 , (|v0|+ r0)
d
2 , (|v0|+ r0)

d−1

2

}

C0,1 =
[

(τ0 − τ1)
−1 + (R0 −R1)

−1 + (r0 − r1)
−2 + (r0 − r1)

−4)
]
1

2

where C̄ = C(d, λ,Λ) depends on d and upper bounds on Λ and λ−1, and
Qi = BRi

(x0)×Bri(v0)× (ti − τi, ti], i = 0, 1 and 0 < r0 < r1 and 0 < R0 <
R1.

Observe that the result extends to weak signed solutions f to (1.3) im-
mediately by observing that then f± = (|f | ± f)/2 are sub-solutions (1.3).
As a matter of fact, for weak signed solutions f , we can even get a gain
of regularity. This will be crucial in the proof of the decrease of oscillation
lemma.

Theorem 7 (Gain of regularity for signed solutions). Consider two cubes
Q1 ⊂⊂ Q0, both centered at (x0, v0, t0) ∈ R

2d × (0,+∞). There exists s > 0
(universal) such that for all (signed) L2 weak solution f of (1.3) in Q0, we
have

(3.2) ‖f‖Hs
x,v,t(Q1)

≤ C‖f‖L2(Q0)

where and C = C(d, λ,Λ, Q0, Q1).

3.1. Gain of integrability with respect to x. In order to prove Theo-
rem 6, we first show how to improve the integrability with respect to the x
variable.

Lemma 8 (Gain of integrability w.r.t. x). Under the assumptions of The-
orem 6, there exists p > 2 such that

(3.3) ‖f‖L2
tL

p
xL1

v(Q1)
≤ C̄C0(r0 − r1)

−2‖f‖L2(Q0)

with C0 = max
{

(|v0|+ r0)
d
2 , (|v0|+ r0)

d−1

2

}

and C̄ = C(d,Λ) depends on d
and an upper bound on Λ.

Remark 9. We can choose from the proof: p = (2d)/(d − 2/7) > 2.

Proof. For i = 0, 1, consider fi = fχi where χi are two truncation functions
that we previously introduced associated with parameters

(R1, R0, r1, r0, τ1, τ0).

In particular, χi equals 1 in Qi for i = 0, 1. We know from Lemma 3 that

(∂t + v · ∇x)f1 ≤ ∇v · (A∇vf1) +∇v(f0Γ1) + α1(f0) in R
2d × R
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with

{

α1 = (∂t + v · ∇x)χ1 −∇v(A∇vχ1)

Γ1 = 2∇vχ1.

The previous inequation holds true in R
2d× (−∞; t0] since α1, β1,Γ1 and f1

are supported in Q0 := Qr0(z0).
If g solves

{

(∂t + v · ∇x)g = ∇v(A∇vf1) +∇v(f0Γ1) + α1(f0)

g(x, v, t0 − τ1) = f1(x, v, t0 − τ1)

then the comparison principle implies that f1 ≤ g in R
2d × [t0 − τ1, t0]. We

now write

∇v(A∇vf1) +∇v(f0Γ1) + α1(f0) = ∇2
vH2 +∇v ·H1 +H0

with
H2 = Af1, H1 = f0Γ1, H0 = α1f0.

We now apply the averaging lemma 5 with φ(v) = χ̄r1,r0(v− v0) and use the
Sobolev inequality to get

‖f1‖L2
tL

p
xL1

v
≤ ‖g‖L2

tL
p
xL1

v

= ‖ρφ‖L2
tL

p
x

≤ C̄(r0 − r1)
−2C0‖f0‖2

where p = 2d/(d − 2η) > 2 and C̄ = C(d,Λ) and C0 = max{(|v0| +
r0)

d/2, (|v0|+ r0)
(d−1)/2}. The proof of Lemma 8 is now complete. �

In view of the previous proof, we notice that the following lemma also
holds:

Lemma 10 (Gain of regularity w.r.t. x). Under the assumptions of The-
orem 6, if f is a signed weak solution to (1.3) (instead of a non-negative
sub-solution), then there exists s > 0 such that

(3.4) ‖Ds
xf‖L2(Q1)

≤ C̄C0(r0 − r1)
−2‖f‖L2(Q0)

with C0 and C̄ as above in Lemma 8.

Indeed, instead of applying Lemma 5, one should apply for instance [1,
Theorem 1.3] with p = 2, r = 0, β = 1, m = 2, κ = 1 and Ω = 0. This gives
s = 1/5.

