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Abstract

We consider the damped nonlinear wave (NLW) equation driven by a
spatially regular white noise. Assuming that the noise is non-degenerate
in all Fourier modes, we establish a large deviations principle (LDP) for
the occupation measures of the trajectories. The lower bound in the
LDP is of a local type, which is related to the weakly dissipative na-
ture of the equation and seems to be new in the context of randomly
forced PDE’s. The proof is based on an extension of methods developed
in [JNPS] and [JNPS14] in the case of kick forced dissipative PDE’s with
parabolic regularisation property such as, for example, the Navier–Stokes
system and the complex Ginzburg–Landau equations. We also show that a
high concentration towards the stationary measure is impossible, by prov-
ing that the rate function that governs the LDP cannot have the trivial
form (i.e., vanish on the stationary measure and be infinite elsewhere).
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0 Introduction

This paper is devoted to the study of the large deviations principle (LDP) for
the occupation measures of the stochastic nonlinear wave (NLW) equation in a
bounded domain D ⊂ R3 with a smooth boundary ∂D:

∂2t u+ γ∂tu−∆u+ f(u) = h(x) + ϑ(t, x), u|∂D = 0, (0.1)

[u(0), u̇(0)] = [u0, u1]. (0.2)

Here γ > 0 is a damping parameter, h is a function in H1
0 (D), and f is a

nonlinear term satisfying some standard dissipativity and growth conditions
(see (1.1)-(1.3)). These conditions are satisfied for the classical examples f(u) =
sinu and f(u) = |u|ρu−λu, where λ ∈ R and ρ ∈ (0, 2), coming from the damped
sine–Gordon and Klein–Gordon equations. We assume that ϑ(t, x) is a white
noise of the form

ϑ(t, x) = ∂tξ(t, x), ξ(t, x) =

∞
∑

j=1

bjβj(t)ej(x), (0.3)

where {βj} is a sequence of independent standard Brownian motions, the set
of functions {ej} is an orthonormal basis in L2(D) formed by eigenfunctions
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of the Dirichlet Laplacian with eigenvalues {λj}, and {bj} is a sequence of real
numbers satisfying

B1 :=

∞
∑

j=1

λjb
2
j <∞. (0.4)

We denote by (ut,Pu), ut = [ut, u̇t] the Markov family associated with this
stochastic NLW equation and parametrised by the initial condition u = [u0, u1].
The exponential ergodicity for this family is established in [Mar14], this result
is recalled below in Theorem 1.1.

The LDP for the occupation measures of randomly forced PDE’s has been
previously established in [Gou07b, Gou07a] in the case of the Burgers equation
and the Navier–Stokes system, based on some abstract results from [Wu01]. In
these papers, the force is assumed to be a rough white noise, i.e., it is of the
form (0.3) with the following condition on the coefficients:

cj−α ≤ bj ≤ Cj−
1
2−ε,

1

2
< α < 1, ε ∈

(

0, α−
1

2

]

.

In the case of a perturbation which is a regular random kick force, the LDP is
proved in [JNPS, JNPS14] for a family of PDE’s with parabolic regularisation
(such as the Navier–Stokes system or the complex Ginzburg–Landau equation).
See also [JNPS15] for the proof of the LDP and the Gallavotti–Cohen principle
in the case of a rough kick force.

The aim of the present paper is to extend the results and the methods of these
works under more general assumptions on both stochastic and deterministic
parts of the equations. The random perturbation in our setting is a spatially
regular white noise, and the NLW equation is only weakly dissipative and lacks
a regularising property. In what follows, we shall denote by µ the stationary
measure of the family (ut,Pu), and for any bounded continuous function ψ :
H1

0 (D) × L2(D) → R, we shall write 〈ψ, µ〉 for the integral of ψ with respect
to µ. We prove the following level-1 LDP for the solutions of problem (0.1), (0.3).

Main Theorem. Assume that conditions (0.4) and (1.1)-(1.3) are verified
and bj > 0 for all j ≥ 1. Then for any non-constant bounded Hölder-continuous
function ψ : H1

0 (D) × L2(D) → R, there is ε = ε(ψ) > 0 and a convex func-
tion Iψ : R → R+ such that, for any u ∈ Hs+1(D) × Hs(D) and any open
subset O of the interval (〈ψ, µ〉 − ε, 〈ψ, µ〉+ ε), we have

lim
t→∞

1

t
logPu

{

1

t

∫ t

0

ψ(u(τ)) dτ ∈ O

}

= − inf
α∈O

Iψ(α), (0.5)

where s > 0 is a small number. Moreover, limit (0.5) is uniform with respect
to u in a bounded set of Hs+1(D)×Hs(D).

