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Abstract

A Multi-Agent network flow problem is addressed in this paper where a set of
transportation-agents can control the capacities of a set of routes. Each agent
incurs a cost proportional to the chosen capacity. A third-party agent, a customer,
is interesting in maximizing the product flow transshipped from a source to a sink
node through the network. He offers a reward proportional to the flow value, which
is shared equally among the transportation-agents. We address the problem of
finding a stable strategy (i.e., a Nash Equilibrium) that maximizes the network
flow. In this paper, we present a Mixed Integer Linear Program (MILP) to model
and solve this problem.

Keywords: Multi-Agent Network flow, Nash Equilibria, Equal-sharing Policy.

1 Introduction

Multi-agent network games have become a promising interdisciplinary research
area with important links to many application fields such as transportation
networks, supply chain management, web services, production management,
etc [1], [2]. This paper stands at the crossroad of two disciplines, namely
multi-agent systems and social networks. To the best of our knowledge, the
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research presented here is an original way of presenting a transportation prob-
lem using multi-agent network flow with controllable arcs capacities. One
important application is the expansion of transportation network capacity
(railway, roads, pipelines, etc.) to meet current peak demand or to absorb
future increase in the transportation demands. In this paper, we consider a
particular multi-agent network flows problem involving a set of self-interested
transportation-agents, each of them managing his proper set of network roads.
Every agent is able to increase the capacity of his arcs by gathering extra re-
sources, at a given cost. A customer-agent is interested in increasing the flow
circulating in the network. He offers a reward, to be equally-shared among the
agents, for each additional unit of flow delivered through the transportation
network. The contribution of this paper is to propose a MILP to find a Nash
equilibria maximizing the flow, assuming a given sharing policy of the reward.
The paper is organized as follows: Section 2 defines formally the problem
and recalls previous results. In Section 3 a MILP formulation is proposed.
Thereafter, Section 4 provides experimental results.

2 Problem Statement

2.1 Notations and Definitions

The Multi-Agent Network-Flow with Controllable Capacities (MA-NFCC) can
be defined as a tuple < G,A,Q,Q, C, π,W > where:

• G = (V , E) is a network flow. V is the set of nodes and E is the set of arcs,
each one having its capacity and receiving a flow.

• A = {A1, . . . , Au, . . . , Am} is a set of m transportation-agents. Arcs are
distributed among the agents. An agent Au owns a set of mu arcs, de-
noted Eu. Each arc (i, j) belongs to exactly one transportation-agent and
Eu represents the subset of arcs for agent Au.

• Q = (q
i,j

) (resp. Q = (qi,j)) represents the vector of normal capacity (resp.

maximum capacity) for the agent Au such that (i, j) ∈ Eu.

• C = (ci,j) is the vector of unitary costs incurred by the agent Au for increas-
ing the capacity of (i, j) ∈ Eu by one unit beyond the minimal capacity.

• π is the reward given by the customer proportionally to the additional flow.

• W = {wu} defines the sharing policy of rewards among the agents.

Assumptions. In this paper, for sake of simplicity, it is assumed that the
minimal capacities are equal to 0 (q

i,j
= 0) and that the reward is shared



equally between the transportation-agents, i.e., wu = 1
m

.
Each transportation-agent has to decide the capacity qi,j of his arcs, such that
0 ≤ qi,j ≤ qi,j. A strategy S is the vector that gather the individual strategies
of all agents, i.e., (their arc capacities): S = {Q1, . . . , Qm) where Qu = (qi,j),
∀(i, j) ∈ Eu. F (S) denotes the flow that can circulate on the network given
the current values of capacities. For each arc (i, j), the circulating flow fi,j
is such that 0 ≤ fi,j ≤ qi,j. When considering null minimal capacities, the
maximum flow that can circulate on the network at zero cost is equal to 0.
The total reward given by the customer-agent for a circulating flow F (S) is
π × F (S). The profit Zu(S) of transportation-agent Au under strategy S is
equal to the difference between his reward and spending Zu(S) = 1

m
× π ×

F (S)−
∑

(i,j)∈Eu ci,j × qi,j.

