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Abstract

Different variants of hybrid kinetic-fluid models are considered for describing the in-
teraction of a bulk fluid plasma obeying MHD and an energetic component obeying a
kinetic theory. Upon using the Vlasov kinetic theory for energetic particles, two planar
Vlasov-MHD models are compared in terms of their stability properties. This is made
possible by the Hamiltonian structures underlying the considered hybrid systems, whose
infinite number of invariants makes the energy-Casimir method effective for determining
stability. Equilibrium equations for the models are obtained from a variational principle
and in particular a generalized hybrid Grad-Shafranov equation follows for one of the con-
sidered models. The stability conditions are then derived and discussed with particular
emphasis on kinetic particle effects on classical MHD stability.

1 Introduction

Several plasma systems comprise an energetic species interacting with a fluid bulk usually
described by magnetohydrodynamics (MHD). For example, in fusion plasmas, the fusion
reactions produce energetic alpha particles that escape the usual fluid closures and require
a kinetic theory description. Another example is provided by the interaction of Earth’s
magnetosphere with the energetic solar wind.

The interaction of an energetic component with a MHD plasma can be described by hy-
brid kinetic-fluid models that couple the energetic particle kinetics with the MHD equations.
Although nonlinear hybrid kinetic-fluid models already appeared in the 70’s [9], the very first
nonlinear hybrid MHD models were proposed in the early 90’s [7, 10, 11, 35], when it was
recognized that two different kinetic-MHD coupling schemes can be consistently formulated.
When the coupling occurs by Lorentz force terms in the MHD fluid equation, the hybrid
model is known as the current-coupling scheme (CCS); on the other hand, when the coupling
occurs by the kinetic pressure tensor, the corresponding model is referred to as the pressure-
coupling scheme (PCS). Moreover, each scheme may involve different possible variants to
describe the energetic particle kinetics: drift-kinetic, gyro-kinetic and full Vlasov-type equa-
tions. While the first two are most used in current computer simulations [17, 34, 38], the
simple mathematical form of the Vlasov equations can be advantageous in analytical studies
such as that presented in this work. For an example of how the Vlasov equation is employed
in hybrid MHD simulations, see [10].

While energy conservation for the CCS was first verified in [39], the PCS suffers (in its
original formulation) from not conserving the total energy; consequently, unphysical energy
sources may drive spurious instabilities [11]. The formulation of an energy-conserving PCS
variant was presented in [10], upon adopting the Vlasov description for the energetic particles.
In this case, while the fluid momentum equation is unaltered by energy conservation, the



accompanying kinetic equation is modified by the presence of terms that arise from expressing
the energetic particle kinetics in the frame of the MHD bulk. The energy-conserving PCS of
[10] was obtained by applying standard methods in the theory of noncanonical Hamiltonian
systems. More particularly, the Hamiltonian structures of MHD [29, 13, 22, 20, 25, 26, 27] and
of the Vlasov equation [21, 22, 19, 20, 25, 26, 27] were combined to obtain the Hamiltonian
structure of the CCS and of the new Hamiltonian PCS. Then, since the energy-conserving
PCS is also Hamiltonian, the general theory offers the opportunity to investigate stability
properties by applying the energy-Casimir method [32, 14, 25], a method that is a descendent
of the Lyapunov method known as thermodynamic stability in the early plasma literature
[18, 8, 6]. This method has two main advantages: it is relatively easy to implement and
it gives a stronger notion of stability than that based on linear analysis, for it can lead
to mathematically rigorous proofs of nonlinear stability and nonlinear bounds on growth.
However, the expense paid for this is that the conditions are generally less definitive. Also,
the energy-Casimir method is effective when applied to Hamiltonian systems possessing a
large number of Casimirs, which is the case for the CCS and the PCS when the dynamics
is restricted to a plane, an approximation that can be relevant for both laboratory and
astrophysical plasmas. This paper applies the energy-Casimir method to both the CCS and
the Hamiltonian PCS in order to analyze the stability properties of these two systems in
planar geometry.

