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P. Schläfer and N. Wehn
Microelectronic Systems Design Research Group

University of Kaiserslautern, Germany
{schlaefer,wehn}@eit.uni-kl.de

M. Alles and T. Lehnigk-Emden
Creonic GmbH

Kaiserslautern, Germany
info@creonic.com

E. Boutillon
Lab-STICC, CNRS UMR 6285
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Abstract—Non-binary low-density parity-check codes have
superior communications performance compared to their binary
counterparts. However, to be an option for future standards,
efficient hardware architectures must be developed. State-of-the-
art decoding algorithms lead to architectures suffering from low
throughput and high latency. The check node function accounts
for the largest part of the decoders overall complexity. In this
paper a new, hardware aware check node algorithm is proposed.
It has state-of-the-art communications performance while reduc-
ing the decoding complexity. Moreover the presented algorithm
allows for parallel processing of the check node operations which
is not applicable with currently used algorithms. It is therefore
an excellent candidate for future high throughput hardware
implementations.

I. INTRODUCTION

Upcoming standards like 5G will increase the demands on
throughput and latency of communication systems. Especially
applications like the Tactile Internet [1] require a significantly
reduced latency. At the same time, error free transmission
has to be guaranteed, which requires forward error correction
schemes. Low-Density Parity-Check (LDPC) codes where first
proposed by R.G. Gallager in 1963 [2] and rediscovered by
D. Mackay and others in 1996 [3]. In the following almost
two decades a lot of research has been carried out in this field.
Today many commercial standards (WiMAX, WiFi, DVB-
C2, DVB-S2, DVB-T2) make use of LDPC codes. Very long
binary LDPC codes have been proven to perform close to
the Shannon limit. However when considering short blocks
of only some hundred bit length for low latency applications,
they suffer under degradation in communications performance
of more than 0.5 dB. The extension of binary LDPC codes
to Galois Field (GF(q)) with q > 2 is a promising ap-
proach to solve this problem. Moreover Non-Binary Low-
Density Parity-Check (NB-LDPC) codes are closely related
to high-order modulation schemes. Thus an additional gain
in communications performance can be observed for systems
combining high-order modulation and NB-LDPC codes [4].
The performance gain of NB-LDPC codes comes at the cost
of significantly increased decoding complexity. The decoding
can be performed by message passing algorithms like Belief
Propagation (BP), however the complexity increases with the
size of the GF(q). A straightforward implementation of the
BP algorithm has a complexity of O(q2) [5]. In the last
years several approaches have been proposed to reduce the
decoding complexity without sacrificing the communications
performance. Algorithms working in the Fourier domain [6]
[7] have an excellent communications performance, but are

still too complex for efficient hardware architectures. Symbol
flipping algorithms [8] [9] in general have low complexity but
suffer from heavily degraded communications performance.
Approaches based on stochastic decoding [10] [11] have been
presented as an alternative decoding method but introduce
very high decoding latency. An extension of the well known
binary Min-Sum algorithm to the non-binary domain, called
Extended Min-Sum (EMS) algorithm [12] [13] [14] gives the
best compromise between hardware complexity and commu-
nications performance. Therefore in this paper we will focus
on the EMS algorithm which is the most promising starting
point for efficient architectures.

To achieve the required throughput of today’s applications,
executing the algorithms in software is not sufficient. Dedi-
cated hardware architectures become mandatory. The largest
complexity in the EMS algorithm is the computation of the
Check Node (CN). State-of-the-art architectures apply a so
called Forward-Backward (FWBW) scheme [15] to process the
CN. A serial calculation is carried out to reduce the hardware
cost and to allow for reuse of intermediate results during the
computation. However this scheme introduces high latency
and degrades the throughput. This effect increases significantly
when the size of the GF(q) or the CN degree grows.

In this paper we propose a new hardware aware algorithm
to perform the CN processing within the EMS decoding,
we call it Syndrome-Based (SYN) CN processing. While
achieving slightly better communications performance than
state-of-the-art hardware aware decoding algorithms, the SYN
CN processing has a lower complexity. Moreover it allows for
increased parallelism of the CN computation. Thus the SYN
CN processing is the first hardware aware algorithm for NB-
LDPC decoding, enabling low latency and high throughput
decoder architectures.