2.2 The Nash-Stable Max-Flow Problem

In MA-NFCC setting, our goal is to find a Nash equilibrium between transportation-
agents that maximizes the flow for the customer agent. A strategy is stable if
there is no incentive for any agent to modify his capacities in order to improve
his profit. Ideally, agents should choose a strategy which is both optimal,
with respect to the flow value, and stable, with respect to the Nash equilib-
rium concept. Since such a strategy does not always exist, we search for a
Nash equilibrium that is as efficient as possible with respect to the customer
viewpoint. The problem of finding a Nash Equilibrium that maximizes F (S)
was proved to be NP-Hard in [5] from a reduction of the 3-partition problem,
which is known to be NP-Hard in the strong sense.
Characterization of Nash Equilibria: Finding a Nash-equilibria that max-
imizes the flow amounts to find profitable augmenting paths in residual graphs
to increase flow, without generating decreasing paths that are profitable for
some agent, hence preserving stability. Therefore, for a given non-poor strat-
egy S and given value wu, S is a Nash Equilibrium if there is no path that
can be profitable for any agent to increase or decrease the flow in the network.
The proof of this statement, detailed in [5], is based on the fact that an agent
can only improve his situation by increasing or decreasing the flow, which can
only happen when there exists a profitable increasing / decreasing path.
We recall that, in the multi-agent context, there are as many residual graphs
as agents. An augmenting (resp. decreasing) path, going from the source to
the sink node (resp. from the sink to the source node), is composed by a set of
forward and backward arcs, i.e. P = {P+, P−} and allows to increase (resp.
decrease) the flow value by one unit at least.



2.3 Example of a MA-NFCC Problem

Let us consider a customer-agent willing to maximize a flow of products in
the network, displayed in Fig. 1, from the source node A to the sink node D.
He offers a reward π = 120 which is shared equally between two agents A1

and A2, i.e. w1 = w2 = 1
2
. The set of arcs of each transportation-agent are

E1 = {b, c, d} and E2 = {a, e}, which are represented with plain and dotted
arcs, respectively. Each arc of Fig. 1 is valuated by the interval of normal and
maximum capacities ([0, qi,j]), and the unitary cost incurred when increasing
the arc capacities (ci,j) beyond the minimal ones. Let consider the strategy

A D

B

C

a, (
[0,1

], 5
0)

e, (
[0,1

], 3
0)

c,
([0,1],

10)

b, ([0,1], 30)

d, ([0,1], 50)

Fig. 1. Example of MA-NFCC problem

S, where both transportation-agents choose to open their respective routes
(b, e) and (a, d) by one unit. The flow F (S) is then equal to 2, the profit
for both agents is Z1(S) = Z2(S) = 40. From this strategy, there exists a
profitable decreasing path (d, c, b) from sink node D to source node A which
is profitable for agent A1 leading to the strategy S ′ with F (S ′) = 1. In fact, A1

can improve his own profit, by decreasing back the flow on b and d by one unit
and increasing the flow on arc c by one unit (Z1(S ′) = 50 and Z2(S ′) = −20).
Therefore, the strategy S is not a stable strategy. Considering the strategy S ′
there is no decreasing path for A1 and A2 and then S ′ is a stable strategy.

3 A MILP for the Nash-Stable Max-Flow Problem

3.1 Mathematical model

This problem is described by the non linear mathematical model (1), where
constraints (i), (ii) and (iii) are the constraints of arcs capacities and flow
conservation, respectively. The non-explicit constraints (iv) impose that no
decreasing path P can exist in solution S having a saving savu(P ) ≥ wu × π.
In other words, it enforces any solution to be Nash stable. Note that savu(P )
is the saving of agent Au, when decreasing the capacity of its arcs by one unit
through a decreasing path going from the sink to the source node.