In the remainder of this Introduction we describe the hybrid models in Sec. 1.1 and give
a brief description of the energy-Casimir method in Sec. 1.2. Then, in Sec. 2 we consider the
CCS. Here we present the Casimir invariants, obtain equilibria from the energy-Casimir vari-
ational principle, and then proceed to stability results. The analogous material is presented
in Sec. 3 for the PCS. Finally, in Sec. 4 we conclude.

1.1 Hybrid Vlasov-MHD in three and two dimensions

The nonlinear equations of the CCS and PCS appeared first in [35, 7], where they were
derived by direct manipulations on the separate equations for MHD and energetic particle
kinetics. Later, the CCS and the energy-conserving PCS were derived by operating on the

Poisson brackets for MHD and the Vlasov equation [10]. In planar geometry, one can study
two possible configurations depending on whether the magnetic field lies on the plane or
points vertically. Due to the analogy with reduced MHD [12, 14, 30], here we choose to study

the first case as it is more physically relevant. This section presents explicitly the nonlinear
equations of Vlasov-MHD models in both the CCS and the Hamiltonian PCS variants.
Upon introducing the Vlasov phase-space density f(x,p,t) and its first three moments

nz/fdsp, Kz/pdeP, IP>=/ppf013p,

(here, p is the kinetic momentum coordinate) the nonlinear equations for the CCS and the
Hamiltonian PCS are respectively:
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where ap, = g, /my, is the kinetic particle mass-to-charge ratio and we have used the ordinary
relation J = pg 1V x B. Both systems preserve the total energy
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where U(p) denotes the MHD internal energy so that the scalar pressure is expressed as
p = p?U'(p). The non conservative version of the PCS occurring in the plasma literature is
given by (4) and (6), while equation (5) is replaced by (2).

In order to study the simplest case, while retaining essential physical features of these
models, we consider the incompressible limit in two-dimensional geometry. In particular, we
assume that the magnetic and velocity fields lie in the x — y plane of a Cartesian coordinate
system, and we assume translational invariance along the z-direction. Consequently, we
replace the first of (3) and (6) by the divergenceless condition V - u = 0 and write

B=V,Ax12, u=V, X272, and w=2z-Vxu=-A¢, (8)

where AZ is the vector potential, ¢ is the stream function, and w is the usual vorticity of the
MHD fluid, the subscript L denotes planar components, and A denotes - the perpendicular
Laplacian without the subscript L. Then, after introducing the notation .A (x1) = [JA(x

we have the following equations for the planar incompressible CCS:

N A
W =l [T - e, 4] & = pA o
0 0 0
8—‘: + = V. f+ qh( V1A+ [, ]) 8;: app.ViA- 8pr 0 (10)

where [a,b] = 0za 8yb—8ya dzb is the canonical Poisson bracket, ¢ = (—A™')wand J = —AA
is the current density, which is directed perpendicular to the x — y plane.

By proceeding analogously, we also find the corresponding equations of motion for the
planar incompressible (Hamiltonian) PCS:

ow ~ 0A

o = [0l +ug LAl 42V x (V- Py, & = [0.4], (11)
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where we have defined P L= [pipL f d3p. The explicit derivation of the above planar models
is presented in the Appendix, which makes use of the corresponding Hamiltonian structures.
Both models conserve the following expression of the total energy:

H= 1/<w(—A_1)w ~Laaay 1/f pl*@’p) dx. (13)
2 Ho mp,

As outlined in the previous Section, the Hamiltonian nature of the CCS and the PCS
presented here allows a Lyapunov stability study that is made possible by direct application
of the energy-Casimir method [32, 11]. This procedure is discussed in the next Section. Unless
otherwise specified, the remainder of this paper will refer to the Hamiltonian PCS simply as
the PCS and we shall drop the hat symbol for simplicity of notation. Moreover, we shall set
all physical constants equal to 1, as they can always be restored without essential difficulties.



1.2 Stability and the energy-Casimir method

Consider a dynamical system Z = V (not necessarily Hamiltonian) defined on some space
Z, where z € Z can be a point or a trajectory, ‘ * ’ denotes time derivative, and V is
an autonomous vector field defined on Z. Equilibria of such system are solutions z. that
satisfy V' (ze) = 0. According to the standard definition of stability, an equilibrium point z.
of a dynamical system is said to be stable if, for any neighborhood N of z. there exists a
subneighborhood S C N of z, such that if Z, an initial condition, is in S then the trajectory
z(t) € N for all time t > 0.