The paper is structured as follows. In Section II we review
the decoding of NB-LDPC codes making use of the EMS
algorithm. Section III describes the state-of-the-art FWBW
hardware aware decoding approach. Our new algorithm is
presented in Section IV and further optimizations are discussed
in Section V. Finally Section VI presents a comparison with
other decoding methods in means of complexity and commu-
nications performance.

II. EMS DECODING

This section reviews the EMS algorithm to give an
overview of the complete decoding process.



Let us consider an (N,K) NB-LDPC code over GF(q)
where N is the codeword length and K the number of
information symbols. The code is defined by a sparse parity
check matrix H with N columns, M rows and elements
hm,n. The transmitted codeword consists of the codeword
symbols c = (c0, c1, . . . , cN ), ci ∈ GF (q). The decoder
receives the noisy representation of the codeword symbols,
y = (y0, y1, . . . , yN ).The decoding process can be partitioned
in four main parts, the initialisation, the Variable Node (VN)
update, the CN update and the permutations in the Permutation
Nodes (PNs). For the optimal decoding performance each mes-
sage from one CN to VN or vice versa contains q Logarithmic
Likelihood Ratio (LLR) values representing the reliability of
each of the q GF symbols.

The first step in the EMS algorithm is the calculation of the
symbol LLRs for the received codeword. From each received
symbol yi a set of q LLR values is calculated. Under the
assumption that all GF(q) symbols are equiprobable, the LLRs
for VN v can be computed as follows:

Lv[x] = ln

(
P (yv|cv = x̃v)

P (yv|cv = x)

)
,∀x ∈ GF (q) . (1)

Instead of single LLR the set of q LLRs has to be transmit be-
tween the nodes. This fact accounts for the significant increase
in complexity compared to binary LDPC decoding. Note,
that x̃v is the GF(q) symbol that maximizes P (yv|cv = x)
and L[x̃v] = 0. Given this definition all Lv[x] ≥ 0 and
an increasing LLR represents a decreasing symbol reliability.
Within the decoding process messages from VN to PN are
denoted as Uvp, messages from PN to CN as Upc. Respectively
messages from CN to PN are called Vcp and messages from
PN to VN as Vpv .

In the first iteration the VNs do only forward the channel
values to the according CNs. The VN outputs are calculated as
Uvp[x] = Lv[x]. For all other iterations the VN operation is to
combine the channel values Lv with the dv incoming message
sets Vpv , where dv is the VN degree. The updated extrinsic
messages Uvp for VN v are calculated as follows:

Uvp[x] = Lv[x] +

dv∑
t=1,t6=p

Vtv[x],∀x ∈ GF (q), p = 1 . . . dv .

(2)
The VN function is to sum up all values for a certain
Galois field element received from the connected CNs and
the according channel information Lv[q]. This however has
to be performed for all q elements of the GF(q). To achieve
the same message structure as before (LLR = 0 for the most
reliable symbol, increasing LLR values for lower reliability),
a normalisation of the Uvp messages with respect to the most
reliable symbol has to be applied at the output of the VN.

The next step in the decoding is the permutation according
to the parity check matrix H . The permutation of the VN v
outputs Uvp is defined as:

Upc[x] = Uvp[h
−1
vc · x],∀x ∈ GF (q), p = 1 . . . dv , (3)

where Upc represents the input for CN c.

In the CN update dc edges from Upc are processed. The
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Fig. 1: CN architecture implementing the FWBW scheme. The
red line marks one of the serial processing paths.

outputs for CN c are calculated as follows:

Vcp[x] = min
xt6=p;

∑
t xt=x

dc∑
t=1;t6=p

Utc[xt],∀x ∈ GF (q), p = 1 . . . dc .

(4)
For every Galois field element x all possible input combina-
tions fulfilling the parity check constraint are evaluated. The
parity check constraint is given by the sum of the according
Galois field elements

∑dc

t=1;t 6=p Utc[xt] = x.