We also establish a more general result of level-2 type in Theorem 1.2. These
two theorems are slightly different from the standard Donsker–Varadhan form
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(e.g., see Theorem 3 in [DV75]), since here the LDP is proved to hold locally on
some part of the phase space.

The proof of the Main Theorem is obtained by extending the techniques
and results introduced in [JNPS, JNPS14]. According to a local version of the
Gärtner–Ellis theorem, relation (0.5) will be established if we show that, for
some β0 > 0, the following limit exists

Q(β) = lim
t→+∞

1

t
logEu exp

(
∫ t

0

βψ(uτ ) dτ

)

, |β| < β0

and it is differentiable in β on (−β0, β0). We show that both properties can be
derived from a multiplicative ergodic theorem, which is a convergence result for
the Feynman–Kac semigroup of the stochastic NLW equation. A continuous-
time version of a criterion established in [JNPS14] shows that a multiplicative
ergodic theorem holds provided that the following four conditions are satis-
fied: uniform irreducibility, exponential tightness, growth condition, and uni-
form Feller property. The smoothness of the noise and the lack of a strong
dissipation and of a regularising property in the equation result in substantial
differences in the techniques used to verify these conditions. While in the case of
kick-forced models the first two of them are checked directly, they have a rather
non-trivial proof in our case, relying on a feedback stabilisation result and some
subtle estimates for the Sobolev norms of the solutions. Nonetheless, the most
involved and highly technical part of the paper remains the verification of the
uniform Feller property. Based on the coupling method, its proof is more intri-
cate here mainly due to a more complicated Foiaş–Prodi type estimate for the
stochastic NLW equation. We get a uniform Feller property only for potentials
that have a sufficiently small oscillation, and this is the main reason why the
LDP established in this paper is of a local type.

The paper is organised as follows. We formulate in Section 1 the second
main result of this paper on the level-2 LDP for the NLW equation and, by
using a local version of Kifer’s criterion, we reduce its proof to a multiplicative
ergodic theorem. Section 2 is devoted to the derivation of the Main Theorem.
In Sections 3 and 4, we are checking the conditions of an abstract result about
the convergence of generalised Markov semigroups. In Section 5, we prove the
exponential tightness property and provide some estimates for the growth of
Sobolev norms of the solutions. The multiplicative ergodic theorem is estab-
lished in Section 6. In the Appendix, we prove the local version of Kifer’s
criterion, the abstract convergence result for the semigroups, and some other
technical results which are used throughout the paper.
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Notation

For a Banach space X , we denote by BX(a,R) the closed ball in X of radius R
centred at a. In the case when a = 0, we write BX(R). For any function
V : X → R, we set OscX(V ) := supX V − infX V . We use the following spaces:

L∞(X) is the space of bounded measurable functions ψ : X → R endowed with
the norm ‖ψ‖∞ = supu∈X |ψ(u)|.

Cb(X) is the space of continuous functions ψ ∈ L∞(X), and C+(X) is the space
of positive continuous functions ψ : X → R.

Cqb (X), q ∈ (0, 1] is the space of functions f ∈ Cb(X) for which the following
norm is finite

‖ψ‖Cqb = ‖ψ‖∞ + sup
u6=v

|ψ(u)− ψ(v)|

‖u− v‖q
.

M(X) is the vector space of signed Borel measures on X with finite total mass
endowed with the topology of the weak convergence. M+(X) ⊂ M(X) is the
cone of non-negative measures.

P(X) is the set of probability Borel measures on X . For µ ∈ P(X) and ψ ∈
Cb(X), we denote 〈ψ, µ〉 =

∫

X
ψ(u)µ(du). If µ1, µ2 ∈ P(X), we set

|µ1 − µ2|var = sup{|µ1(Γ)− µ2(Γ)| : Γ ∈ B(X)},

where B(X) is the Borel σ-algebra of X .

For any measurable function w : X → [1,+∞], let Cw(X) (respectively, L∞
w (X))

be the space of continuous (measurable) functions ψ : X → R such that |ψ(u)| ≤
Cw(u) for all u ∈ X . We endow Cw(X) and L∞

w (X) with the seminorm

‖ψ‖L∞

w
= sup

u∈X

|ψ(u)|

w(u)
.

Pw(X) is the space of measures µ ∈ P(X) such that 〈w, µ〉 <∞.

For an open set D of R3, we introduce the following function spaces:

Lp = Lp(D) is the Lebesgue space of measurable functions whose pth power is
integrable. In the case p = 2 the corresponding norm is denoted by ‖ · ‖.

Hs = Hs(D), s ≥ 0 is the domain of definition of the operator (−∆)s/2 endowed
with the norm ‖ · ‖s:

Hs = D
(

(−∆)s/2
)

=







u =

∞
∑

j=1

ujej ∈ L2 : ‖u‖2s :=

∞
∑

j=1

λsju
2
j <∞







.