The linear problem associated with the above dynamical system reads §z = DV (z.) - 02
and is obtained by expanding V' (z. + 0z) to first order. If §z remains in N, then the system
is said to be linearly stable, and to distinguish this kind of stability from that with dynamics
under the full vector field V' one adds the adjective nonlinear to describe the latter.

Assuming a solution of the form dz = Z exp(At) the linear problem becomes (DV — \id) -
zZ = 0, where id is the identity operator. The spectrum of DV, o(DV), is the set composed
of A € C for which the linear operator DV — Aid has no inverse, and an equilibrium point
is said to be spectrally stable if, for every A € o(DV'), A lies in the left half complex plane,
including the ordinate. This latter case, in which X is purely imaginary, corresponds to pure
oscillations, a case that is sometimes called neutral stability. This is the only kind of spectral
stability possessed by Hamiltonian systems.

We remark that there are logical relations between linear, nonlinear, spectral stability but
these can be subtle, particularly in infinite dimensions. Some descriptions of implications
between the different kinds of stability can be found, for instance, in Refs. [25, 14]. The
present work concentrates on the particular kind of stability in Hamiltonian systems that we
refer to as energy-Casimir stability.

For Hamiltonian systems, the vector field of our dynamical system is generated by a
Poisson bracket so that the equations of motion have the form z = {z, H}. In finite dimension,
one can write 3¢ = J¥ 0;H, where J is the Poisson bivector (cosymplectic form). Recalling
the above definition of equilibrium point, it follows then that, for Hamiltonian systems,
equilibrium points satisfy dH € Ker(J). A consequence of the Poisson bracket identities
is the Lie-Darboux theorem, which implies Ker(J) is spanned by Casimir invariants, which
satisfy {C, f} = 0, for all functions f (although there are serious unresolved issues with this
theorem for infinite-dimensional systems (see, e.g., Ref. [12])). Equilibria of Hamiltonian
systems are then critical points of an invariant energy function

F=H+C

and this fact is very useful for establishing stability criteria.

For finite-dimensional systems, definiteness (positive or negative) of the quadratic form
62F (z¢;62) assures both linear and nonlinear stability. For linear systems 62F is invariant,
in fact it is the Hamiltonian for the linear dynamics, and its definiteness means the phase
space region surrounding the equilibrium point is foliated by nested invariants sets that are
topologically spheres. The interior of these sets can thus serve as the subneighborhoods S
in the above definition of stability. For nonlinear systems F is invariant and, under mild
smoothness conditions, §°F determines the topological character of the level sets of F in
a sufficiently small neighborhood of the equilibrium point z.. This guarantees that for any
neighborhood N there is an S C N, determined by some level set of F, within which the flow
must remain.

For infinite-dimensional systems, such as those of interest here, the situation is consider-
ably more complicated. In the first place, even if 6F has definite sign, this does not imply
that an extremal point that satisfies 0F = 0 is in fact an extremum (maximum or minimum).
Moreover, for both linear and nonlinear stability one requires 6°F to lead to a norm for
defining open sets. This leads to a second and for nonlinear stability an often formidable
complication: even if one is able to construct a norm from §2F, a rigorous proof of nonlinear



stability requires that the solution to the dynamical system actually exists in this norm. For
most of the infinite-dimensional systems of interest in plasma physics, in particular, global
existence results are not available. Even in cases when existence results are available, it can
turn out that more than one choice of norm may be constructed and a given equilibrium
can be stable in one norm and not in another; in this case a physical determination must be
made about what is important. The reader interested in seeing what makes up a rigorous
application of the energy-Casimir method is referred to Refs. [1, 30].

In this paper we will derive criteria for which §?F is positive definite for our hybrid
models, following the practice in the physics literature (e.g. [12, 14, 28, 25]). We will refer
to this kind of stability as energy-Casimir stability. We remark that this stability implies
linear stability [25, 14] but, for infinite-dimensional systems nonlinear stability is subject to
the caveats mentioned above.

