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Abstract

This paper deals with the design and validation of an active fault-tolerant control system to
detect, isolate and accommodate a single thruster fault affecting the thruster-based propulsion
system of an autonomous spacecraft. The proposed method consists of a fault detector for
robust and quick fault detection, a two-stage hierarchical isolation strategy for fault isolation,
and an online control allocation unit scheduled by the isolation scheme for fault tolerance. A
new factorization approach for the uncertain inertia matrix inverse is proposed. Thanks to this
factorization, a novel robust Nonlinear Unknown Input Observers (NUIO) approach is proposed
based on LMIs which ensure maximization of the admissible Lipschitz constant while at the
same time satisfying an L2 gain bound and some constraints on the observer dynamics. At
the first stage of the isolation scheme, a bank of NUIOs is used to identify a subset of possible
faulty thrusters. Then, at the second stage, an EKF is introduced to estimate the torque
bias directions. Using these directions, jointly with the detector’s residual and the information
obtained from the first stage, a set of explicit rules is derived to unambiguously isolate the
faulty thruster. A Monte Carlo campaign, based on a simulator developed by Thales Alenia
Space industries, is conducted in the context of a terminal rendezvous phase of the Mars Sample
Return mission. Mission oriented criteria demonstrate that the proposed strategy is able to
cope with a large class of realistic thruster faults and to achieve mission success.
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1. Introduction

1.1. Context and Motivations
The research work addressed in this paper draws expertise from actions undertaken between

the European Space Agency (ESA), the Thales Alenia Space (TAS) industry and the IMS
laboratory (laboratoire de l’Intégration du Matériau au Système) which develop new generations
of integrated Guidance, Navigation and Control (GNC) algorithms for spacecraft with fault
diagnosis and fault tolerance capabilities.

The reference space mission considered in this paper is the ESA Mars Sample Return (MSR)
mission, see (Beaty et al., 2008) for details. This deep space mission consists of two vehicles
directly injected towards Mars by launchers. The first module enters the Martian atmosphere
(entry phase), lands on the Mars surface, fetches a Martian sample and then takes-off to reach
a low Mars orbit. Meanwhile the second module inserts directly around Mars, then catches the
sample (capture of the orbiting sample released by the first module), and finally comes back
to Earth ejecting the sample into Earth atmosphere with the Earth Reentry Capsule (ERC).
The work reported in this paper focuses on the terminal rendezvous phase which corresponds
to the last few hundred meters until the capture on the Mars orbit. The chaser vehicle is the
MSR orbiter, while the target is a diameter spherical container.

During the terminal rendezvous, the control of the attitude and the position of the chaser
is continuous and applied by thrusters. The control unit uses different types of sensors, namely
Inertial Measurement Units (IMU), Star Trackers (STR) and a Light Detection And Ranging
(LIDAR) sensor. The set of sensors and actuators during the terminal rendezvous is minimized
to reduce the risk of fault occurrence and to reduce the power consumption and mass. The
attitude is controlled in order to keep the orbiting sample within the LIDAR field of view. The
position is controlled in order to approach the orbiting sample along its velocity axis. Then,
just before the capture, the guidance is modified in order to align the capture mechanism with
the orbiting sample, i.e. the target.

Following recent studies (Tafazoli, 2009; HARVD - Final Presentation), thruster faults ac-
count for approximatively one quarter of all Attitude and Orbit Control System (AOCS) fail-
ures. It seems obvious that they can have a serious impact on the spacecraft’s ability to fulfil
its mission. For instance, a hardover type failure (thruster stucks open), it could lead to a
drastic increase of the propellant consumption which is already very constrained by the travel
to Mars. Dramatic consequences can occur, e.g. already in-placed GNC may not compensate
such faults, possibly leading the chaser to lose the attitude and/or the position of the sample
container.

The work addressed in this paper is concerned by the development of a model-based Fault
Detection and Isolation (FDI) scheme for a Fault-tolerant Control (FTC) of the thruster which
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equip the MSR chaser propulsion system. The investigated faults have been defined in accor-
dance with the industrial partners and follow both the ESA and TAS requirements and their
experiences. Four cases are investigated: i) thruster opening at 100% (providing maximum
force regardless of the demand and being very propellant consuming) ii) thruster closing itself
(faulty thruster does not generate any thrust regardless of the demanded command by the
control authority) iii) bi-propellant leakage and iv) loss of efficiency (thrust loss).

1.2. Related Work and Limitations
In terms of model-based FDI, numerous techniques have been studied in the past decades

in the academic community, see (Patton et al., 2000; Blanke et al., 2006; Ding, 2013) and
references therein for good surveys. The still growing interest of potential applications in
aerospace systems has been demonstrated by recent publications. With regards to the problem
of spacecraft thruster fault diagnosis, one can mention the work of Chen and Saif (2007) that
proposed an iterative learning observer to achieve estimation of time-varying thruster faults. Wu
and Saif (2009) proposed the same approach jointly with a sliding mode technique. The work
reported in (Patton et al., 2006, 2008, 2010) addressed the Mars Express mission. The proposed
approach is based on both state estimation of an accurate linear model for the satellite system
and unknown input decoupling to achieve robust FDI in the presence of dynamic uncertainty
during main engine deployment. The work reported in (Henry et al., 2011; Fonod et al., 2014a;
LePeuvédic et al., 2014; Fonod et al., 2015) addressed the problem of thruster fault diagnosis of
the MSR orbiter during the terminal rendezvous phase. Henry et al. (2011) proposed a method
based on a H(0) filter with robust poles assignment technique. Fonod et al. (2015) approached
the same problem using an Eigenstructure Assignment (EA) technique, whereas LePeuvédic
et al. (2014) proposed a robust H∞/H− filter in combination with a bank of thruster–direction
decoupling observers. Similarly in (Falcoz et al., 2010a,b), the H∞/H− approach was exploited
for the micro-Newton colloidal thrusters during the experiment phase of the LISA Pathfinder
mission. H∞/H− filter–based strategies have been proposed in (Grenaille et al., 2004; Henry,
2008a) to diagnose the Field Emission Electric Propulsion (FEEP) thrusters of the Microscope
satellite.

In the case of an overactuated spacecraft, the cornerstone of the FDI unit is the isolation
logic. It must be accurate and robust enough to uncover the faulty thruster among thrusters
which are very closely co-aligned and it also must be able to cover a large class of realistic
faults. Posch et al. (2013) proposed a torque bias vector matching isolation method. In this
approach, the torque bias is estimated using an Extend Kalman Filter (EKF) and directly
matched with the torque directions of each thruster. The main drawback of this approach is
that it is unable to consider a thruster configuration where some thrusters generate the same
or very similar torques. Similar idea has been presented in (Alwi et al., 2010), where instead
of estimating the torque bias, the sliding mode injection term is matched with the thruster
directions. This method has similar drawbacks as the previous method, additionally, the iso-
lation performance strongly depends on the measurement noise. In (Henry et al., 2011; Fonod
et al., 2015), a cross–correlation test between the residual and the associated thruster opening
rates was considered. This approach however lacks the ability to consider both “open-type”
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and “closed-type” thrusters faults at the same time (for fault classification, see Section 2.1).
Moreover, in the aerospace systems, the true inertia matrix is newer known precisely on-board.
Therefore, controllers are always validated in presence of uncertainty on the inertia to confront
modelling errors. Similarly, in terms of FDI, it is of paramount interest to analyse, and most
importantly, to incorporate the effects of the uncertain inertia within the FDI design.

In terms of FTC methods, the interested reader shall refer to (Blanke et al., 2006; Zhang
and Jiang, 2008; Noura et al., 2009). These techniques can be in general classified into two
main categories: passive FTC and active FTC. Passive FTC relies on robust control concepts,
whereas active FTC methods act on the system component failures actively by re-designing the
controller so that the stability and acceptable performance of the entire system is maintained.
The most famous active FTC strategies are the pseudoinverse methods (Ostroff, 1985; Caglayan
et al., 1988; Gao and Antsaklis, 1991; Bajpai et al., 2001), recently revisited by Staroswiecki
(2005), the Linear Quadratic (LQ) approach (Looze et al., 1985; Josh, 1987; Veillette, 1995;
Staroswiecki et al., 2007), the EA technique (Jiang, 1994; Zhao and Jiang, 1998; Zhang and
Jiang, 2001), the adaptive control approach (Bodson and Groszkiewicz, 1997; Tao et al., 2002;
Zhang et al., 2004), the Model Predictive Control (MPC) approach (Camacho and Bordons,
1999; Maciejowski, 2002; Hartley et al., 2012), and most recently the supervisory approach
(Yang et al., 2012; Efimov et al., 2013).

The problem of designing an active FTC system for thruster faults has been rarely studied
for space systems (or very few papers have been published). The already in-placed industry-
certified controllers are designed to be robust and to achieve a predetermined performance
level in a fault safe situation. The Control Allocation (CA) technique is probably the most
“ready to be implemented” FTC approach for aerospace systems. The major reason is that
the computational burden is very close or within the limits of today’s off-the-shelf embedded
computer systems. Moreover, in some cases the CA approach does not require any change in
the nominal controller which is a great advantage from an industrial point of view. Several
application of the CA from the aerospace community can be found in (Bodson, 2002; Page and
Steinberg, 2002; Jin et al., 2006; Henry, 2008b; Oppenheimer et al., 2010; Boada et al., 2010;
Fu et al., 2011). For instance, a SIMPLEX–based method has been reacently implemented in
the Automated Transfer Vehicle (ATV) developed by EADS Astrium Space Transportation, to
carry out a prescribed set of thruster faults.