From all valid combinations the one with the highest
reliability (smallest LLR) is chosen. Again, this task has to
be performed for all q elements of the Galois field. The CN
computation is the most complex part of the decoding and has
a complexity of O(q2) when calculated straightforward with
the FWBW scheme [15].

Before one iteration is completed the outputs of CN c must
be reverse permuted.

Vpv[x] = Vcp[hvc · x],∀x ∈ GF (q), p = 1 . . . dc . (5)

This closes the loop and another iteration starts. The processing
of a block is stopped as soon as a valid codeword is detected.
To make this decision the estimated symbols x̂ need to be
computed for each VN v:

x̂v = min
x∈GF (q)

(
Lv[x] +

dv∑
p=1

Vpv[x]

)
. (6)

In state-of-the-art EMS decoding one important simplifi-
cation is applied. As it has been shown in [12] the sets of q
messages exchanged between VNs and CNs can be truncated
to carry only the nm most reliable values per edge without
sacrificing the communications performance. This approach
significantly reduces the implementation complexity and is
used for the algorithms presented in the following sections.

III. FWBW CN PROCESSING

In this section we will first review the state-of-the-art
decoding method for the CN calculation, the FWBW scheme.



The FWBW method applies a divide and conquer approach
to the CN processing. Each CN processes dc edges at a time
following Eq. (4). The FWBW scheme splits the processing
in three layers of dc − 2 so called Elementary Check Nodes
(ECNs). Each ECN processes only two edges at a time.
Figure 1 shows the resulting structure for a six input CN.
Intermediate results of the ECNs are reused in the later
stages and avoid recomputations. This significantly reduces
the problem size and allows for efficient architectures for
the ECN [16]. The processing of the ECN is based on the
assumption that the input sets are sorted according to their
LLR. Therefore the search space for the best elements can
be reduced systematically. In [17] the authors present a low
complexity scheme for the ECN processing which can be
implemented efficiently. However, due to the serial processing
it requires nm clock cycles. For the complete CN an additional
latency penalty of 2(dc− 2)+ 4 clock cycles is introduced by
the structure pointed out in Fig. 1, see [16] for a detailed
timing analysis. The overall computation time in clock cycles
for one CN is then calculated as follows:

Tfwbw = nm + 2(dc − 2) + 4 . (7)

This is the drawback of the FWBW approach. With increasing
nm and dc the processing time for a CN rises and leads to
high latency and low throughput of the complete NB-LDPC
decoder. Thus the FWBW method for the CN processing is
only an option for moderate sizes of the GF (nm is closely
coupled to q) and low Code Rates (CRs) as dc increases
significantly for high rate codes. Moreover a parallelization of
the FWBW processing is hardly possible which makes low
latency decoding infeasible.

IV. SYNDROME-BASED CN PROCESSING

As discussed before, the state-of-the-art way of CN pro-
cessing with the FWBW scheme has several drawbacks. Ar-
chitectures making use of the FWBW scheme suffer from
low throughput and high latency. Todays approaches to solve
these issues are limited to small GF(q)s with q ≤ 4 which
have only small gain in Frame Error Rate (FER) compared
to their binary counterparts [14]. Only with Galois fields of
high order significantly higher communications gains can be
achieved. Therefore we propose a new algorithm, the so called
SYN CN processing which can also be applied to Galois field
sizes of practical interest (q ≥ 64). The SYN CN can be
implemented in a parallel fashion to achieve high throughput
and low latency.

The basic structure of the SYN CN processing is depicted
in Fig. 2. In the first step of the algorithm the syndromes
are calculated. One syndrome is defined as the sum of one
GF(q), LLR tuple from each input. As for each input U , nm

tuples can be chosen, there is not just one syndrome but a
set of syndromes which we call S. Individual syndromes are
distinguished by the elements which are chosen for the sum
and denoted as subscripts Sx1,...xdc

. To achieve S, all possible
syndromes are calculated:

Sx1,...xdc
=

dc∑
t=1

Upt[xt],∀x1, . . . , xdc ∈ GF (q) . (8)

Syndrome Calculator

Sorter

Decorrelat.