Finally, we find it opportune to recall that the classical dW criterion conceived and
adopted for ideal MHD stability analysis [5] is intimately related to a energy-Casimir stability.
Indeed, the variation of the potential energy in terms of the displacement vector, which is
denoted as 6W, is related (see, e.g., Ref. [25, 14]) to the second variation §2F, so that stability
in terms of §W implies energy-Casimir stability with respect to 62F. The connection between
the two criteria can be extended to reduced models obtained from MHD, as in the case e.g.
of compressible reduced MHD [33].

2 Stability of the planar CCS

This section presents the stability analysis of the planar incompressible CCS model (10)-
(9). After reviewing the corresponding Casimirs in both three and two dimensions, these
quantities will be used to provide energy-Casimir stability conditions.

2.1 Helicity and Casimirs

In three dimensions, the CCS equations (1)-(3) were shown in Ref. [I5] to possess the
following conservation law for the cross-helicity invariant:

d

— [u-Bdx=0

dt ’

which is accompanied by the usual conservation of magnetic helicity, that is [ B - A d3x.
Moreover, collisionless kinetic equations are well known [141] to possess an infinite family of
invariants that are expressed as

Cvlf] = /A(f) d*xd’p, (14)

where A is an arbitrary function of one variable. The above functional is also preserved by
the hybrid CCS.

In planar geometry, the above conservation laws produce a more general family of in-
variants for the incompressible CCS. This family of invariants can be combined into a single
functional

C = Cylfl + Cumplwr, A,  with  Chmplw, A] = / (w(A4) + w(4) )%

where Cysgp has arbitrary functions ® and ¥, and integrations are now over two-dimensional
domains. The Casimir Cygp for ideal MHD in planar geometry was obtained in Ref. [30],
where it was shown that the two terms are descendent from the conservation of cross-helicity
and magnetic helicity of three-dimensional MHD), respectively.



2.2 Equilibria via the first variation

As we shall see, the stability analysis for the planar CCS is actually straightforward due to
the direct sum structure of the Poisson bracket underlying CCS [10]. Upon following the
prescriptions in Section 1.2, the equilibria are identified by the variational principle

0F =6H + 6Cypp +6Cy =0.

Since the total energy (13) can also be split as H = Hy + Hypp, with

1

Hymplw, A] = B /(w(—Al)w - AAA) d?x, Hy[f] = ;/f Ip|?d®xd’p,

the equilibria are found from
SFumplw, Al + dFy[f] =0,

where Fyap = Hyup + Cyap and Fyy = Hy + Cy. Because the Hamiltonian and Casimirs
are additive, this implies

0Fmuplw, Al =0, 0Fv[f]=0.
Therefore, the equilibrium states for the hybrid CCS obtained from the variational principle

are simply given by MHD equilibria coexisting with Vlasov equilibria. Upon computing
6Fy = [(N +|p|?/2) 6 fd*xd?p and

5ﬂMD—/ﬁmm—mA1www¥x+/(—AA+w@um+wL@wA¥x

the following equilibrium conditions are obtained:

Ge + (I)(Ae) =0, (15)
A4y — w, @ (A) — W(A) =0, (16)
3P+ A(fe) =0. (17)

where the index e is used to denote quantities in the equilibrium configuration. All the above
equilibrium relations are well known and have been extensively discussed in [12, 14, 23]. In
particular, the first equation expresses the fact that, at equilibrium, streamlines are magnetic
flux functions. The second equation is a generalization of the Grad-Shafranov equation' that
includes flow, while the third implies (upon assuming an invertible A’) isotropic equilibria of
the type fe = fe(‘p|2/2)'

In [23] (and later in [37]) it was shown that the transformation

Ae
(A= [ VI= @R (18)

transforms (15) and (16) into Ay = F(x), where F' = x' ®” o A(x). Using (8) and (15) gives

U

P = _——-° 19

i (19)

where u. = |u.| and B. = |B¢|, we see that associated with every sub-Alfvénic MHD equi-
librium with flow there corresponds a static equilibrium state.

'"While the Grad-Shafranov equation is traditionally written in toroidal geometry, equation (16) simply
represents a slab version of the original. Following reference [141], we shall also call (16) and its hybrid
generalisation (see following sections) Grad-Shafranov equation.