Most CA algorithms assume a linear effector model in the form of a matrix , i.e. the thruster
configuration matrix whose elements (columns) are the influence coefficients defining how each
thruster affects each component of the force and moment vector applied to the spacecraft.
Thus, CA is fundamentally concerned by the inverse computation of the thruster configuration
matrix. Since this matrix has more columns than rows, there exists an infinite number of
solutions. However, by minimizing some “measure” of it, it is possible to have a unique solution.
Actuator faults can then be tackled by a CA principle so that it is not required to re-design
the nominal controller itself. A consequence is that CA can be used as a FTC solution with a
little extra effort on the existing CA techniques. Alwi and Edwards (2008) exploits this idea
using sliding mode techniques.
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1.3. Proposed Approach and Contributions
This paper addresses the design and validation of a complete FDI/FTC system for the

aforementioned thruster fault scenarios. The proposed method consists of: i) a fault detector
for robust and quick fault detection, ii) a two-stage hierarchical isolation strategy for faulty
thruster isolation and iii) an online CA unit scheduled by the isolation scheme for fault tolerance.
The utilized fault detector design follows the developments introduced in (Fonod et al., 2013).
This detector offers enhanced robustness against time-varying input delays. The original idea
of the two-stage isolation strategy proposed in this paper initiates from (Fonod et al., 2014a),
where a bank of asymptotically stable Nonlinear Unknown Input Observers (NUIOs) has been
used for the first stage and a simple residual vector matching approach for the second stage.
Here, a bank of 5 robust NUIOs together with an EKF-based torque bias direction estimator is
considered. A new factorization approach for the uncertain inertia matrix inverse is proposed.
Thanks to this factorization, a novel robust NUIO design is proposed with bounded L2 gain
from the system input to the estimation error. By this, the effect of the uncertain inertia on
the state estimation error is attenuated. Additionally, it is shown that under some Lipschitz
condition, it is possible to constrain the NUIO dynamics into a prescribed dynamic region using
the notion of Linear Matrix Inequality (LMI) regions. The NUIO gains are obtained from the
feasible solution to the LMI optimization problem, offering numerically tractable procedure to
account jointly the observer dynamics constraint, the L2 specification, and the maximization
of the admissible Lipschitz constant. As the outcome of the first stage, a subset of thrusters
is identified as “possible faulty”. For the second stage, an EKF is introduced to estimate the
torque bias directions due to the thruster fault. Using these directions, the fault detector’s
residual and the information obtained from the first stage, a set of explicit rules is derived to
unambiguously isolate the faulty thruster. These rules consist in evaluating the torque bias
direction estimate with respect to the thruster torque directions and the detector’s residual
with respect to the thruster force directions of the already identified (faulty) thruster set,
respectively. In specific cases, a sequential decision test is also used. As soon as the faulty
thruster is identified, a control re-allocation algorithm is used to redistribute the control effort
among the available healthy actuators, while at the same time disengaging the faulty one. Here,
based on the precursor work of (Jin et al., 1995), a modified version of the Nonlinear Iterative
Pseudoinverse Controller (NIPC) algorithm is presented. A complete Monte Carlo campaign
is conducted in the context of the terminal rendezvous phase. Mission oriented criteria are
evaluated to demonstrate the effectiveness of the proposed method subject to various sources
of uncertainties, spatial disturbances, delays and imperfect navigation.

The paper is organized as follows. Section 2 is devoted to the thruster-based propulsion
system of the chaser. It also introduces the considered actuator fault model. Sections 3 and
4 are dedicated to the FDI unit design. Section 5 deals with the FTC algorithm. Finally, a
simulation campaign is conducted in Section 6 in the context of the terminal rendezvous phase.
Concluding remarks are given in Section 7.

Notations: Let denote R, C, Z+, and H the set of real numbers, complex numbers, non-
negative integers, and the set of quaternions, respectively. The notation Rm×n is used for real
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matrices of dimension m× n. diag(. . .) represents a block diagonal matrix. I and 0 represents
the identity and zero matrix with the appropriate dimension, respectively. The symbol ⊗, ×,
and · stands for the Kronecker, cross and dot product, respectively. The notation P > 0 (P < 0)
means that P is a real symmetric and positive (negative) definite matrix. The notation Λ(A)
stands for the set of all eigenvalues and λmax stands for the maximum eigenvalue of a square
matrix A, respectively. In symmetric block matrices, the symbol ∗ denotes an element that is
induced by symmetry. ‖·‖p refers to either the p-norm of a vector or the induced matrix p-norm.
If p = 2, ‖ · ‖p is written without the subscript, i.e. ‖ · ‖. With L2 a space of all Lebensque
measurable functions having a finite L2 norm ‖u‖`2 is denoted, where ‖u‖2

`2 =
∫∞

0 ‖u(t)‖2dt.
N (µ, σ) stays for the normal distribution with mean value µ and standard deviation σ. U(a, b)
denotes the uniform distribution with boundaries a and b.

2. Background on Thruster-based Propulsion System and Fault Considerations

The MSR chaser spacecraft is equipped with a chemical propulsion system composed of 12
thrusters. The thrusters are physically organised in four groups (see Fig. 1 for illustration) and
are in charge of producing force a F ∈ R3 and a torque T ∈ R3 vector.

Figure 1: Thruster configuration of the chaser spacecraft2

Let denote Sall = {1, 2, . . . 12} the set of all the thruster indices. All thrusters have fixed
directions dk ∈ R3,∀k ∈ Sall and each one is able to produce a maximum thrust of ||FT || = 22 N.
The Chemical Propulsion Drive Electronics (CPDE) driving the thrusters, is initiating the
opening of each thruster valve for the commanded duration 0 ≤ uk ≤ 1,∀k ∈ Sall which are in
fact scaled ON-times. The scaling is done versus the sampling period Ts of the control unit and
is defined according to ui(tk) = Toni

(tk)/Ts, where Toni
(tk) is the actual/real firing duration

(ON time) of the ith thruster at control cycle tk = kTs.

2The considered thruster configuration in this paper is a special one designed by TAS to study active FTC
strategies.
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The propulsion system is obviously a source of uncertainty in the system. The transfer
function

H(s) = e−τ(t)s (1)
aims to model the effect of the unknown time-varying delays induced by the CPDE and the
uncertainties on the thruster rise times (see Pettazzi et al. (2009)). The delay τ(t) is assumed
to be unknown and time-varying, but upper bounded by a known constant τ̄ , i.e. τ(t) ≤ τ̄ .

Let be uk(t− τ(t)) the commanded open duration of the kth thruster delayed by τ(t). The
net forces and torques generated by thrusters (in fault-free case) are given in the chaser body
fixed frame Fb = {Ob, ~Xb, ~Y b, ~Zb} (see Fig. 1 for an illustration) according to

F (t) = BFu(t− τ(t)), T (t) = BTu(t− τ(t)) (2)

In the above equation u(t) = [u1(t), u2(t), . . . , u12(t)]T , and

BF =
[
bF1 , bF2 , . . . , bF12

]
, BT =

[
bT1 , bT2 , . . . , bT12

]
(3)

are the thruster sensitivity (configuration) matrices with3

bFk = −dk||FT ||, bTk = (dpk − dCoM)× bFk, ∀k ∈ Sall

where dCoM ∈ R3 is the position vector of the Center of Mass (CoM) from the center of the
chaser geometrical frame Fg, and dpk ∈ R3,∀k ∈ Sall are the position (location) vectors of the
thrusters, all given in Fg.

By analysing the matricesBF andBT in terms of directional properties, the following can be
concluded: the torque directions of the thrusters having index inside the sets STk, k = 1, . . . , 4
are the same and those having index inside the set ST5 are similar. In our case, the above
subsets are defined as follows:

ST1 = {1, 11}, ST3 = {4, 8}, ST5 = {3, 6, 9, 12}
ST2 = {2, 10}, ST4 = {5, 7}, (4)

In terms of force directions, the following is revealed

bF1 = −bF11, bF4 = −bF8, bF3 = −bF12
bF2 = −bF10, bF5 = −bF7, bF6 = −bF9

(5)

which means that the thruster pairs of the sets STk, k = 1, ..., 4 produce exactly opposite forces.
The last thruster group, i.e. ST5, has the following properties

bF3 · bF6 = 0, bT3 ≈ −bT6 ≈ −bT9 ≈ bT12 (6)

Relations in (6) mean that thrusters belonging to ST5 group produce a) forces perpendicular
to the forces of their neighbours b) nearly collinear torques. The directional properties given
by (4)-(6) will be later used to derive an explicit fault isolation strategy.