...

...

... Sorter

Decorrelat.

Fig. 2: Syndrome-based CN processing

Each syndrome is represented by a tuple of LLR and GF(q)
values.

S =
⋃

Sx1,...xdc
,∀x1, . . . , xdc

∈ GF (q) . (9)

The syndrome set S is the union of all possible syndromes
Sx1,...xdc

.

Calculating the syndromes in S as the sum of elements over
all input edges (Eq. (8)), disregards one of the basic concepts
of BP algorithms: In- and output of the same edge must not be
correlated. Thus an additional step in the SYN CN processing
is the decorrelation of in- and output:

Si =
⋃

Sx1,...xdc
− Upi[xi],∀Sx1,...,xdc

∈ S, i = 1 . . . dc .
(10)

The result is a dedicated syndrome set Si for every output,
which has no correlation with input i. Once the Si sets
are computed, they are sorted by the syndrome reliability,
represented by the LLRs. This gives direct access to the nm

most reliable syndromes which constitute the CN output sets
Vcp.

The algorithm we proposed is an alternative to the conven-
tional FWBW processing. It is the first algorithm for high order
Galois fields allowing for massive parallel implementations
and thus high throughput and low latency. However, without
special treatment the calculation of the syndrome set S and the
sorting of Si introduce a high complexity. It has to be reduced
to make the algorithm attractive for an efficient hardware
implementation.

V. COMPLEXITY REDUCTION

In this section we are presenting an approach to reduce the
complexity of the afore introduced SYN CN algorithm. The
target is to allow the algorithm to be implemented efficiently in
hardware. Therefore we discuss algorithmic modifications for
simplifications of the syndrome set generation and the sorting
while maintaining the communications performance.

A. Reducing the syndrome set cardinality:

The first point to optimize is the calculation of the syn-
drome set S. For the output computation only the most reliable
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values of S are used which makes the computation of all other
syndromes superfluous. Thus a smart reduction of |S| can
significantly reduce the overall complexity of the algorithm
without sacrificing the communications performance.

The first step for a reduction of |S| is the separation of
syndromes with high reliability from ones with low reliability.
In the following, a concept similar to the configuration sets
introduced in [18] [19] is applied to the computation of S.
Therefore we define dc+1 deviation sets Di with i ∈ 0 . . . dc.
This procedure is just a separation of the syndrome set in sub-
sets:

S =

dc⋃
i=0

Di . (11)

Each set has i elements deviating from the most reliable
element as shown in Fig. 3. Each set contains only syndromes
deviating in exactly i elements from the most reliable element
as shown in Fig. 3. The subset D0 contains only one syndrome,
which is the sum of the most reliable elements from all inputs.
These sub-sets structure the data in a way that allows for easier
access to syndromes with high reliability. Figure 4 shows the
average LLR values of the syndromes in the sorted deviation
sets Di. One can observe, that the distribution of reliable LLRs
depends on the Signal-to-Noise Ratio (SNR). Syndromes with
more than two deviations e.g. Di for i > 2 have such a low
reliability that they rarely contribute to the generation of the
outputs. Thus we can limit the calculation of sub-sets Di to
the ones with a low amount of deviations.

Another parameter for reduction of |S| is the maximum
allowed distance di of elements contributing to deviation Di.
The distance describes the position of the element in the input
set relative to the most reliable element. The most reliable
element has the index zero. Less reliable elements have higher
indices which describe their distance to the most reliable
element. For the calculation of Di only elements with indices
less or equal to di are considered. The maximum allowed
distance for a certain deviation can be set dynamically based on
the LLR value of the elements or it is fixed, as a predefined
parameter. For each deviation a different maximum distance
can be set, see Fig. 3, e.g. the higher the number of allowed
deviations, the lower the maximum distance of the deviations,
d1 ≥ d2 ≥ · · · ≥ ddc

Using this scheme implicitly keeps the
best syndromes in each Di and removes the less reliable ones.
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Fig. 4: Averaged LLR values of Di for a GF(64), dc = 4 code.
Di for i > 1 are truncated and show only the 48 most reliable
syndromes.