Max F

s.c.

(i) fi,j ≤ qi,j , ∀(i, j) ∈ E

(ii) 0 ≤ qi,j ≤ qi,j , ∀(i, j) ∈ E

(iii)
∑

j∈P+(i) fi,j =
∑

j∈P−(i) fj,i, ∀i ∈ V

(iv) savu(P ) < wu × π, ∀P ∈ Gf

fi,j ≥ 0, ∀(i, j) ∈ E

(1)

We focus on the linearization of the non-linear constraints (iv) of the formu-
lation (1) replacing it by a finite number of primal-dual constraints.

3.2 Characterization of Nash constraint

In order to explain how to increase or decrease the flow value, we need first
to detail the concept of residual graphs in a multi-agent context.
Given a network G = (V , E) and a strategy S, there is a residual graph
Gu

f (S) = (V , Er) for each agent Au. To each edge (i, j) ∈ E , we associate a
forward and a backward edge. Each forward edge (i, j) of Gu

f has a residual

capacity ri,j = qi,j − qi,j and cost δi,j,uF . Each backward edge (j, i) of Gu
f is

with a residual capacity rj,i = qi,j and cost δi,j,uB .

δi,j,uF =



−∞ if(i, j) ∈ Eu ∧ qi,j = qi,j

−ci,j if(i, j) ∈ Eu ∧ qi,j < qi,j

−∞ if(i, j) /∈ Eu ∧ qi,j = qi,j

−∞ if(i, j) /∈ Eu ∧ qi,j < qi,j

δj,i,uB =



−∞ if(i, j) ∈ Eu ∧ qi,j = 0

ci,j if(i, j) ∈ Eu ∧ qi,j > 0

−∞ if(i, j) /∈ Eu ∧ qi,j = 0

0 if(i, j) /∈ Eu ∧ qi,j > 0

(2)

A forward arc having the cost −ci,j indicates that Au can possibly make a profit by in-
creasing the capacity of (i, j) since qi,j < qi,j . A forward arc of cost −∞ cannot be used
to increase the flow in the network (i.e., it is already at its maximum capacity or the arc
belongs to another agent). In a similar way, a backward arc valued by 0 indicates that the
arc does not matter in the computation of the cost of agent Au. An arc valued by the cost
ci,j reflects the fact that the agent can make a saving by decreasing his arcs capacities (i.e.,
qi,j > 0). Finally, a −∞ cost on a backward arc guarantees the impossibility of using the
corresponding arc to decrease the flow (i.e., qi,j = 0).

Arcs forming decreasing paths: As stated in [5], a profitable decreasing path P , is
a decreasing path from sink to the source node in the residual graph Gu

f (S), which is

profitable at least to one agent, i.e., savu(P ) > wu × π. According to the definition
of the costs of forward and backward arcs in the residual graphs (cf. equations 2), the



saving of agent Au when decreasing capacity by one unit through a decreasing path is
savu(P ) =

∑
(i,j)∈P

+∩Eu
δi,j,uF −

∑
(i,j)∈P

−∩Eu
δi,j,uB .

Longest path in the residual Network: We are interested in finding the path that
maximize savu(P ). In other words, in computing the longest decreasing path in Gu

f (S).
This can be done using primal-dual constraints. For a given Gu

f (S), equations (3)-(4) define
the primal constraints of the longest path problem where tui ≥ 0. Equations (5) define the
dual constraints of unitary flow variation using the binary variables ϕu

i,j = 1 if one unit of
flow circulates on arc (i, j), 0 otherwise.

tuj − tui ≥ δ
i,j,u
F , ∀(i, j) ∈ Eu, ∀Au ∈ A (3)

tui − tuj ≥ δ
j,i,u
B , ∀(i, j) ∈ Eu, ∀Au ∈ A (4)

Expression tuj − tui represents the potential associated with the arc (i, j).