3Numerical values with regards to the spacecraft geometry are omitted for confidentiality reasons.
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2.1. Thruster Fault Modelling
With regards to the possible faults occurring in the thruster-based propulsion system, the

focus is on the so-called “open-type” (fully open or leaking thruster) and “closed-type” (blocked-
closed thruster or loss of efficiency) faults. These faults have been defined in accordance with the
industrial partners and follow both the TAS and ESA experiences. The following mathematical
model can be used to describe these faults

ϕk(t) =
{

max{uk(t),mleak} if open-type
(1−mloss)uk(t) if closed-type

where the index ”k” refers to the kth thruster. In this formalism, 0 < mleak < 1 models a
leakage fault and 0 < mloss < 1 an efficiency loss fault. It is obvious that mleak = 1 refers to a
fully open and mloss = 1 to a blocked-closed thruster fault, respectively.

Assuming no simultaneous faults, the considered thruster faults can be modelled in a mul-
tiplicative way according to (the index f outlines the faulty case)

uf (t) =
(
I −Ψ(t)

)
u(t) (7)

with Ψ(t) = diag(ψ1(t), . . . , ψ12(t)), where 0 ≤ ψk(t) ≤ 1, ∀k ∈ Sall are unknown. The status
of the kth thruster is modelled by ψk as follows

ψk(t) =
{

0 if healthy
1− ϕk(t)/uk(t) if faulty

where ϕk allows to consider different fault scenarios.

3. Design of the Robust Fault Detector

The proposed fault detector consists of an observer-based residual generator and a sequential
decision which evaluates the residual. The observer is designed based on the EA technique and
uses a model of the relative position between the chaser and the target given in the local
(target) frame. In (Fonod et al., 2015), it was shown that, in terms of robustness/sensitivity,
the position model-based FDI scheme tends to achieve very similar FDI performances as a
scheme based on a pure attitude model.

3.1. Relative Position Model
Consider the illustration of the rendezvous between the chaser and target spacecraft around

Mars given by Fig. 2 where Fl = {OT , ~X l, ~Y l, ~Z l} is the local (target centred) reference frame
oriented as shown in Fig. 2. During the rendezvous phase on a circular orbit, it is assumed that
the chaser motion is due to the four following forces, all given in Fl

• the Mars attraction force ~Fa = −m µ

((a+ξ)2+η2+ζ2)3/2

(
(a+ ξ) ~X l + η ~Y l + ζ ~Z l

)
, where ξ, η, ζ

denote the three components of the relative position vector ∆r = [ξ, η, ζ]T of the chaser
from the origin OT of the target frame Fl,
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Figure 2: The Mars rendezvous orbit with the associated frames

• the centripetal force ~Fe = m
(
n2(a+ ξ) ~X l + n2η ~Y l

)
,

• the Coriolis force ~Fc = m
(
2nη̇ ~X l − 2nξ̇ ~Y l

)
,

• the force due to the thruster-based propulsion system ~F t = Fξ ~X l + Fη ~Y l + Fζ ~Z l. (This
force vector is the one given by the equation (2) expressed in Fl.)

In these relations, µ = G.mM
4 and n = ν̇ =

√
µ/a3, where a, m, G and mM are the radius of

the circular orbit of the target, the mass of the chaser, the universal gravitational constant and
the mass of Mars, respectively. It can be verified that the above equations lead to a 6th order
nonlinear state space model whose state and force input vectors are given by xp = [ξ η ζ ξ̇ η̇ ζ̇]T
and F t = [Fξ Fη Fζ ]T , respectively. Noting that the distance between the target and the
chaser during the rendezvous phase is negligible compared to the radius of the target orbit,
i.e. ‖∆r‖ � a. It is then possible to derive the so called Hill-Clohessy-Wiltshire equations by
means of a first order approximation of the nonlinear state space model (Sidi, 1997). Finally,
introducing the fault model and the CPDE unknown time-varying delay τ(t) introduced in
Section 2, leads to the following linear 6th order state space model of the chaser relative motion
expressed in Fl, both in fault-free (Ψ = 0) and faulty (Ψ 6= 0) situations, i.e.

ẋp(t) = Apxp(t) +BpR(q̂t(t), q̂c(t))BFuf (t− τ(t)) (8)
yp(t) = Cpxp(t) (9)

4Considered values: G .= 6.67384× 10−11 (N.m2kg−2) and mM
.= 6.4173× 1023 (kg).
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Ap =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2 0 0 0 2n 0
0 0 0 −2n 0 0
0 0 −n2 0 0 0


, Bp = 1

m



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


, Cp =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0



In (8), the rotation matrix R(q̂t, q̂c) is calculated from the attitude quaternion estimates of
the chaser q̂c ∈ H and target q̂t ∈ H. They rotate the force due to thrusters, i.e. F f =
BFuf (t− τ(t)), from Fb into Fl. These estimates are assumed to be available on-board since
they are computed online by the navigation unit. The output vector yp = ∆r = [ξ η ζ]T is the
relative position expressed in Fl. In the context of our study, this relative position is measured
by the LIDAR device. Moreover, it is assumed that the navigation unit is decoupled from
thruster faults, but providing noisy state estimates.

3.2. Residual Generation and Evaluation
The proposed residual generator is based on a full-order observer using the position model

(8) and (9), introduced in the previous section. The observer is designed using the well known
EA technique so that the residual vector output, i.e. the output estimation error weighted by
a matrix Q

r(t) = Q
(
yp(t)−Cpx̂p(t)

)
, r = [r1, r2, r3]T (10)

is (approximately) decoupled from the unwanted effects of the time-varying delay τ(t). Fonod
et al. (2013) address this problem using two different approaches, i.e. using a Padé approxi-
mation and a Cayley-Hamilton theorem-based transformation. The earlier method is employed
in this paper. The idea is to use the model (8)-(9) to generate the state estimate x̂p used to
produce the residual vector r. Since the EA technique is well mastered in the FDI community,
technical developments are not considered in this paper. The interested reader can refer to e.g.,
(Patton et al., 2000; Blanke et al., 2006; Ding, 2013).

The proposed decision making rule is a slightly modified version of the scalar valued Gen-
eralized Likelihood Ratio (GLR) test for the variance (see e.g. Ding (2013)). The considered
decision test %Jth is defined by

%Jth(t) =

1 if Sw(r(tk)) > Jth ⇒ fault declared
0 if Sw(r(tk)) ≤ Jth ⇒ fault not present

(11)

with Sw(r(tk)) = ∑3
i=1wiSi(ri(tk)), where wi ≥ 0, i = 1, 2, 3 being the normalized weight

factors used to prioritize certain elements (axes) of the residual and Si(ri(tk)) is the estimated
log likelihood of the GLR algorithm applied to the ith residual ri(tk) evaluated at time instant
t = tk = kTs, k ∈ Z+. In (11), the fixed threshold Jth is an additional design parameter, see
(Basseville and Nikiforov, 1993) for discussion about its tuning. The fault is declared at time
td, i.e.

td = arg inf
t≥t0

{%Jth(t) = 1} (12)
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where t0 ≥ 0 is time required for r to the achieve steady state (settle down) when Ψ(t) =
0,∀t ∈ [0, t0).

4. Hierarchical Isolation Strategy

Recalling the thruster configuration properties given by (4)-(6) and taking into account
that thrusters cause both linear and rotational motions, a set of explicit rules can be derived
to unambiguously isolate a single thruster fault. These rules are implemented on a hierarchical
two-stage basis as follows:

i) The first stage utilizes a bank of five NUIOs based on the nonlinear model of the attitude
dynamics. This bank is in charge of confining the faulty thruster into a single group
STj, j = 1, . . . , 5 (subset of thrusters), in other words, the task is to to find the faulty
group index "j". An enhanced NUIO approach is adopted for this purposes because of its
decoupling properties, adjustable error dynamics and ability to take into account both
nonlinearities and uncertainties of the attitude dynamics,

ii) The second stage aims at uniquely isolating the faulty thruster index "i" within the already
identified subset, i.e. find i ∈ STj. This stage uses jointly an EKF (being in charge of
estimating the torque bias directions due to the fault), a torque bias matching approach
and/or a Wald’s sequential test, and finally a residual/force direction marching approach.

It is obvious that in case of (small) truster faults, the spacecraft attitude dynamics is more
likely prone to dynamic deviations than the translation one. This gives the motivation to derive
the first isolation rule using the angular velocity measurement rather than the one obtained
from the LIDAR device. On the other hand, due to the fact that some thrusters produce
exactly the same or very similar torques, it is very hard to obtain a global isolation strategy
based exclusively on angular velocity measurements. Therefore, the second isolation rule of the
proposed global isolation strategy uses the information about the position dynamics contained
in the fault detector’s residual. This chronology of isolation steps gives to the fault an extra
time to propagate into the translation dynamics.

4.1. Thruster Group Isolation Using a Bank of NUIOs
Let’s consider the spacecraft as a rigid body (flex modes and slosh phenomena are not

considered in this work), this model is given by (Sidi, 1997)

ω̇(t) = J−1BTuf (t)− J−1ω(t)× Jω(t) (13)

where ω = [p, q, r]T is the rotational velocity vector and J ∈ R3×3 is the real inertia matrix.
In (13), both ω and J are given in the chaser’s body-fixed frame Fb. Since the attitude model
involves the inertia matrix J and its inverse J−1, robustness issue against uncertainties in J is
a key feature in the design of the NUIO. This problem is addressed in the following subsection.
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4.1.1. Chaser Attitude Dynamics and Inertia Uncertainty
Let the inertia matrix J having the general form

J =

Jxx Jxy Jxz
Jxy Jyy Jyz
Jxz Jyz Jzz

 (14)

First, we define a factorization of J by introducing a diagonal matrix Jd ∈ R9×9 with the
uncertain terms of J , i.e.