2.3 Energy-Casimir stability via the second variation

The calculation of the second variation §?F proceeds analogously to those in the previous
section. Indeed, the same arguments lead to the stability criterion

P Fumplw, A >0  and  §*Fy[f] > 0.
Then, stability of the hybrid CCS requires that both the stability conditions for ideal MHD

(first inequality) and for the Vlasov kinetic equation (second inequality) are satisfied. More
explicitly, upon computing

82 Farrp ::u/(ﬁmﬁ¢—-vL&m2+(1—(¢®%|vlaAF%Px
+ / (w@" + 0" + 'AD') (§A)* d*x. (20)

From (20) the following sufficient conditions for positive definiteness are immediate:

@ <1, (21)
wd + 0"+ AP >0, (22)
A >0. (23)

In order to add some physical insight to expression (20) and conditions (21)—(23), we rewrite
(20) as in Ref. [23], viz.
B2

82 Funp = /{‘VﬁqﬂrVL <;;65A)

2 2 2 2
L 4 << —ue)Bexi-Vlﬂ— [Bexz-vl“e] [Bexz-vLBeb}dQX.

2 uz
+<-—6yVﬁm2 (24)

BZ BZ ¢ 282

The first term of (24) vanishes for Alfvénic motions, i.e., motions to neighboring equilibrium
states [28], the second term represents line bending energy, reduced by the presence of an
equilibrium flow. The first term of the second line can be recognized as the usual kink
term, also modified by the presence of flow, while the last term is interchange-like, that
involves curvature and ram pressure u2, taking the role of pressure, which does not occur
in low-3 reduced MHD. As follows from Eq. (19), the inequality (21) implies that one of
the conditions for stability is that the equilibrium flow be sub-Alfvénic. Condition (22) is
a sufficient condition for stability, but a more in-depth analysis would show that the line
bending term can add a positive contribution. (See e.g. Ref. [3]). Lastly, condition (23) is
the monotonicity-isotropy condition on the distribution function (see e.g. [31, 21]).

While the stability analysis of the hybrid CCS does not add any new physical feature to
the well-studied stability properties of ideal MHD and the usual convexity relation (23) for
Vlasov stability, the hybrid PCS leads to quite different results. These differences are the
subject of the remainder of this paper.

3 Stability of the planar PCS

This section contains the stability analysis of the planar PCS model (11) and (12). After
reviewing the corresponding Casimirs in both three and two dimensions, these quantities will
be used to provide stability conditions. Although the discussion of Casimirs and equilibria
for this case can also be found in Ref. [32], here we present new stability conditions that
recover the usual condition (23) for noncollisional kinetics.



3.1 Helicity and Casimirs

In three dimensions, the hybrid PCS of (4) and (6) preserves the usual magnetic helicity
as well as the Vlasov invariant (14). On the other hand, the usual expression for the cross-
helicity is not conserved and a velocity shift is required for the conservation of a modified
cross-helicity, which reads [15]

d
dt/B-(u—l—p_lK)d?’x:().

Then, in two dimensions, one obtains the following infinite set of Casimir invariants for
the incompressible PCS:

C = Cv[f] + CMHD[W,A] — /(I)(A)Z -VxK| d%x

where K| := [p,f d3p. The proof of the conservation relation C' = 0 was presented in Ref.
[32], by using the Poisson bracket structure. The last term above couples the parallel vector
potential A to the Vlasov distribution f and, as we shall see, this has a substantial effect on
the equilibrium configurations and their stability conditions.

3.2 Equilibria and hybrid Grad-Shafranov relation

Consider now the equilibrium conditions for the incompressible PCS in planar geometry.
Following again the general theory of Sec. 1.2, we set §F = 0. Unlike the CCS, the equilibrium
condition for the PCS do not split. They read

d0Fuuplw, Al + 0Fv|[f] + 0 [/d2x ®(A)z '/PL xVif d?’P} =0
Upon computing the variation of the new term,
) [/d%ub(A)z-/pL X VLfd?’p} = /d2x5Ac1>’z ~/pL xV, fdp (25)
—/ 6fz-pL xV, @ d>xd’p,

the equilibrium conditions are seen to be

bo + B(AL) =0 (26)