∑
(i,j)∈E∪Er

ϕu
i,j −

∑
(i,j)∈E∪Er

ϕu
j,i =


0 ∀i 6= s, t

−1 , i = s

1 , i = t

, ∀i ∈ V, ∀Au ∈ A (5)

With respect to the Complementary Slackness Theorem, which imposes, at optimality, that
the cost of a path in Gu

f (S) is equal to the saving of the units of flows circulating in the
network, we obtain the constraints (6).

tun+1 ≥
∑

(i,j)∈E

ϕu
i,j × δ

i,j,u
F +

∑
(i,j)∈Er

ϕu
i,j × δ

j,i,u
B , ∀Au ∈ A (6)

The right-hand-side of (6) contains multiplication of two variables. Fortunately, since ϕu
i,j

is binary, the multiplication can be easily linearized by introducing variables ψi,j,u
1 = ϕu

i,j ×
δi,j,uF and ψi,j,u

2 = ϕu
i,j×δ

i,j,u
B . For instance, for the first one, the set of inequalities (i)−(iv)

will ensure the linearization.

(i) ψi,j,u
1 ≥ 0, ∀(i, j) ∈ E , ∀Au ∈ A

(ii) ψi,j,u
1 ≤ ϕu

i,j ×M, ∀(i, j) ∈ E , ∀Au ∈ A

(iii) ψi,j,u
1 ≤ −δi,j,uF , ∀(i, j) ∈ E , ∀Au ∈ A

(iv) ψi,j,u
1 ≥M(ϕu

i,j − 1)− δi,j,uF , ∀(i, j) ∈ E , ∀Au ∈ A

(7)

Finally, since tun+1 is equal to savu(P ), constraints (iv) can be replaced in the MILP model
by tun+1 < wu × π, ∀Au ∈ A.

4 First experiments

The previous MILP model, was implemented using the C++ API for GUROBI
Optimization 6.0.0. The algorithm performance was evaluated on a PC with Linux



Ubuntu server 12.04, 8 Go of RAM. Since no standard benchmark instances exist for
our problem, the instances were built up using the RanGen1 generator [8]. For each
problem size, 100 instances were generated with an Order Strength (OS) value = 0.5.
To assess the efficiency of the MILP, we consider 6 sets of benchmark instances with
n ∈ {50, 100} and m ∈ {2, 3, 5}. The reward π equals α×m×LPath, where LPath
is the value of the longest path from s to t in terms of costs and α is a ratio. Because
problem instances were generated from activity-on-nodes networks, the number of
edges in the resulting network flow varies significantly from an instance to another
and is obviously larger than the number of vertices. To compare the solution and
to analyze the influence of the number of agents and the value of α, we varied the
value of α ∈ {0.1, 0.2, . . . , 0.9}. The results shows that the solving phase remains
fast since we solve instances up to 100 nodes (almost 800 edges) in less than 571s
when m = 2. Figure 4 shows the average relative flow increasing with respect to
the maximum flow (i.e. F

Fmax
) in function of the percentage of the reward α. It can

be expected that the larger π (i.e. the higher α), the larger the Nash-Flow (i.e. the
larger F

Fmax
). However, the customer may not want to waste money by paying more

than necessary to obtain a given flow, or by paying more without any flow increase.
Figure 4 shows the evolution of the flow value in function of the customer reward
for all considered instances. It is important to note that (i) the correlation between
flow increase and the reward is not linear, (ii) for m = 2 each additional reward
results into significant flow increase until α = 0.4, (iii) for m > 2 this stability can
be obtained from α = 0.8.

(a) n = 50 (b) n = 100



5 Conclusion

In this paper, we show that the problem of finding a Nash Equilibrium that maxi-
mizes the flow, already proved to be NP-hard, can be modeled and solved using a
MILP and we presents preliminary results to assess the approach efficiency. Further
works are ongoing to extend our approach to find an optimal sharing policy of the
reward and to consider the case where minimum capacity different from zero.
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