Jd = diag(Jxx, Jyy, Jzz, JxyI2, JxzI2, JyzI2) (15)

where I2 is an identity matrix of size 2. The Jd matrix can now be associated with two
placement matrices RJ and SJ ,

RJ =

1 0 0 1 0 1 0 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 0 1 0 1

 , STJ =

1 0 0 0 1 0 1 0 0
0 1 0 1 0 0 0 0 1
0 0 1 0 0 1 0 1 0


to give the factorized expression of J as follows

J = RJJdSJ (16)

The inertia uncertainty can be expressed by direct multiplicative uncertainty as

Jd = Jd0(I + ∆J) (17)

where Jd0 consists of nominal values of Jd and ∆J represents the uncertainty in the diagonal
form

∆J = diag(∆Jxx,∆Jyy,∆Jzz,∆JxyI2,∆JxzI2,∆JyzI2) (18)
with |∆Jij| ≤ δ̄ij,∀i, j ∈ {x, y, z}, where 0 ≤ δ̄ij ≤ 1 is the upper bound of the considered
uncertainty level along the given axis. If δ̄ij < 1 for any i, j couple, it is possible to reduce
conservatism by introducing the following scaling

∆J = W∆∗J , ∆∗TJ ∆∗J ≤ I (19)

where
W = diag(δ̄xx, δ̄yy, δ̄zz, δ̄xyI2, δ̄xzI2, δ̄yzI2)

Finally, inserting (17) into (16) gives the inertia matrix expressed in the additive uncertainty
form

J = J0 +R∗J∆∗JSJ (20)
where J0 = RJJd0SJ and R∗J = RJJd0W . The inverse of J appears in (13), therefore, it
is essential, to express this inverse in a factorized form. Proposition 1 provides a method to
achieve it.
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Proposition 1 (Uncertain inertia inverse factorization). If ‖J−1
0 R

∗
J‖‖SJ‖ ≤ 1, then the

inverse of the uncertain inertia matrix (20) can be expressed as

J−1 = J−1
0 +R2∆2S2 (21)

where R2, S2 are constant matrices given by R2 = J−1
0 R

∗
J‖(I + SJJ

−1
0 R

∗
J)−1‖ and S2 =

SJJ
−1
0 . Matrix ∆2 satisfies ∆T

2 ∆2 ≤ I.

Proof: see Appendix A. �
Utilizing the above proposition with the definition of the state vector x = ω, it can be veri-

fied that equation (13) can be represented in the following nonlinear state space representation

ẋ(t) = Ax(t) + Φ(x(t)) + ∆Φ(x(t)) + (B + ∆B)uf (t) (22)
y(t) = Cx(t) (23)

with the following assignments

Φ(x(t)) = −J−1
0 x(t)× J0x(t)−Ax(t), ∆B = R2∆2S2BT , A = ∂ẋ

∂x

∣∣∣∣∣
(x0,J0)

∆Φ(x(t)) = −J−1x(t)× Jx(t) + J−1
0 x(t)× J0x(t), B = J−1

0 BT , C = I

(24)

This formulation is now suitable for the NUIO theory proposed in the subsection.

4.1.2. Robust Nonlinear Unknown Input Observer Design
Consider the model given by (22)-(23) without the nonlinear uncertainty ∆Φ(x(t)), but

with a disturbance vector d occurring in the state equation (this will be justified later in
Section 4.1.3), i.e.

ẋ(t) = Ax(t) + Φ(x(t)) + (B + ∆B)u(t) +Ed(t) (25)
y(t) = Cx(t) (26)

As usual in the UIO theory, the design of the observer parameters is done without fault con-
sideration, i.e. Ψ = 0 ⇒ uf = u. Thus, fault sensitivity performance can only be checked a
posteriori (see e.g. Patton et al. (2000)).

Assumption 1. It is assumed that Φ(x) is Lipschitz in a region S containing the origin, i.e.
‖Φ(x1)−Φ(x2)‖ ≤ γ‖x1−x2‖, ∀(x1,x2) ∈ S where γ > 0 stands for the Lipschitz constant.
If S = Rn, Φ is globally Lipschitz. Otherwise, it is locally Lipschitz.

Assumption 2. It is assumed that E is of full column rank and that rank(CE) = rank(E).

Note that Assumption 1 is reasonable in our case, since Φ(x) in (22) is continuously dif-
ferentiable on R3 and thus, it is locally Lipschitz. This means that the angular velocity shall
be bounded in magnitude which is a reasonable assumption from a practical point of view,
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too. Assumption 2 can be done without loss of generality, see e.g. (Chen and Patton, 1999) if
necessary.

Under Assumptions 1 and 2, the goal turns out to design the following NUIO

ż(t) = Nz(t) +Gu(t) +Ly(t) +MΦ (x̂(t)) (27)
x̂(t) = z(t) +Hy(t) (28)

in such a way that x̂ lends robustness against the uncertainties ∆Bu and is decoupled from
the unknown inputs d. In (27)–(28), x̂ ∈ Rn stands for the estimate of x and z ∈ Rn is an
auxiliary signal. It can be verified that a solution to this problem yields if and only if

N = MA−KC, (29)
L = K(I −CH) +MAH , (30)
M = I −HC, (31)
G = MB (32)
(I −HC)E = 0 (33)

The general solution to (33) can be written as

H = U + Y V (34)

where Y must be chosen so that it does not cause rank deficiency of H . Matrices U and V
are given by

U = E(CE)†, V = I − (CE)(CE)† (35)

where (CE)† denotes the generalized pseudo-inverse of the matrix CE.
The aim is now to design the parametersK and Y such that the estimation error e = x− x̂

tends asymptotically to zero with maximum admissible Lipschitz constant γ∗ and such that
the L2 gain from ∆Bu to the estimation error e is bounded by

‖e‖`2
‖∆Bu‖`2

≤ κ, ∀u ∈ L2[0,∞), ‖∆Bu‖`2 6= 0 (36)

for a given κ > 0. The following theorem provides a LMI-based method for NUIO design.

Theorem 1. Consider the (Lipschitz) nonlinear system given by (25)-(26). The NUIO given
by (27)-(28) is asymptotically stable with maximum Lipschitz constant γ∗ and the L2 gain from
∆Bu to e is bounded by κ > 0, if there exists a positive definite matrix P = P T > 0 and
matrices K̄, Ȳ as solutions of the following optimization problem:

max
P,K̄,Ȳ

ξ (37)
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s.t.


Ψ11 + Γ11 Ω12 Ω13 0 0
∗ −I 0 0 0
∗ ∗ −I 0 0
∗ ∗ ∗ −κ2I S2BT

∗ ∗ ∗ ∗ −I

 < 0,
[
ξ γ
∗ 1

]
≥ 0 (38)

where

Ψ11 = ((I −UC)A)TP + P (I −UC)A+ (1 + ξ)I (39)

Γ11 = −(V CA)T Ȳ T − Ȳ V CA−CTK̄
T − K̄C (40)

Ω12 = P (I −UC)− Ȳ V C (41)
Ω13 = P (I −UC)R2 − Ȳ V CR2 (42)

Once the problem is solved, then

K = P−1K̄, Y = P−1Ȳ , γ∗ =
√
ξ (43)

Proof: see Appendix B.

Remark 1. It should be outlined that NUIO designed according to Theorem 1 tolerates any
additive uncertainty ∆Φ(x) in Φ∆(x), i.e Φ∆(x) = Φ(x) + ∆Φ(x), with Lipschitz constant
less than or equal to γ∗ − γ, see the work of Abbaszadeh and Marquez (2009) for a discussion.

Remark 2. The maximization of the admissible Lipschitz constant γ∗ may result in unsat-
isfactory dynamical behaviour of the state estimation error. To overcome this problem, the
D-stability concept proposed by Chilali and Gahinet (1996) can be used jointly with Theo-
rem 1, thanks to the LMI formulation (38). Substituting (31), (34) and (43) into (29) and
transposing, it yields NT = AT − (UCA)T − (Ȳ V CA)TP−1 − (K̄C)TP−1. Then, direct
application of the developments proposed in (Chilali and Gahinet, 1996) shows that the eigen-
values of N can be assigned into a prescribed region D = ∩ns

k=1Dk if there exist a common
Lyapunov matrix P = P T > 0 and matrices K̄ and Ȳ such that the set of ns LMIs

αk ⊗ P + βk ⊗ (ATP − (UCA)TP − (Ȳ V CA)T − (K̄C)T )+ (44)
βTk ⊗ (PA− P (UCA)− Ȳ V CA− K̄C) < 0 k = 1, 2, . . . , ns

is simultaneously satisfied. In this expression, αk and βk are matrices of appropriate dimension
defining each region Dk.

4.1.3. Comments on Computational Issues
The Lipschitz constant γ for Φ(ω) can be easily computed using a constrained optimization

algorithm over the set Sω = {ω ∈ R3 : |ωk| ≤ ω̄, k = 1, 2, 3}, where ω̄ is the upper bound of the
angular velocity for each axis. The LMI region assignment approach described in Remark 2 is
also considered to adjust adequately the dynamics of the NUIOs. For each NUIO, the chosen
region D results in the intersection of three elementary LMI regions Dk, k = 1, 2, 3 defined
according to:
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- D1: left-half plane delimited by a vertical line −α, α > 0;

- D2: disk with center at (−b, 0) and radius c;

- D3: conic region with center at the origin and inner angle 0 < β < π/2 pointing left.