—AA+ (we—2- Vi x K1) P(A) + T'(A,) =0 (27)
2

2 V,0(A4) xpu + P4 N(f) =0, (28)

Using V| ¢e = Z X u,, (26) and (28) imply
1 1
§‘p—|—ue|2—§|ue|2—|—/\,:0, (29)
so that assuming an invertible A’, we obtain the following class of anisotropic equilibria:
1 1
fe :fe <2 ‘p + u6|2 - 5 |ue‘2> .
Next, an explicit computation [32] yields

Z-Vx/poed?’p:—VL-(nVL(I)):—Z-VL><(nue)



so that Eq. (27) reads
—AA+ P (A) V- (1 +n)VIP(Ae)) + P/(A) =0, (30)

which we shall call the hybrid Grad-Shafranov equation.
Recognize that the special case ®(A.) = — A, (Alfvén equilibrium) takes the relation (30)
to

Vi neVide)+ V' (A) =2-Vi X (neue) + ¥/ (A) =0 = Ac=A(2-V 1 x (neue)) ,

while the case ®(A.) = 0 produces the usual static Grad-Shafranov equilibria of ideal MHD
[12, 14]. For Alfvén one-dimensional equilibria with ®(A.) = —A.(x), one can study cases
that allow reducing the problem (30) to quadratures. In particular, if n. = n(A4.%) equation
(30) reads 0, (ne(AL2)AL) + W' = 0, where prime denotes differentiation with respect to the
argument. This equation arises as an Euler-Lagrange equation with Lagrangian L(A., AL) =
N.(AL2)/2—W(A,), where N, denotes the antiderivative of n.. Then, the variational structure
guarantees conservation of the total energy F = AL OL/OA! — L = A2N! — N_./2 + ¥, which
in turn can be written as A’2N! — N./2 = k(AL) = E — W. If the function & is invertible,
then the problem can be reduced to quadratures in the form A, = x~!(E — ¥). We notice
that for the case of Maxwellian distributions f.(x,p) o exp(|ue|?/2 — |p 4 we|?/2), one has
ne(AL%) = ngexp(—AL%/2) with constant ng. This yields x(A’) = ng(A’? + 1) exp(—A'2/2).
The function & in this case is not invertible due to the presence of a local maximum at A, = 1.
This is a manifestation of the resonance between the MHD and the kinetic component.

Having characterized the equilibria of the planar PCS, we can consider the energy-Casimir
conditions for stability, which we do in the next section.

3.3 Stability conditions and kinetic particle effects

As before, we compute the second variation, giving
62 F = 6* Faump + / / A" (5f)2d*xd3p + / / (z-pL x V1 f)®"(A)(5A)*d*xd>p
—9 //A” <A,, Sf(VL®' 0A+ PV 5A) -z x pl> d?xd®p
= 0°Fup + / / (z-pL x VL f)®"(A)(6A4)*d*xd®p
1 n
s / / A
1
+ 2/ A// A//
1 2 1
_2//1\" pL xV@’aA) d2xd3p—2//A”

= 0°Funp + //(2 pL x VL f)®"(A)(5A)2d*xd3p

+1//A//
5f— 2 'V, 6A -2 x pJ_‘ 2xd®p

w5 [N -5

—2/(TrHL)|VL<I>| (5A)2d2x+2//A// (pL - V.®)2(6A4)%d*xd’p

5f—ﬁvL<I>5A zxm‘ a?xd®p

2
5f — 2 'V 6A -7 x pL‘ xd’p

! 22 3
d'p, x V1 6A| d*xd°p

213
5f—A”VL(I>6A zxpL‘ d“xd’p

/@’Z(TrHL)\VLéA\QdQX—F2//AH d?(p, - V16A4)%d*xd’p



where IT; := [(A”)"'p,p, d3p. Thus, the PCS stability conditions are

(b/ 2 - 3].
¥ < T, (31
WO + U+ PAD — 2|V, PP TrI, >0 (32)
A >0, (33)

where w = w — 2 - V| X K is a shifted vorticity accounting for the contributions of both the
MHD and the kinetic components.
Notice that ¢, = —P(A.) implies u, = —P'(A)B,, so that the first stability condition
reads
B2>(1+42TrI)u?.