3.2. Gain of integrability with respect to v and t. The gain of integra-
bility with respect to v and t is more classical. It derives from the natural
energy estimate, after truncation.

We follow here [10] in order to get the following lemma.

Lemma 11 (Gain of integrability w.r.t. v and t). Under the assumptions
of Theorem 6, the function f satisfies

‖f‖2L2
tL

2
xL

q
v(Q1)

≤ C
[

(τ0 − τ1)
−1 + (R0 −R1)

−1 + (r0 − r1)
−2
]

ˆ

Q0

f2
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with q = (2d)/(d − 2) > 2 and

‖f‖2L∞

t L2
xL

2
v(Q1)

≤ C
[

(τ0 − τ1)
−1 + (R0 −R1)

−1 + (r0 − r1)
−2
]

ˆ

Q0

f2

with C = C(Λ, d)× (|v0|+ r0).

Proof. Consider Ψ ∈ C∞
c (R2d ×R) and integrate the inequation satisfied by

f against 2fΨ2 in R
2d × [t1, t0] with t1 ∈ [t0 − r21, t0] and get

ˆ

∂t(f
2)Ψ2 +

ˆ

v · ∇x(f
2)Ψ2 ≤

ˆ

∇v(A∇vf)fΨ
2.

Add
´

f2∂t(Ψ
2), integrate by parts several times and use the upper bound

on A in order to get

ˆ

∂t(f
2Ψ2) +

ˆ

(A∇vf · ∇vf)Ψ
2

≤
ˆ

f2(∂t + v · ∇x)(Ψ
2) + 2

ˆ

Ψ
√
A∇vf · f

√
A∇vΨ

≤
ˆ

f2(∂t + v · ∇x)(Ψ
2) +

1

2

ˆ

(A∇vf · ∇vf)Ψ
2 + 2

ˆ

f2(A∇vΨ · ∇vΨ).

We thus get

(3.5)

ˆ

∂t(f
2Ψ2) +

λ

2

ˆ

|∇vf |2Ψ2 ≤ C
(

‖Ψ‖t,x;1,∞ + ‖Ψ‖v;2,∞
)

ˆ

suppΨ
f2

with C = C(Λ, d) × (|v0| + r0). Choose next Ψ2 such that Ψ2(t0) = 0 and
suppΨ2 ⊂ Q0 and get
ˆ

x,v
f2Ψ2(t1) +

λ

2

ˆ

|∇vf |2Ψ2 ≤ C
(

‖Ψ‖t,x;1,∞ + ‖Ψ‖v;2,∞
)

ˆ

Q0

f2.

If Ψ2 additionally satisfies Ψ2 ≡ 1 in Q1, we get
ˆ

Q1

|∇vf |2 ≤ C
[

((τ0 − τ1)
−1 + (R0 −R1)

−1 + (r0 − r1)
−2
]

ˆ

Q0

f2

with C = C(d,Λ, λ−1)× (|v0|+ r0). The Sobolev inequality then implies

‖f‖2L2
tL

2
xL

q
v(Q1)

≤ C
[

(τ0 − τ1)
−1 + (R0 −R1)

−1 + (r0 − r1)
−2
]

ˆ

Q0

f2

with q = (2d)/(d − 2) > 2.
If now t1 ∈ [t0 − r21, t0] is arbitrary, we get the second estimate, that is

‖f‖2L∞

t L2
xL

2
v(Q1)

≤ C
[

(τ0 − τ1)
−1 + (R0 −R1)

−1 + (r0 − r1)
−2
]

ˆ

Q0

f2. �
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3.3. Proof of Theorems 6 and 7.

Proof of Theorem 6. Combine Lemmas 8 and 11 and use interpolation to
get the result. �

Proof of Theorem 7. Combine Lemma 10 and (3.5), Aubin lemma and use
interpolation to get the result. �

4. Local upper bounds for non-negative sub-solutions

In this subsection, we iterate the local gain of integrability to prove that
non-negative L2 sub-solutions are in fact locally bounded (with an estimate).