In particular, H1 coincides with H1
0 (D), the space of functions in the Sobolev

space of order 1 that vanish at the boundary. We denote by H−s the dual of Hs.
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1 Level-2 LDP for the NLW equation

1.1 Stochastic NLW equation and its mixing properties

In this subsection we give the precise hypotheses on the nonlinearity and recall
a result on the property of exponential mixing for the Markov family associated
with the flow of (0.1). We shall assume that f belongs to C2(R), vanishes at
zero, satisfies the growth condition

|f ′′(u)| ≤ C(|u|ρ−1 + 1), u ∈ R, (1.1)

for some positive constants C and ρ < 2, and the dissipativity conditions

F (u) ≥ C−1|f ′(u)|
ρ+2
ρ − νu2 − C, (1.2)

f(u)u− F (u) ≥ −νu2 − C, (1.3)

where F is a primitive of f , ν is a positive number less than (λ1 ∧ γ)/8. Let
us note that inequality (1.2) is slightly more restrictive than the one used
in [Mar14]; this hypothesis allows us to establish the exponential tightness
property (see Section 5.1). We consider the NLW equation in the phase space
H = H1 × L2 endowed with the norm

|u|2H = ‖u1‖
2
1 + ‖u2 + αu1‖

2, u = [u1, u2] ∈ H, (1.4)

where α = α(γ) > 0 is a small parameter. Under the above conditions, for
any initial data u0 = [u0, u1] ∈ H, there is a unique solution (or a flow) ut =
u(t; u0) = [ut, u̇t] of problem (0.1)-(0.3) in H (see Section 7.2 in [DZ92]). For
any s ∈ R, let Hs denote the space Hs+1 ×Hs endowed with the norm

|u|2Hs = ‖u1‖
2
s+1 + ‖u2 + αu1‖

2
s, u = [u1, u2] ∈ Hs

with the same α as in (1.4). If u0 ∈ Hs and 0 < s < 1−ρ/2, the solution u(t; u0)
belongs 1 to Hs almost surely. Let us define a function w : H → [0,∞] by

w(u) = 1 + |u|2Hs + E4(u), (1.5)

which will play the role of the weight function. Here

E(u) = |u|2H + 2

∫

D

F (u1) dx, u = [u1, u2] ∈ H,

is the energy functional of the NLW equation.

We consider the Markov family (ut,Pu) associated with (0.1) and define the
corresponding Markov operators

Pt : Cb(H) → Cb(H), Ptψ(u) =

∫

H

ψ(v)Pt(u, dv),

P∗
t : P(H) → P(H), P∗

tσ(Γ) =

∫

H

Pt(v,Γ)σ(dv), t ≥ 0,

1Some estimates for the Hs-norm of the solutions are given in Section 5.2.
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where Pt(u,Γ) = Pu{ut ∈ Γ} is the transition function. Recall that a mea-
sure µ ∈ P(H) is said to be stationary if P∗

tµ = µ for any t ≥ 0. The following
result is Theorem 2.3 in [Mar14].

Theorem 1.1. Let us assume that conditions (0.4) and (1.1)-(1.3) are verified
and bj > 0 for all j ≥ 1. Then the family (ut,Pu) has a unique stationary
measure µ ∈ P(H). Moreover, there are positive constants C and κ such that,
for any σ ∈ P(H), we have

|P∗
tσ − µ|∗L ≤ Ce−κt

∫

H

exp
(

κ|u|4H
)

σ(du),

where we set
|µ1 − µ2|

∗
L = sup

‖ψ‖
C1
b
≤1

|〈ψ, µ1〉 − 〈ψ, µ2〉|

for any µ1, µ2 ∈ P(H).

1.2 The statement of the result

Before giving the formulation of the main result of this section, let us intro-
duce some notation and recall some basic definitions from the theory of LDP
(see [DZ00]). For any u ∈ H, we define the following family of occupation
measures

ζt =
1

t

∫ t

0

δuτ dτ, t > 0, (1.6)

where uτ := u(τ ; u) and δv is the Dirac measure concentrated at v ∈ H. For
any V ∈ Cb(H) and R > 0, we set

QR(V ) = lim sup
t→+∞

1

t
log sup

u∈XR

Eu exp
(

t〈V, ζt〉
)

,

where XR := BHs(R), s ∈ (0, 1 − ρ/2). Then QR : Cb(H) → R is a convex
1-Lipschitz function, and its Legendre transform is given by

IR(σ) :=

{

supV ∈Cb(H)

(

〈V, σ〉 −QR(V )
)

for σ ∈ P(H),

+∞ for σ ∈ M(H) \ P(H).
(1.7)

The function IR : M(H) → [0,+∞] is convex lower semicontinuous in the weak
topology, and QR can be reconstructed from IR by the formula

QR(V ) = sup
σ∈P(H)

(

〈V, σ〉 − IR(σ)
)

for any V ∈ Cb(H). (1.8)

We denote by V the set of functions V ∈ Cb(H) satisfying the following two
properties.
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Property 1. For any R > 0 and u ∈ XR, the following limit exists (called
pressure function)

Q(V ) = lim
t→+∞

1

t
logEu exp

(
∫ t

0

V (uτ ) dτ

)

and does not depend on the initial condition u. Moreover, this limit is
uniform with respect to u ∈ XR.