It follows from this expression that, for instance in the presence of a Maxwellian equilibrium
distribution function, a condition stronger than (21) is required on the equilibrium flow for
stability. Compared to the case of reduced MHD or to the CCS, it turns out indeed, that a
sub-Alfvénic equilibrium flow is no longer sufficient for stability in the presence of a population
of kinetic particles, even if the latter follows a Maxwellian distribution.

The condition (32), on the other hand, can be reformulated as

1 u? . . u? . V.B?
BgI:(I—B62>B6XZ-VJ_JH—<B6XZ-VJ_B2) (BeXZ~ 233 >]

e
2
Trll, > 0.  (34)

Ue Be X Z

B. B?

-VL(Z-VXK)—Q‘VL (;)

€

In the first line of the inequality (34) one can recognize the terms originated from 62 Fs g p
and already discussed in the case of the CCS. The remaining terms, on the other hand, are
peculiar to the PCS stability conditions and show an influence of the presence of the kinetic
population. In particular, in the first term of the second line, one is able to identify a further
possible source of instability analogous to the kink instability but with the role of the current
density played by the vorticity associated with the mean flow of the kinetic species. The last
term, on the other hand is destabilizing and depends on the second order moments of the
equilibrium distribution function.

Finally, upon deriving the equilibrium relation (29) with respect to p, we obtain

1
A":—? = /<0 and HL:—/féprld‘gp,
e
which states that distributions such that f, = —uv2f, for some constant v (e.g. Gaussian

distributions) are stable equilibria.

4 Conclusions

The Hamiltonian structures of two hybrid kinetic-MHD models have been presented and
their energy-Casimir stability properties have been analyzed. The two adopted models are
examples of the two paradigmatic coupling schemes adopted for hybrid models, i.e., the
CCS and the PCS. For the latter, in particular, the model we investigated corresponds
to a modification of the one derived in Ref. [7], in such a way that the resulting hybrid
model is energy-conserving and possesses a Hamiltonian structure. The Casimir invariants
for such models have been described and compared with those of ideal MHD in two and three
dimensions. Equilibria obtained by extremizing 6 F and the stability conditions corresponding
to the definiteness of §2F have then been derived and discussed.

In the case of the CCS, equilibrium relations and stability conditions derived with the
energy-Casimir method correspond to those that would be obtained by considering indepen-
dently 2D planar MHD and the Vlasov equation. In particular, we identified (by imposing
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definiteness of §2F) the conditions of having a sub-Alfvénic MHD flow, the convexity of the
distribution function, as well as the stability with respect to the ideal kink instability and to
an interchange-like instability.

A more interesting situation occurs for the PCS. In this case, setting to zero the first
variation of the free energy functional yields, among the equilibrium equations, a generalized
hybrid Grad-Shafranov equation, which accounts for the presence of both the MHD flow and
the kinetic particle population. With regard to stability, it emerges that the presence of
a kinetic particle population leads to a different condition on the MHD equilibrium speed,
whereas the convexity condition on the distribution function remains valid. In the case of a
Maxwellian distribution for the kinetic species, the MHD flow has indeed an upper bound
corresponding to the Alfvén speed diminished by a quantity proportional to the equilibrium
pressure of the kinetic population.

As complement to the above results, we have provided an Appendix containing derivations
of the planar CCS and PCS models and of their Hamiltonian structures.
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A Explicit derivation of planar Vlasov-MHD

This Appendix presents the explicit derivation of both CCS and Hamiltonian PCS in planar
geometry.
A.1 Planar current-coupling scheme

Consider the incompressible CCS equations (1)-(3). These comprise a Hamiltonian system
with Hamiltonian (7) and Poisson bracket [10]