The cardinality of the subsets Di can be calculated as follows:

|Di| =


(

dc
i

)
· (di)i if di ≥ 1; i > 0

1 if i = 0

0 else

(12)

Combining both proposed techniques strictly reduces the
cardinality of S and thus the computational complexity. The
most reliable syndromes are calculated and only unreliable
ones are removed. The parametrization for the number of
deviations and their maximum distances is a critical step in the
algorithm. Using for example only D0, D1 and D2 with fixed
distances d0 = 0, d1 = nm−1, d2 = 2, dc = 4 and nm = 13,
shrinks |S| from 28561 to 73. For a code in GF(64) this has
been shown to be a very good trade-off between complexity
and communications performance, see Section VI.

B. Simplifying sorting:

One big drawback of the original SYN CN algorithm
presented in Section IV is that every syndrome set Si must be
sorted separately to output the nm most reliable syndromes.
This is the case because of the decorrelation step applied
before. To avoid the sorting of the decorrelated syndrome
sets Si, a simple but effective approach can be chosen.
Instead of decorrelating every value, only syndromes using
the most reliable element from the current edge (LLR = 0)
are considered. All other syndrome are not used for the current
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edge output. By this approach the order of the syndromes is not
changed and it is sufficient to sort S instead of the dc Si sets. In
addition, the LLR values are not modified in the decorrelation
step which saves a real valued subtraction for every output
message. Finally only the most reliable input element and not
the complete input sets must be stored for the decorrelation.

Figure 5 shows the schematic operations of one decorrela-
tor. Each syndrome is denoted with the additional information
about which of the input edges contributed to the syndrome
with a deviation. SRC in Fig. 5 stores the edges where
deviations occurred and ADDRi represents the current edge.
A simple comparison evaluates if a deviation from the current
edge was involved in the syndrome calculation and thus if
the syndrome is valid for the current edge or not. Only if
no deviation occurred on the current edge, the decorrelated
message is marked as valid and used for the output Vi.

Even though the sorting has been reduced to the syndrome
set S, there is more potential for simplification. Sorting S can
be divided into sorting the deviation sets Di and merging them.
Especially for D1 the sorting can be further simplified. This is
achieved due to the previous knowledge we have of the input
data. We implicitly know that the sets Upc are sorted according
to their LLRs. The sorting of D1 thus is limited to merging
dc sorted sets. Performed serially, this is a trivial task that
introduces only minimal hardware overhead.

For the higher order deviations Di for i ≥ 2, the sorting
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Fig. 7: Sub-set generation for D2 with d2 = 2, and SRC
denoting the deviation positions.
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Fig. 8: Syndrome-based CN processing after algorithmic trans-
formation

can also be simplified because of the sorted input sets. Sorted
sub-sets can be generated with little effort which only have to
be merged to achieve the final set. An example of the sub-set
generation for D2 with d2 = 2 is given in Fig. 7 which can
be extended easily to other deviations and distances. Once the
sub-sets Di are sorted, the outputs are generated by merging
them sequentially as shown in Fig. 6. In the presented case
with dc = 4 exactly six sub-sets exist which are then merged
for further processing.

The proposed algorithmic modifications result in a slightly
different data flow, see Fig. 8. Summarized, three notable
benefits arise from the transformation:

• Significant reduction of |S|.
• Simplified sorting of S instead of Si.

• No LLR subtractions and no storage for Ui in the
decorrelation step.

VI. COMMUNICATIONS PERFORMANCE AND
COMPLEXITY COMPARISON

In the following section we discuss the quality of the pro-
posed algorithm in means of communications performance and
decoding complexity in means of required basic operations.