Theorem 12 (Upper bounds for non-negative L2 sub-solutions). Let f be
an non-negative L2 sub-solution of

(∂t + v∇x)f ≤ ∇v(A∇vf) in Q0

for a given cube Q0 = BR0
(x0)×Br0(v0)× (t0 − τ0, t0]. Given another cube

Q∞ = BR∞
(x0)×Br∞(v0)× (t0 − τ∞, t0] with Q∞ ⊂⊂ Q0, we have

sup
Q∞

f ≤ C‖f‖L2(Q0)

where C depends on dimension, ellipticity constants, p′, Q0 and Q∞.

Proof. To do so, we first remark that, for all q > 1, the function f q satisfies

(∂t + v∇x)f
q ≤ ∇v · (A∇vf

q) in Q0.

We now rewrite (3.1) from Qq ⊂ Q0 to Qq+1 ⊂⊂ Qq as follows:

(4.1) ‖(f q)κ‖2L2(Qq+1)
≤ Cq+1‖f q‖2L2(Qq)

where κ = p/2 > 1 and

Cq+1 = C0(q + 1)
[

(τq − τq+1)
−1 + (Rq −Rq+1)

−1 + (rq − rq+1)
−4
]κ

(with |rq − rq+1| ≤ 1) and C0 only depends on d, upper bounds on Λ, λ−1

and Q0.
Choose now q = qn = 2κn for n ∈ N, simply write Qn for Qqn and Cn for

Cqn and get from (4.1)

(4.2) ‖f qn+1‖2L2(Qn+1)
≤ Cn+1‖f qn‖2κL2(Qn)

.

Moreover, we choose










Rn+1 = Rn − 1
a(n+1)2

rn+1 = rn − 1
b(n+1)2

τn+1 = τn − 1
c(n+1)2

for some a, b, c > 0 so that

Cn = C0(2κ
n + 1)(dn2 + en8)κ with

{

d = a+ b
e = c4.
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Applying iteratively (4.2), we get the result if

+∞
∏

n=0

C
1

2κn

n < +∞

which indeed holds true. This achieves the proof in the case p′ = 2. �

5. The decrease of oscillation lemma

It is classical that Hölder continuity is a consequence of the decrease of
the oscillation of the solution “at unit scale”.

Lemma 13 (Decrease of oscillation). Let f be a solution of (1.3) in Q2 =
B2(x0)×B2(v0)× (−2, 0) with |f | ≤ 1. Then

oscQ 1
2

f ≤ 2− λ

with Q 1

2

= B 1

2

(x0)×B 1

2

(v0)× (−1
2 , 0) for some λ ∈ (0, 2) only depending on

dimension and ellipticity constants.

This lemma is an immediate consequence of the following one.

Lemma 14 (Decrease of the supremum bound). Let f be a solution of (1.3)
in Q2 with |f | ≤ 1. If

|{f ≤ 0} ∩Q1| ≥
1

2
|Q1|

with Q1 = B1(x0)×B1(v0)× (−1, 0), then

sup
Q 1

2

f ≤ 1− λ

for some λ ∈ (0, 2) only depending on dimension and ellipticity constants.

As explained in [14] for instance, this lemma itself is a consequence of
the following one. The details are given in Appendix for the reader’s conve-
nience.

Lemma 15 (A De Giorgi-type lemma). For all δ1 > 0 and δ2 > 0, there
exists α > 0 such that for all solution f of (1.3) in Q2 with |f | ≤ 1 and

|{f ≥ 1

2
} ∩Q1| ≥ δ1

|{f ≤ 0} ∩Q1| ≥ δ2

we have

|{0 < f <
1

2
} ∩Q1| ≥ α.

Remark 16. It is important to emphasize that the lemma is stated for solu-
tions of (1.3), not sub-solutions.

Remark 17. The idea of proving such a generalization of the classical isoperi-
metric lemma of De Giorgi is reminiscent of an argument of Guo [7]. See
also [14].
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Proof. We argue by contradiction by assuming that there exists a sequence
fk of solutions of (1.3) such that |fk| ≤ 1 and

|{fk ≥ 1

2
} ∩Q1| ≥ δ1

|{fk ≤ 0} ∩Q1| ≥ δ2

|{0 < fk <
1

2
} ∩Q1| → 0 as k → +∞.

In view of Theorem 7, we can get that fk converges (up to a subsequence)
locally towards f in the strong L2

t,x,v-topology as k tends to +∞. Remark

that f still satisfies (1.3) and |f | ≤ 1. Moreover, the strong L2 convergence
implies convergence in probability, in particular,

|{f ≥ 1

2
} ∩Q1| ≥ δ1

|{f ≤ 0} ∩Q1| ≥ δ2

|{0 < f <
1

2
} ∩Q1| = 0.