{F,G}CCSZ/m-<5F VAR V6F>d3x

Sm  dm om om

5F §G 9 6F 006G\ 5 .
+/f({w’w}“’hB’apéf ap6f>d"dp

SF0G _SF 093G 3G 0 GF
B- o I 3 3
+q’”‘/f ( “5m om  Opdof  om 8p5f)d xd'p

5G G SFY\ 4
+/B-<><V><6B—5m><v 5B>d

SF _6G G _OF\ 4
‘/P(gm Vor om’ Vap>d (35)

where m = pu is the fluid momentum, as it is expressed in terms of the velocity u and the
density p. Then, we use the formula B =V x (Az) = V| A x Z together with the variational
relation

dm
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where w = Z -V x m. (See e.g. [, 2] for discussion of such relations.) With these formulas
in mind we compute the following term appearing in the fourth line of (35):

oF 6G\ 5 . oF 0G\ 13
/B-<5m><VX5B>dX—/CUTI(AZ) <curl<5w> (5A>d
_ G oF ) 3
— /M~<curl<5wz>xcurl(Az))dX

OF 0G| 4

—/A[5 5A]dx

where we have used dG/0A =z - 0G/JA and we have introduced the planar bracket [k, h] =
Oy kOyh — OykO,h. More importantly, we have

(3F 56 _,
‘m  dm/)

and
oF ) b oF
/fB-éx 0 (Sfd?' d3p /fa8 5? -VLAxidB'x
d G F 5
/fapzéf XVJ_Ad

9 oG 34
In addition, one computes

0 OF 0 6G 5 0 0F 9 0G5
/fB'apaf pofox /fw”af aposo

0 0G 0 OF 0 0F 0 6G
= [fvia. (205 900 908 9 O gy
/ fvs (apz 5f 0pL of  Op. of opL 5f>

Thus, replacing the above results in (35) yields the following Poisson bracket of the planar
incompressible CCS:

SF 5G SF G [6G S6F1\ .4

ra) = o[ 52| e [ (|55 - [ 5])
0 6G [6F 0 OF [6G 5 s

-/ f(avzaf[M—M[M)dxdp

oF 6G 0 0G 0 OF 0 0F 0 G
- —— ¢+ V.IA- —— | | d®xd?
/f <{5f 5f} L (apz 5f 0pL 0f _ 0p. of Op. 6f>> x@p

Then, upon using the total energy (13), one obtains

Ow =[o,w] + [J/pzfd3pdz,A] , WA = ¢, Al
atf+P'gi+(PLV¢A+[¢,A])gj—UZVLAaifL 0.

Notice that the longitudinal coordinate z plays no role in the dynamics and thus it can be
integrated out to yield the equations (9)-(10).
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A.2 Planar pressure-coupling scheme

Consider the incompressible PCS equations (4)-(6). These comprise a Hamiltonian system
with Hamiltonian (7) and Poisson bracket [10]

{F,G}PCSZ/m~ <6FoV5G5G V(SF)d?’x

om m Jdm oim

oF 6G 0 oF 0 0G

w [ ({5757 +oB g s < apy ) xep
oF oG oG oF

1 ({5r sy {5 ) e

+/B <6F><V><5G—5G><V><5F>d3x

dm /B om ’B
—/p<§§l.v‘§—£ Vﬁ)d?’x. (36)
In 2D, the terms in the third row become
[i1{55p e baxato= [1{50 0 v. 50 xafaxap (1)
/z VX/ {‘;f }d3xd3 (38)
/f{ pL X vj;i} d3x dp. (39)

The remaining terms in the bracket are computed as in the previous section of this Appendix.
Then, the Poisson bracket for the incompressible hybrid PCS reads as

oF 0G oF 0G 0G OF
(= fo[55 55 e (5553 - [55-53]) w0
—i—/f({(;f pJ_XVJ_(;G} {fscf; pJ_xVJ_(;F}) d3xd3p (41)
0F 606G 0 0G 0 OF ad 0F 0 6G 3 .3
- [1({5 57} Ve (o sr v apaer ) ) e @

Then, upon using the total energy (13), one obtains

8tw—[¢,w]—|—[J,A]+i-V><<VJ_-/plpJ_g0d3p> , A = [, A (43)
0 0 0 0
f +[f, ¥+ 8x]1 —((Z2-pLx VL)V =0V, A)- 8pr —pL-Vi4 81{2 =0 (44)

Again, notice that the longitudinal coordinate z plays no role in the dynamics and thus it
can be integrated out to yield the equations (11)-(12).
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