These parameters (α, b, c, β) have to be tuned such that the estimation error dynamics react
quick enough to any type of considered fault, allowing early distinction among the healthy/faulty
thruster groups STk, k = 1, ..., 5. (See the following section about the proposed thruster group
isolation strategy.)

For each thruster group STk, k = 1, ..., 5 (see equation (4) for definition), a dedicated NUIO
is designed based on Algorithm 1. The kth NUIO is such that it can fully estimate the angular
velocity ω with all control inputs except those associated with STk, i.e. with ui,∀i ∈ Sall\STk.
On the other hand, d in equation (25) stays for the control inputs associated with STk (i.e.
ui,∀i ∈ STk). As a result, the NUIO dedicated to the group STk shall not be affected by faults
occurring in the thrusters belonging to STk due to the decoupling property, while all the other
NUIOs will be (“are expected to be” to be more precise since the design of the NUIOs are done
without fault sensitivity constraint).

Algorithm 1 Design of the bank of 5 NUIOs
1: Compute γ for Φ(ω) over Sω, choose the attenuation level κ;
2: for k = 1 to 5 do
3: B?

k = [b∗1, ..., b∗12] where b∗i = J−1
0 bT i, ∀i ∈ Sall\STk and b∗i = 0,∀i ∈ STk;

4: Set E , J−1
0 bT i for any arbitrary i ∈ STk and B , B?

k;
5: Compute U and V according to (35);
6: Prescribe the desired dynamics using D(α, b, c, β);
7: Solve problem (37) under LMI constraints (38) and (44) ⇒ (P , K̄, Ȳ , ξ);
8: Set K = P−1K̄, Y = P−1Ȳ and γ∗k ,

√
ξ;

9: Using K and Y , gains for the kth NUIO are given by (29)-(32) and (34);
10: end for

It is important to note that d can be exactly decoupled only if the columns of ∆B related
to d are zero. If this is not the case, only the known directions, i.e. b∗i = J−1

0 bT i, i ∈ STk, can
be exactly decoupled, while the uncertain columns ∆b∗i , i ∈ STk (columns of ∆B associated
with STk) are attenuated in L2 sense (with upper bound κ) since the entire ∆B matrix is
considered in (36). Furthermore, if a constant γ∗ linked to a given NUIO verifies γ∗ > γ, then
the associated observer tolerates an additionally nonlinear uncertainty in Φ∆(ω), see Remark 1.

Note that all observers estimate only the angular rate ω of the chaser. Therefore, the
computational burden is reduced since there is no need to process the entire state vector (i.e.,
the linear position/velocity and the attitude in addition). For real-time reasons, the bank of
5 NUIOs is triggered only when the decision signal %Jth indicates the fault occurrence, i.e.,
when %Jth(t) = 1 for t ≥ td. Even if only ω is estimated, keeping the NUIOs switched off
before the fault is detected seems to be a good strategy, concerning the nonlinear nature of
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the observer. Each observer is initialized then with the known measurement at time td, i.e.,
ω̂k(td) = ω(td), ∀k ∈ {1, . . . , 5}. By this, all observers have a zero initial estimation error.
Hence, the observer initial convergence (transient phase) problem is avoided.

4.1.4. Thruster Group Isolation Logic - First Stage
Due to the aforementioned structuration of the bank of the NUIOs, it seems clear that the

NUIO with the minimum estimation error (in some norm sense) reveals that a fault occurs in
the associated set STk. Such a property provides an efficient isolation rule that can be written
according to

σ̄g(t) = arg min
k
‖ek(t)‖, t > td (45)

where ek(t) denotes the estimation error at time t associated with the kth NUIO. Note that the
bank of NUIOs is triggered only when the fault indicating signal %Jth (see Eq. (11)) indicates
that a fault has occurred, that is for t > td. To avoid initial transition phenomena and to
ensure robustness against noise, a confirmation time window, δg > 0, is introduced, i.e.

tg = arg inf
t≥td+δg

{σ̄g(t) = σ̄g(ϑ), ∀ϑ ∈ (t− δg, t]} (46)

where tg is the isolation time of the faulty thruster group j = σ̄g(tg).
In ideal conditions, at this isolation stage, the minimum time (td − tf ) + δg has elapsed

from the fault occurrence at t = tf , thus allowing extra time for the fault to induce observable
dynamic deviations in the translation dynamics contained in the residual signal r given by (10).
Therefore, as soon as the faulty thruster group index "j" is confirmed, the faulty thruster can
be uniquely isolated by simply examining the degree of alignment between r and the fixed force
vector directions bFk, k ∈ STj (see equation (3) for definition of bFk) under the assumption
that the fault type is known. This is the purpose of the next subsection.

4.2. Final Thruster Fault Isolation - Second Stage
As soon as the faulty thruster group STj is identified at the first stage, the faulty thruster

can be easily isolated by examining the angle of the vector r along the fixed force directions
bFk,∀k ∈ STj. If the kth thruster is faulty, then vectors r ∈ R3 and bFk ∈ R3 should be collinear
(owing the fault model (7)). The degree of collinearity can be computed using the direction
cosine approach: θkd = bFk ·r/(‖bFk‖‖r‖), where θkd is the angle between the vectors r and bFk.
If r and bFk are collinear, then cos(θkd) = 1. Thus, the following rule is proposed to isolate the
faulty thruster uniquely:

σ̄(t) = arg min
k∈ST j

(
ρ(t) bFk · r(t)
‖bFk‖‖r(t)‖

)
, t ≥ tg (47)

In this equation, ρ determines whether an “open-” or “closed-type” thruster fault has occurred
(see Section 2.1 about fault considerations). The notation t ≥ tg indicates that this rule is
applied only when the NUIO–based strategy (first stage) subscribed and confirmed the fault to
the subset STj.
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With respect to ρ, the following two definitions are adopted depending on the identified
thruster group STj, i.e.

a) Definition for j=1,...,4
Recalling the geometrical properties in terms of torque directions (see Section 2), i.e. that

thrusters belonging to the first four groups STj, j = 1, . . . , 4 generate torques in the same
direction within these groups, i.e. bTk = bTh,∀k, h ∈ STj. This property allows to consider the
following definition for ρ when j 6= 5, i.e.

ρ(1:4)(t) = sign
(
bTk · T̂ bias(t)

)
, for any k ∈ STj, j 6= 5 (48)

where T̂ bias ∈ R3 is the estimate of the real torque bias T bias and sign(·) stands for the signum
function. This bias is due to the faulty thruster (see equation (7)) and should be understood
as follows5

T bias(t) = −BTΨ(t)u(t), Ψ(t) 6= 0 (49)
It is obvious that the two fault types, i.e. “open-” and “closed-type”, result in exactly opposite
torque bias (shift) relative to the torque direction bTk,∀k ∈ STj, j 6= 5.

The torque bias (49) can be estimated using an EKF based on the nominal (J , J0) attitude
dynamics model (13), see for instance (Posch et al., 2013) for realisation details. Note that in
(48), the direction vector bTk can be any from STj since they are equal for all j = 1, . . . , 4.

b) Definition for j=5
Considering the thruster group 5, it is obvious that the previous strategy cannot be used

since bTk, k ∈ ST5 are not unique/same-valued direction vectors, see equation (6). However, a
special property of thrusters belonging to this subset is that they barely produce any torque in
the x- and y-axis. This enables to focus only on the z-axis. Thus, the following definition for
ρ when j = 5 is proposed:

ρ(5)(t) = fWald

(
rbias(tk)

)
, j = 5 (50)

where rbias(tk) = T̂ zbias(tk) − T̂ zbias(tk−1), T̂ zbias is the third component (i.e. the component on
the z-axis) of T̂ bias and fWald(·) stands for the sequential Wald test for the variance applied on
rbias. This test can result in three possible situations:

fWald

(
rbias(tk)

)
=


1 if decision in favour of “closed-type”
0 if no decision has been adopted
−1 if no decision in favour of “open-type”

(51)

Implementation details on the sequential Wald test, also known as Sequential Probability Ratio
Test (SPRT) test, can be found in (Basseville and Nikiforov, 1993).

5In other words, this bias can be also understood as a difference (bias) between the real torques applied on
the spacecraft and the torques as seen from the controller point of view.
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Improvement of the Strategy
For the thruster group number 5, taking into account (6), it is possible to slightly improve

the reliability of the isolation algorithm (47) by dividing the set ST5 into two smaller subsets,
i.e. SaT5 = {3, 12} and SbT5 = {6, 9}. Now, the isolation rule (47) can be redefined for j = 5 as
follows

σ̄(t) =


arg min
k∈Sa

T 5

(
ρ(5)(t) bF k·r(t)

‖bF k‖‖r(t)‖

)
, if min

k∈Sa
T 5
ρ(5)

(
bTk · T̂ bias

)
≥ min

k∈Sb
T 5

ρ(5)
(
bTk · T̂ bias

)
arg min
k∈Sb

T 5

(
ρ(5)(t) bF k·r(t)

‖bF k‖‖r(t)‖

)
, otherwise

Now, the logic (47) is able to isolate any of the four considered fault scenarios (see Sec-
tion 2.1), thus thruster fault of both types, within any truster group STj, j = 1, . . . , 5 (supposing
that the thruster group isolation j = σ̄g was successful).