Consider now a smooth function Tε : [−1, 1] → R such that T ′
ε(r) = ε in

[−1, 0] ∪ [12 , 1] and Tε(0) = 0 and Tε(
1
2 ) = 1

2 . Hence, fε = Tε(f) satisfies

(1.3) in Q1. Arguing as above, we can also prove that fε → f̄ as ε → 0 in
L2, f̄ solves (1.3) and

f̄ ∈ {0, 1
2
} and f̄ =

{

0 at points where f ≤ 0
1
2 at points where f ≥ 1

2 .

Moreover, the natural energy estimate for solutions of (1.3) implies that
f̄ ∈ L2

t,xH
1
v . Hence, by the classical de Giorgi isoperimetric inequality, for

almost every (t, x) ∈ B1(x0)× (−1, 0), we have

either for almost every v ∈ B1(v0), f̄(t, x, v) ≡ 0

or for almost every v ∈ B1(v0), f̄(t, x, v) ≡ 1

2
.

In particular, ∇vf̄ ≡ 0 a.e. in Q1 (i.e. the solutions is everywhere a local
equilibrium in the terminology of kinetic theory) and consequently,

f̄(t, x, v) = f̄(t, x) ∈ {0, 1
2
}

|{f̄ =
1

2
} ∩ (−1, 0) ×B1| ≥

δ1
|B1|

|{f̄ = 0} ∩B1 × (−1, 0)| ≥ δ2
|B1|

∀v ∈ B1(0), ∂tf̄ + (v0 + v) · ∇xf̄ = 0 in B1 × (−1, 0).

In particular, rewriting the equation for −v, summing and using all v ∈
B1(0), we get

∂tf + v0 · ∇xf ≡ 0,∇xf ≡ 0
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which, in turn, yields that f is constant (i.e. is a global equilibrium in the
terminology of kinetic theory), which contradicts the lower bounds on the
measure of the sets above. We thus get the desired contradiction. The proof
is complete. �

Appendix A. Proof of the averaging lemma

Proof of Lemma 5. The Laplace-Fourier transform of h with respect to time
and space:

h̃(τ, ξ, v) =

ˆ +∞

0

ˆ

Rd

e−tτ e−iv·ξh(t, x, v) dt dx

satisfies
(τ + iξ · v)h̃ = ∆vH̃2 +∇v · H̃1 + H̃0.

The function

ρ̃φ =

ˆ

h̃(τ, ξ, v)φ(v) dv

can be split into two parts:

ρ̃φ = Rα +Rα

with










Rα =

ˆ

h̃(τ, ξ, v)φ(v)ψα(τ + iξ · v) dv

Rα =

ˆ

h̃(τ, ξ, v)φ(v)(1 − ψα)(τ + iξ · v) dv

with the truncation function ψα(r) = Ψ(r/α) with Ψ ∈ C∞(C, [0, 1]), Ψ ≡ 1
outside D1, Ψ ≡ 0 in D 1

2

.

If 〈ξ〉 denotes
√

1 + |ξ|2, then we first remark that for η > 0,

ˆ

|ξ|2ηR2
α dτdξ ≤

ˆ

|ξ|2η
(

ˆ

|τ+iξ·v|≤α
h̃φ

)2

dτ dξ

≤
ˆ

|ξ|2η
(
ˆ

h̃2 dv

)

(

ˆ

|τ+iξ·v′|≤α
φ2(v′) dv′

)

dτ dξ

. ‖φ‖2∞Rd−1
φ

ˆ

α|ξ|2η |ξ|−1h̃2(τ, ξ, v) dτ dξ dv

where Rφ > 0 is such that suppφ ⊂ BRφ
.

Write next that

Rα =

ˆ

(∆vH̃2 +∇v · H̃1 + H̃0)
ψα(τ + iξ · v)
τ + iξ · v φ(v) dv.

It is convenient to write Ψα(r) = Ψ(r/α) with Ψ(r) = ψ(r)/r and

Rα = α−1

ˆ

(∆vH̃2 +∇v · H̃1 + H̃0)Ψα(τ + iξ · v)φ(v) dv.