10-3

10-4

10-5

F
E

R

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5

Eb/N0[dB]

Comparison SYN: nm=13, di=(12,2,0,0) and EMS: nm=64

EMS: nm=64

SYN: di=(12,0,0,0)

SYN: di=(12,2,0,0)

SYN: di=(12,4,2,1)

Fig. 9: Communications performance of the SYN CN com-
pared to EMS decoding.

F
E

R

100

10-1

10-2

10-3

10-4

10-5

10-6

Eb/N0[dB]
1 1.5 2 2.5 3 3.5 4 4.5 5

Comparison SYN: nm=13, di=(12,2,0,0) and FWBW: nm=13

SYN: Iteration 3

SYN: Iteration 10

FWBW: Iteration 3

FWBW: Iteration 10

Fig. 10: Communications performance of the SYN CN com-
pared to the state-of-the-art FWBW scheme.

All results for the communications performance are ob-
tained with a bit true C++ model using Binary Phase Shift
Keying (BPSK) modulation and an Additive White Gaussian
Noise (AWGN) channel. The simulated NB-LDPC code has
a code word length N of 16 GF(64) symbols (96 bits), a CR
of 0.5, dv = 2 and dc = 4. The code has been generated
based on the approach presented in [20]. Both, the FWBW
and the SYN CN make use of truncated vectors of size
nm = 13, and perform a maximum of 10 iterations with
a two-phase scheduling. A bit true fixed-point model with
8 bits for the LLR representation is implemented. Figure 9
shows the performance of different implementations of the
EMS algorithm compared with an optimal EMS decoding (no
message truncation). For the syndrome based CN we have
considered up to four deviations with di = (d1, d2, d3, d4).
A second comparison shows the difference with respect to the
state-of-the-art hardware aware FWBW decoding. After ten
iterations the syndrome based CN computation has a superior
performance compared to the FWBW implementation, see
Fig. 10.

TABLE I: Comparison of algorithmic complexity for GF(64)
and GF(256). Parameters for GF(64) nm = 13, d1 = nm − 1,
d2 = 2. Parameters for GF(256) nm = 61, d1 = nm − 1,
d2 = 3.

Component LLR add. LLR comp. GF add.

FWBW CN GF(64) 102 (100%) 234 (100%) 102 (100%)
SYN CN GF(64) 24 (24%) 186 (79%) 271 (265%)

FWBW CN GF(256) 390 (100%) 1080 (100%) 390 (100%)
SYN CN GF(256) 60 (15%) 936 (87%) 787 (201%)

To compare the complexity of the proposed algorithm with
state-of-the-art decoding methods Table I lists the number of
required basic operations. On the one hand, the SYN CN
algorithm requires additional GF(q) additions. In a hardware
architecture they can be implemented with simple XOR logic
and thus are very cheap in means of required area. On the other
hand, the SYN approach uses only a small fraction of adders
(24%) and comparators (79%) for LLR values compared to
the FWBW algorithm. These operations require real valued
adders which are way more expensive than GF(q) adders. Thus
the comparison shows a significant benefit for the SYN CN
algorithm. Finally our investigation shows, that this holds also
for higher order Galois fields.

Regarding future hardware architectures, the proposed al-
gorithm generates a whole new design space. Both, serial and
partially parallel architectures can be explored. A serial pro-
cessing may achieve higher efficiency in means of throughput
per area, than state-of-the-art architectures but suffers from
the same drawbacks, i.e. high latency and low throughput.
Another possibility is the parallelization of the syndrome
generation and sorting, leading to a high throughput and low
latency architecture. First hardware experiments show promis-
ing results for the area efficiency of the proposed architectures.
In the future, an extensive study on architectures will be carried
out.

VII. CONCLUSION

We have presented a new hardware aware algorithm for the
CN processing of NB-LDPC decoders. Our investigations have
shown slightly better communications performance compared
to state-of-the-art hardware aware decoding algorithms. In ad-
dition a comparison of the algorithmic complexity reveals that
the proposed SYN CN processing has a lower complexity. The
SYN CN algorithm is the first hardware aware CN processing,
allowing for low latency and high throughput decoder archi-
tectures. In the next step we will design hardware architectures
based on the proposed algorithm to further explore its potential.
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