Finally, another confirmation window, δ > 0, is introduced according to

ti = arg inf
t≥tg+δ

{σ̄(t) = σ̄(ϑ), ∀ϑ ∈ (t− δ, t]} (52)

where ti is the isolation time of the faulty thruster. Let i = σ̄(ti) for future reference.

5. Fault Accommodation

Once a faulty thruster is isolated, a fault accommodation mechanism has to be engaged in
order to maintain the capture objectives of the MSR mission. To carry out such objectives,
TAS has designed the thruster configuration presented in Section 2. This configuration dis-
poses of some Degrees of Freedom (DoF) to achieve fault tolerance (functional redundancy).
Particularly, the set of N = 12 thrusters is placed on the chaser spacecraft (see Fig. 1) such
that the nominally attainable set Wa of propulsion moments T and forces F is relatively close
to the sets obtained by combining the thrust of any N − 1 = 11 thruster. From a practical
viewpoint it means that it is possible to achieve the required capture accuracy and the neces-
sary GNC performance with only eleven healthy thrusters. On the other hand, the nominal
6 DoF control law that is planned to be implemented on-board, is designed to guarantee the
capture objectives such as: attitude alignment versus the target, the longitudinal and lateral
velocities and the position in the rendezvous corridor. Since the CA technique do not require
any modification in the control law, it motivates to propose the fault tolerance solution to
be based on this philosophy. Moreover, the CA solution is further justified by the fact that
all thrusters are individually equipped with a Thruster Latch Valve (TLV) able to disengage
the propellant arrival, switching off de facto the associated thruster. Thus, as soon as the
ith thruster is confirmed to be faulty by σ̄, see (47) and (52), the faulty thruster is switched
off using the dedicated TLV and the desired forces F d and torques T d of the controller are
redistributed among the remaining N − 1 healthy thrusters. Figure 3 gives an overview of the
proposed FDI/CA-based FTC solution implemented within the GNC architecture.
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Figure 3: FDI/CA-based FTC strategy for thruster faults implemented within the GNC archi-
tecture

5.1. Reconfigurable Control Allocation
The on-board CA algorithm shall determine in real-time, i.e. at each control cycle (10

Hz frequency), the proper thruster selection and their firing times to achieve the controller-
commanded torque and force impulses. Many CA algorithms have potential to be applied, see
(Johansen and Fossen, 2013) for a recent survey on CA techniques. To make use of the remaining
healthy thrusters in case of a failure, it is required to reconfigure the CA scheme (re-allocation).
This re-allocation can be achieved easily by changing some constraints or parameters of the
existing CA algorithms.

In this paper, a modified version of the NIPC approach is proposed. The original version of
the NIPC algorithm was presented by Jin et al. (1995). The NIPC method solves the following
optimization problem

u = arg min
u

‖W v

(
B̄u− vd

)
‖p

s.t. 0 ≤ uk ≤ ūk, ∀k ∈ Sall
(53)

where B̄ = [b̄1, ..., b̄12] = [BT
T B

T
F ]T is the overall thruster configuration matrix, vd = [T T

d F
T
d ]T

is the vector of the desired torque and force commands of the 6 DoF control law synthesized
by the 6 DoF controller and followed by the thruster modulator unit, and ūk is the maximum
opening duration of the kth thruster. The core of the fault tolerance principle is that if the
ith thruster is faulty, then ūi is set to 0. The weighting matrix W v affects the prioritization
among torque/force components when B̄u − vd cannot be attained due to thruster physical
constraints. The different choices of the vector p-norm in (53) result in:

1. Minimum flow rate allocation: min ‖u‖1

2. Minimum power allocation: min ‖u‖2

3. Minimum peak torque/force allocation: min ‖u‖∞
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Using the minimum flow rate allocation will yield the greatest control authority for flow rate
limited thruster systems. Similarly for the other two allocations. It is known that stability of
the closed-loop system can be guaranteed as long as the constraints of the optimization problem
(53) are met (feasibility implies stability).

Algorithm 2 NIPC control allocation with fault tolerance principle
1: Set iter = 0 and v = vd;
2: if the ith thruster is declared to be faulty then
3: Construct B̄i from B̄ such that b̄i = 0 and set ūi , 0;
4: else
5: Set B̄i , B̄;
6: end if
7: while ‖W v ∗ error‖p > ε and iter < Nmax

iter do
8: v = v + λc ∗ error;
9: upc = B̄

p+
i v;

10: uc = (upc + |upc|)/2;
11: for k = 1 to N do
12: if uck > ūk then uck = ūk; end if
13: if uck < MIB/2 then uck = 0; end if
14: if MIB/2 ≤ uck < MIB then uck = MIB; end if
15: end for
16: error = B̄iu

c − vd;
17: iter = iter + 1;
18: end while
19: Set u , uc;

The proposed NIPC method that solves the re-allocation problem to ensure thruster fault
tolerance, is given in Algorithm 2. This algorithm also solves the optimization problem (53).
It terminates if a certain precision ε ≥ 0 of the allocated torques/forces, weighted by W v, is
achieved (typical choice is ε → 0) or if the maximum number of iterations Nmax

iter is reached.
Nmax
iter can be considered to reflect the max computation time available. In Algorithm 2, MIB

stands for the Minimum Impulse Bit, i.e. the minimum shooting time that a thruster can
execute, λc > 0 allows to manage the convergence time of the algorithm and B̄p+

i stands for
the generalized inverse of B̄i given in step 3 (optimal in the sense of the chosen p-norm). It is
obvious, that both Nmax

iter and λc influence the computational burdens of the algorithm.
Fault tolerance is achieved due to step 3 and consequently to steps 9 and 12 in the Algo-

rithm 2. The index "i" being determined by the FDI unit. Changing the minimization objective
in (53) is very simple since it results in changing the criterion p ∈ {1, 2,∞} in steps 7 and 9.

Remark 3. The NIPC algorithm has been compared with other powerful CA approaches pre-
sented in (Härkegård, 2003). Results from a numerical campaign have shown that the NIPC
approach constitutes a good trade-off between accuracy and computational complexity. This is
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mostly due to the algorithm’s conceptual simplicity, i.e. the matrices B̄p+
i in step 9 are all fixed,

thus it is possible to pre-compute them all off-line. This enables to reduce the computational
burdens, but the price to pay is a higher memory consumption.

6. Simulation Campaign

The scenario considered in this study is focused on the terminal rendezvous phase, which
brings the chaser from approximately 20 m range up to the capture point. The objective is
to successfully capture the target. To achieve this, the MSR capture conditions in terms of
positions and velocities, and of relative attitude and angular rates must be achieved within a
certain precision (see Table 1 for numerical values). Furthermore, during the whole rendezvous
phase, the chaser spacecraft must maintain its position within the rendezvous corridor and
must keep its attitude pointing towards the target with a maximum misalignment of 20 degrees
on all the axis (roll, pitch, and yaw axes).

Capture condition Nominal value Max variation Unit

Translational
conditions

Position misalignment on +X face 0.0 0.20 m
Longitudinal X velocity accuracy 0.1 0.05 m/s
Lateral Y and Z velocity error 0.0 0.04 m/s

Rotational
conditions

Angular rate error 0 0.3? deg/s
Angular misalignment 0 2? deg

Table 1: Baseline MSR conditions for successful capture (? are 3σ requirements)

The FTC strategy described in the previous sections has been implemented within the MSR
high-fidelity industrial simulator provided by Thales Alenia Space industries. This simulator
includes a nonlinear model of the rigid body dynamics of the chaser and target in a Mars orbit.
Simulation assumes that Mars is in a Keplerian orbit about the Sun. The chaser and target
orbits around Mars are modelled using Gauss’ equations, with the gravitational field of Mars
calculated using a spherical harmonic expansion with the Mars50c coefficients (Konopliv and
Sjogren, 1995; Hartley et al., 2012). The attitude dynamics are modelled assuming that the
chaser and target are rigid bodies (Sidi, 1997).

Following the design steps given in Algorithm 1, a bank of 5 NUIOs has been designed.
The numerical values for α, b, c, β, and κ being fixed to 0, 0.18, 0.05, π/4, and 0.9 for all
NUIOs, respectively. The numerical values of γ and γ∗ are found to be 0.9047 and 1.4039×104.
The selected parameters for the NIPC (see Algorithm 2) algorithm correspond to: W v = I,
Nmax
iter = 350, λc = 1.89, ε = 10−7 and p = 2, i.e. the 2nd vector norm was chosen leading to

minimum power allocation. Each thruster is considered to have MIB = 0.068 s. Above this,
the actual commanded open durations are quantised by step of 0.01 s. The GLR decision test
given by (11) has been implemented recursively with Jth = 33, Ts = 0.1 s, t0 = 100 s and
wi = 1/3, ∀i ∈ {1, 2, 3}. The chosen threshold Jth has been determined through Monte Carlo
simulations to ensure minimum (ideally zero) false alarm rate. This approach is widely used
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in the FDI community (see Patton et al. (2006) for more details). For the two-stage isolation
logic, a confirmation window δg = 1.5 s has been considered in (46) and δ = 0.5 s in (52). The
4th order Runge-Kutta integration method has been used to propagate the nonlinear equations
for the EKF to obtain the estimate T̂ bias of the torque bias. The EKF state covariance matrix
was tuned such that the estimated torque bias “directions” are as close as possible to the real
ones. The measurement covariance matrix has been selected based on the knowledge of the
gyro model.