We can thus write
Rα = Rα

2 −Rα
1 +Rα

0
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with


























Rα
2 = α−1

ˆ

H̃2∆v

(

Ψα(τ + iξ · v)φ(v)
)

dv

Rα
1 = α−1

ˆ

H̃1∇v ·
(

Ψα(τ + iξ · v)φ(v)
)

dv

Rα
0 = α−1

ˆ

H̃0Ψα(τ + iξ · v)φ(v) dv

We now estimate successively Rα
0 , R

α
1 and Rα

2 . In order to do so, remark
that for r ≥ α

2 ,






















|Ψα(r)| . 1

|Ψ′
α(r)| .

1

α

|Ψ′′
α(r)| .

1

α2
.

|Rα
0 | .

‖φ‖∞
α

ˆ

|v|≤Rφ

|H̃0(τ, ξ, v)|dv

|Rα
1 | .

1

α

(

‖φ‖∞
|ξ|
α

+ ‖∇φ‖∞
)
ˆ

|v|≤Rφ

|H̃1|dv

|Rα
2 | .

1

α

(

‖φ‖∞
|ξ|2
α2

+ ‖∇φ‖∞
|ξ|
α

+ ‖∆φ‖∞
)
ˆ

|v|≤Rφ

|H̃2|dv.

The previous inequalities imply

ˆ

|ξ|2η|Rα
0 |2 . ‖φ‖2∞Rd

φ

ˆ

|ξ|2η 1

α2
|H̃0(τ, ξ, v)|2 dτ dξ dv

ˆ

|ξ|2η|Rα
1 |2 . ‖φ‖21,∞Rd

φ

ˆ

|ξ|2η
( |ξ|2
α4

+
1

α2

)

|H̃1(τ, ξ, v)|2 dτ dξ dv
ˆ

|ξ|2η|Rα
2 |2 . ‖φ‖22,∞Rd

φ

ˆ

|ξ|2η
( |ξ|4
α6

+
|ξ|2
α4

+
1

α2

)

|H̃2(τ, ξ, v)|2 dτ dξ dv.

Choosing α = 〈ξ〉1−2η and η = 1
7 , we get

ˆ

|ξ|2η |Rα|2 . ‖φ‖2∞‖h‖22Rd−1
φ

ˆ

|ξ|2η|Rα|2 . ‖φ‖22,∞Rd
φ

(

‖H0‖22 + ‖H1‖22 + ‖H2‖22
)

.

Recalling that ρ̃φ = Rα+R
α, the two previous inequalities yield the desired

result for the Homogeneous Sobolev space. But estimating the L2-norm
yields a similar estimate. The proof is now complete. �
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Appendix B. Getting Lemma 14 from Lemma 15

Proof of Lemma 14. We follow the nice exposition of [14]. Let C0 be the
universal constant such that solutions f of (1.3) in Q2 satisfy

‖f+‖L∞(Q 1
2

) ≤ C0‖f+‖L2(Q1).

We now define f1 = f and fk+1 = 2fk − 1. Remark that

|{f1 ≤ 0} ∩Q1| ≥ δ1

{fk+1 ≤ 0} ⊃ {fk ≤ 0}

with δ1 = |Q1|/2 (remark it is universal). Our goal is to prove that there
exists k0 universal such that

|{fk0 ≥ 0} ∩Q1| ≤ δ2

with δ2 = (4C2
0 )

−1 (remark it is universal). Indeed, this implies

‖(fk0)+‖L∞(Q 1
2

) ≤ C0‖(fk0)+‖L2(Q1) ≤ C0

[

|{fk0 ≥ 0} ∩Q1|
]

1

2

≤ 1

2

which, in turn, yields

f ≤ 1− 2−k0−1 in Q 1

2

.

Assume that for all k ≥ 1,

|{fk ≥ 0} ∩Q1| ≥ δ2.

Since fk+1 = 2fk − 1, this also implies

|{fk ≥ 1

2
} ∩Q1| ≥ δ2.

But we also have

|{fk ≤ 0} ∩Q1| ≥ |{f ≤ 0} ∩Q1| ≥ δ1.

Hence Lemma 15 implies that

|{0 ≤ fk ≤ 1

2
} ∩Q1| ≥ α.

Now remark that

|Q1| ≥ |{fk+1 ≤ 0} ∩Q1| = |{fk ≤ 0} ∩Q1|+ |{0 ≤ fk ≤ 1

2
} ∩Q1|

≥ |{fk ≤ 0} ∩Q1|+ α

≥ kα

which is impossible for k large enough. �
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