Figure 4 serves as a simulation example and aims to highlight the need for an active FTC
solution. This example corresponds to a fully open thruster fault (i.e. case 1) occurring at
tf = 1100s and affecting thruster No.7. To emphasize the relevance of the engagement of the
proposed FTC scheme into the GNC system, two identical simulations are carried out. First,
when the proposed FTC strategy is active (FTC on), and second, when it is disengaged (FTC
off). Figure 4 clearly illustrates the consequence when such a fault is not accommodated, i.e.

Figure 4: Chaser trajectory within the MSR rendezvous corridor

the chaser misses the target and the mission fails. On the other hand, when the proposed
approach is engaged, the chaser maintains nominal trajectory, i.e. stays inside the rendezvous
corridor and the MSR capture requirements are met. Furthermore, it can be inferred from
Fig.4 that the chaser keeps its attitude pointing towards the target all the time.

A Monte Carlo simulation campaign is often used in the industry to test and validate the
performance of an FDI/FTC system. In this simulation study, a high number of simulation
models with randomly drawn dynamics is associated with the following three thruster fault
scenarios:

• case 1: fully open thruster, i.e. mleak = 1;

• case 2: bipropellant leakage ranging from 7% to 20%, i.e. mleak ∼ U(0.07, 0.2);

• case 3: loss of efficiency ranging from 30% to 100%, i.e. mloss ∼ U(0.3, 1).

The selected leakage and efficiency loss intervals were determined based on the study presented
in (Fonod et al., 2014b). In this study, it was shown that if the FDI unit fails to detect or
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isolate a small thruster fault (e.g. mloss . 15%), the effect that this fault has on the GNC
system and/or on the final MSR capture performance requirements is negligible. It is due to
the fact that such relatively small fault has a very little impact on the system dynamics and
shall be compensated by a robust control law. On the other hand, such faults are very hard or
even impossible to detect and isolate.

For each faulty case, a set of 1000 Monte Carlo simulations has been carried out in order to
assess the performance of the proposed FTC strategy. Thruster faults are uniformly distributed
among all the 12 thrusters. In all cases, fault occurs at time tf = 1000 s and is maintained.
All the (3 × 1000) simulations were carried out under realistic conditions, i.e. the navigation
unit is considered to deliver “non-perfect” state estimates. Therefore all signals used by the
FDI scheme, NIPC algorithm and the 6 DoF controller are replaced with their respective
uncertain values. Time-varying delays induced by the CPDE device and spatial disturbances
(e.g., solar radiation pressure, gravity gradient, and atmospheric drag assuming an exponential
atmospheric model) are also considered.

For each run, the nominal model parameters were scattered within a specific limit (see
Table 2 for details). The mass, the CoM and the inertia were scattered according to the normal
distribution and truncated to the corresponding 3σ values. The 1% multiplicative uncertainty
on the thrusters forces models the uncertainty on the thruster rise times and the thruster
misalignment phenomena. Because the real configuration matrix B̄ is never precisely known
on-board, an uncertain configuration matrix is considered for on-board computational purposes
(control law, FDI, CA). This matrix has been computed using a worst-case scenario when an
offset of −3 cm was added to each axis of the nominal CoM (see Table 2). A 10% initial
navigation uncertainty is considered on the Cartesian coordinates xp (see Table 3).

Property Nominal value Unit Uncertainty Distribution
Mass (m) 1575 kg ±10% N (1, 0.1/3)

Inertia (J)

1450 −20 5
−20 1800 −5

5 −5 1200

 kg ·m2 ±20% N (1, 0.2/3)

CoM (dCoM)
[
0.880 0.035 0.035

]T
m ±3cm N (0, 0.03/3)

Thrust (12× ‖FT‖) 12× 22 N ±1% N (1, 0.01)
Cartesian coordinates (xp) Converted orbital ele-

ments (see Table 3)
m, m/s ±10% N (1, 0.1/3)

Table 2: Considered parameter uncertainties of the chaser spacecraft

To evaluate performance and reliability of the proposed FDI scheme, some statistical indices
have been used like the mean detection delay and its corresponding deviation. The considered
indices are listed below:
• µ(τd)/σ(τd) - mean/standard deviation (st.dev.) of the detection delay τd = td − tf ,

• µ(τg)/σ(τg) - mean/st.dev. of the thruster group isolation delay τg = tg − td,
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Orbital parameter Chaser Target Unit
Semimajor axis 3893 3893 km
Eccentricity 0 0 n/a
Inclination 30 30 deg
RAAN 0 0 deg
Argument of periapsis 0 0 deg
True anomaly -32.16×10−5 0 deg

Table 3: Initial Keplerian orbital parameters of the chaser and target

• µ(τi)/σ(τi) - mean/st.dev. of the thruster isolation delay τi = ti − tg,

• µ(τo)/σ(τo) - mean/st.dev. of the overall detection and isolation delay τo = ti − tf ,

• pf - FDI unit fail rate, i.e. the number of wrongly isolated thrusters divided by the total
number of Monte Carlo runs (1000 for each fault scenario).

These performance indices are calculated for each fault case separately. Table 4 presents
complete results obtained from the simulation campaign. This table demonstrates that the
proposed FDI scheme is able to detect and isolate almost all considered thruster faults with
good detection/isolation performances. In addition, it also shows a good reliability since no false
detection/isolation has been revealed for the first two faulty scenarios (pf = 0). Considering
the thrust loss scenario, in about 110 simulation cases, the FDI unit failed to either detect or
correctly isolate the faulty thruster. As it will be shown in the next, this fact does not violate
any capture condition nor the mission success.

Metric Fully open Leakage Thrust loss
µ(τd)/σ(τd) 2.36/0.14 (s) 4.97/0.75 (s) 48.44/53.29 (s)
µ(τg)/σ(τg) 1.50/0.86 (s) 1.75/0.37 (s) 3.37/5.16 (s)
µ(τi)/σ(τi) 0.40/0.00 (s) 3.70/11.39 (s) 4.20/8.21 (s)
µ(τo)/σ(τo) 4.27/0.87 (s) 10.41/11.71 (s) 56.01/54.57 (s)
pf 0 0 0.11

Table 4: FDI performances based on 3× 1000 Monte Carlo runs

Figures 5a-9b illustrate the fault tolerant capabilities of the proposed technique. The capture
conditions in terms of position and velocities are given in Fig. 5a, Fig. 7a, and Fig. 9a for fully
open thruster, leaking thruster and efficiency loss thruster fault, respectively. Figure 5b, Fig. 7b
and Fig. 9b illustrate that in all faulty cases the chaser maintains the nominal trajectory (i.e.
stays inside the rendezvous corridor) and that the chaser keeps its attitude pointing towards
the target, thus, leading to a successful capture. Finally, Fig. 6b, Fig. 8b and Fig. 10b show
that the proposed strategy is able to meet the required 3σ capture accuracy in terms of angular
misalignment and angular rate errors.
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Figure 5: Capture position requirements and GNC performances for fault case 1
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Figure 6: Considered distributions and capture angular requirements for fault case 1
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Figure 7: Capture position requirements and GNC performances for fault case 2
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Figure 8: Considered distributions and capture angular requirements for fault case 2
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Figure 9: Capture position requirements and GNC performances for fault case 3
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Figure 10: Considered distributions and capture angular requirements for fault case 3
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Note that the early detection of the occurrence of incipient or small size thruster faults
(e.g., small propellant leakage or small thrust loss) is clearly more difficult. Another problem
can arise when a fully blocked thruster (i.e. mloss = 1) is not commanded and thus a fault
detection is almost impossible. As seen in Fig. 9a and Fig. 9b, despite the fact that in some
cases the FDI unit failed, the required capture tolerances and attitude/trajectory conditions
are fully met.

On the other hand, in some particular cases, the attitude misalignment requirement (3 -
sigma) is not met even if the FDI unit succeeded. This can be the case when it takes too long
for the FDI unit to detect and/or isolate the faulty thruster or when the control accuracy is
very degraded, e.g., due to a worst case uncertainty or strong disturbance. In such cases, the
solution consists in a corrective maneuver (e.g. triggering a collision avoidance maneuver) that
is engaged at the higher level of the fault management unit, see (LePeuvédic et al., 2014).

7. Conclusion

In this paper, a systematic procedure has been presented for the theoretical design and
application of a model-based approach to FDI/CA-based FTC of an autonomous rendezvous
system in the terminal phase. The aim was to detect and isolate a single thruster fault affecting
the chaser propulsion system and to accommodate it as quick as possible. The proposed FDI
scheme consists of a robust fault detector and a NUIO and EKF-based hierarchical isolation
logic. The NUIO gains are given by solving an LMI optimization problem, which ensures
maximization of the admissible Lipschitz constant while simultaneously satisfying an L2 gain
bound and pole constraints on observer dynamics. The L2 attenuation is considered to minimize
the effect of the uncertain inertia on the state estimation error. The NUIO design together with
the derivation of the uncertain inertia inverse factorization can be considered as a contribution
to the theory. The thruster fault tolerance is achieved by an improved version of the the NIPC
control allocation algorithm scheduled by the robust FDI scheme. A Monte Carlo simulation
campaign has been performed to assess the performance and robustness of the FDI/CA-based
FTC system subject to parameter uncertainties, spatial disturbances, delays and imperfect
navigation. The obtained results indicate that for all the considered fault profiles, which are
those considered to be the most relevant by the industrial partners, the proposed strategy can
carry out the terminal rendezvous successfully and meet all the required capture specifications.
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Appendix A. Proof of Proposition 1

To prove Proposition 1, the following lemma is introduced first:

Lemma 1 (Neumann series of a matrix, Chatelin (1983)). Consider a square matrixA
such that ‖A‖ < 1. Let λ be any eigenvalue of A. It is clear that (I − A) is invertible if
λ 6= 1,∀λ ∈ Λ(A). The condition ‖A‖ < 1 implies that |λ| < 1,∀λ ∈ Λ(A). Thus, (I −A) is
invertible and the Neumann series

(I −A)−1 =
∞∑
k=0
Ak = I +A+A2 + . . . (A.1)

converges. When ‖A‖ ≥ 1, (I −A) is still invertible if λ 6= 1,∀λ ∈ Λ(A), but the Neumann
series does not converge because lim

k→∞
Ak 6= 0.

Proof of Lemma 1 Since ‖A‖ < 1, the series ∑∞k=0 ‖A‖k converges. Since ‖Ah‖ ≤ ‖A‖h,
the series ∑∞k=0A

k converges, too. Denote by Z its limit. ZA = AZ = ∑∞
k=0A

k+1; therefore
(I −A)Z = Z(I −A) = I, which proves (A.1). �

The real inertia matrix J is always invertible and symmetric, thus J0 and J0 +R∗J∆∗JSJ
are invertible and symmetric too. Now, multiplying (20) by J−1

0 from the left yields

J−1
0 J = I + J−1

0 R
∗
J∆

∗
JSJ (A.2)

inverting both sides gives
J−1J0 = (I + J−1

0 R
∗
J∆

∗
JSJ)−1 (A.3)

Since ∆∗TJ ∆∗J ≤ I ⇒ ‖∆
∗
J‖ ≤ 1, the following bound yields

‖J−1
0 R

∗
J∆

∗
JSJ‖ ≤ ‖J−1

0 R
∗
J‖‖∆

∗
J‖‖SJ‖ ≤ ‖J−1

0 R
∗
J‖‖SJ‖ (A.4)

Thus, if ‖J−1
0 R

∗
J‖‖SJ‖ < 1, then the right-hand side of (A.3) can be expressed according to

to Lemma 1 as follows

(I − (−J−1
0 R

∗
J∆

∗
JSJ))−1 =

∞∑
k=0

(−1)k(J−1
0 R

∗
J∆

∗
JSJ)k (A.5)

Pre-multiplying (A.3) by J−1
0 from the right and substituting (A.5) gives

J−1 =
∞∑
k=0

(−1)k(J−1
0 R

∗
J∆

∗
JSJ)kJ−1

0

= J−1
0 +

∞∑
k=1

(−1)k(J−1
0 R

∗
J∆

∗
JSJ)kJ−1

0 = J−1
0 +R1∆1S1

(A.6)

where

R1 = J−1
0 R

∗
J (A.7)

S1 = SJJ
−1
0 (A.8)

∆1 = ∆∗J(−I + SJJ−1
0 R

∗
J∆

∗
J − (SJJ−1

0 R
∗
J∆

∗
J)2 + . . .) (A.9)
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It is needed to check if ∆T
1 ∆1 ≤ 1. Considering the worst-case uncertainty, i.e. ∆∗J = I, and

inserting it in (A.9) yields to

∆̄1 = −I + SJJ−1
0 R

∗
J − (SJJ−1

0 R
∗
J)2 + . . . = −

∞∑
k=0

(−1)k(SJJ−1
0 R

∗
J)k (A.10)

which gives the upper bound of ∆1, i.e. ‖∆1‖ ≤ ‖∆̄1‖. According to Lemma 1, the right-hand
side of (A.10) is equivalent to

∆̄1 = −
∞∑
k=0

(−1)k(SJJ−1
0 R

∗
J)k = −(I + SJJ−1

0 R
∗
J)−1 (A.11)

if ‖SJJ−1
0 R

∗
J‖ < 1, which is true since ‖SJJ−1

0 R
∗
J‖ ≤ ‖J−1

0 R
∗
J‖‖SJ‖ < 1. It is obvious that

‖∆̄1‖ = ‖(I+SJJ−1
0 R

∗
J)−1‖ > 1, thus a new scaling matrixW 2 must be introduced such that

∆1 = W 2∆2, ∆T
2 ∆2 ≤ I (A.12)

where ∆2 is unknown. One of the possible choice of W 2 is to take the norm upper bound of
∆1, i.e.

W 2 = ‖∆̄1‖I = ‖(I + SJJ−1
0 R

∗
J)−1‖I (A.13)

Then, the following holds

‖∆1‖ = ‖W 2∆2‖ = ‖∆̄1‖‖∆2‖ ≤ ‖∆̄1‖ ⇒ ∆T
2 ∆2 ≤ I

Inserting (A.12) into (A.6) and setting R2 = R1W 2, S2 = S1, (A.6) yields (21). �

Appendix B. Proof of Theorem 1

In the proof of Theorem 1, the following lemma is used:

Lemma 2 (Zhou and Khargonekar (1988)). Let D, F , and Σ(t) being matrices with ap-
propriate dimensions. If ΣT (t)Σ(t) ≤ I, then for any scalar ε > 0 the following inequality
holds:

DΣ(t)F + F TΣT (t)DT ≤ ε−1DDT + εF TF (B.1)

Proof of Lemma 2 It can be verified that the following yields(
ε

1
2DT − ε

1
2 Σ(t)F

)T (
ε

1
2DT − ε

1
2 Σ(t)F

)
≥ 0

then expanding the above yields

ε−1F TΣT (t)Σ(t)F + εDDT ≥DΣ(t)F + F TΣT (t)DT

It is obvious that ‖Σ‖ ≤ 1⇔ λmax(ΣTΣ) ≤ 1⇔ ΣTΣ ≤ I, thus

εDDT + ε−1ETE ≥ ε−1F TΣT (t)Σ(t)F + εDDT ≥DΣ(t)F + F TΣT (t)DT �
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To proceed with the proof of Theorem 1, assume that H is chosen such that (33) holds.
Under the assumption that ∆B = R2∆2S2BT with ∆T

2 ∆2 ≤ I, the error dynamics of the
NUIO can be rewritten as

ė = Ne+M(Φ− Φ̂) +MR2∆2S2BTu (B.2)

where Φ and Φ̂ stand for Φ(x) and Φ(x̂), respectively. Considering the quadratic Lyapunov
function V (t) = e(t)TPe(t), the time derivative of V (t) along the trajectory of (B.2) is given
by

V̇ = eT (NTP + PN)e+ 2eTPM(Φ− Φ̂) + 2eTPMR2∆2S2BTu (B.3)
Using the Lipschitz condition stated in Assumption 1 and Lemma 2 with ε = 1 it follows that

2eTPM(Φ̂−Φ) ≤ 2γ‖eTPM‖‖e‖ ≤ eTPMMTPe+ γ2eTe
2eTPMR2∆2S2BTu ≤ eTPMR2R

T
2M

TPe+ uT (S2BT )TS2BTu

and (B.3) can be bounded as follows

V̇ ≤ eT
(
NTP + PN + PM(I +R2R

T
2 )MTP + γ2I

)
e+ uT (S2BT )TS2BTu (B.4)

Let’s consider the H∞ performance criteria

min
κ

:
∫ T

0
eT (t)e(t)dt ≤ κ2

∫ T

0
uT (t)u(t)dt ∀T ≥ 0 (B.5)

then it is straightforward to verify that the L2 gain from ∆Bu to e is bounded by κ > 0 if and
only if [

Ψ1 0
∗ Ψ2

]
< 0 (B.6)

with

Ψ1 = NTP + PN + (1 + γ2)I + PM(I +R2R
T
2 )MTP

Ψ2 = (S2BT )TS2BT − κ2I

Then, by virtue of the Schur’s complement lemma, (B.6) is equivalent to
NTP + PN + (1 + γ2)I PM PMR2 0 0

∗ −I 0 0 0
∗ ∗ −I 0 0
∗ ∗ ∗ −κ2I S2BT

∗ ∗ ∗ ∗ −I

 < 0 (B.7)

It can be seen that there is no systematic way to obtain the observer parameters directly
from (B.7) due to coupled terms. To reformulate (B.7) as an LMI, H is substituted by (34),
and use the following assignments Ȳ = PY , K̄ = PK and ξ = γ2. Additionally, it is
desired to achieve the maximum possible Lipschitz constant γ∗ and simultaneously to respect
the constraint γ∗ ≥ γ. This constraint can be rewritten by defining a new variable ξ = (γ∗)2

as ξ − γ2 ≥ 0. Then, using the Schur’s complement, (38) follows. It is then obvious that
maximizing ξ is equivalent to maximizing γ∗. This concludes the proof of Theorem 1. �
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