Property 2. There is a unique measure σV ∈ P(H) (called equilibrium state)
satisfying the equality

QR(V ) = 〈V, σV 〉 − IR(σV ).

A mapping I : P(H) → [0,+∞] is a good rate function if for any a ≥ 0 the
level set {σ ∈ P(H) : I(σ) ≤ a} is compact. A good rate function I is non-
trivial if the effective domain DI := {σ ∈ P(H) : I(σ) <∞} is not a singleton.
Finally, we shall denote by U the set of functions V ∈ Cb(H) for which there is
a number q ∈ (0, 1], an integer N ≥ 1, and a function F ∈ Cqb (HN ) such that

V (u) = F (PNu), u ∈ H, (1.9)

where HN := HN × HN , HN := span{e1, . . . , eN}, and PN is the orthogonal
projection in H onto HN . Given a number δ > 0, Uδ is the subset of func-
tions V ∈ U satisfying Osc(V ) < δ.

Theorem 1.2. Under the conditions of the Main Theorem, for any R > 0,
the function IR : M(H) → [0,+∞] defined by (1.7) is a non-trivial good rate
function, and the family {ζt, t > 0} satisfies the following local LDP.

Upper bound. For any closed set F ⊂ P(H), we have

lim sup
t→∞

1

t
log sup

u∈XR

Pu{ζt ∈ F} ≤ −IR(F ). (1.10)

Lower bound. For any open set G ⊂ P(H), we have

lim inf
t→∞

1

t
log inf

u∈XR
Pu{ζt ∈ G} ≥ −IR(W ∩G). (1.11)

Here 2 IR(Γ) := infσ∈Γ I(σ) for Γ ⊂ P(H) and W := {σV : V ∈ V},
where σV is the equilibrium state 3 corresponding to V .

Furthermore, there is a number δ > 0 such that Uδ ⊂ V and for any V ∈ Uδ,
the pressure function QR(V ) does not depend on R.

This theorem is proved in the next subsection, using a multiplicative ergodic
theorem and a local version of Kifer’s criterion for LDP. Then in Section 2, we
combine it with a local version of the Gärtner–Ellis theorem to establish the
Main Theorem.

2The infimum over an empty set is equal to +∞.
3By the fact that IR is a good rate function, the set of equilibrium states is non-empty for

any V ∈ Cb(H). In Property 2, the important assumption is the uniqueness.
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1.3 Reduction to a multiplicative ergodic theorem

In this subsection we reduce the proof of Theorem 1.2 to some properties related
to the large-time behavior of the Feynman–Kac semigroup defined by

PV
t ψ(u) = Eu

{

ψ(ut) exp

(
∫ t

0

V (uτ ) dτ

)}

.

For any V ∈ Cb(H) and t ≥ 0, the application PV
t maps Cb(H) into itself. Let

us denote by PV ∗
t : M+(H) → M+(H) its dual semigroup, and recall that a

measure µ ∈ P(H) is an eigenvector if there is λ ∈ R such that PV ∗
t µ = λtµ

for any t > 0. Let w be the function defined by (1.5). From (5.24) with m = 1
it follows that PV

t maps 4 Cw(H
s) into itself (note that w1 = w in (5.24)). We

shall say that a function h ∈ Cw(H
s) is an eigenvector for the semigroup PV

t

if PV
t h(u) = λth(u) for any u ∈ Hs and t > 0. Then we have the following

theorem.

Theorem 1.3. Under the conditions of the Main Theorem, there is δ > 0 such
that the following assertions hold for any V ∈ Uδ.

Existence and uniqueness. The semigroup PV ∗
t admits a unique eigenvec-

tor µV ∈ Pw(H) corresponding to an eigenvalue λV > 0. Moreover, for
any m ≥ 1, we have

∫

H

[|u|mHs + exp(κE(u))] µV (du) <∞, (1.12)

where κ := (2α)−1B and B :=
∑

b2j . The semigroup PV
t admits a unique

eigenvector hV ∈ Cw(H
s) ∩ C+(H

s) corresponding to λV normalised by
the condition 〈hV , µV 〉 = 1.

Convergence. For any ψ ∈ Cw(H
s), ν ∈ Pw(H), and R > 0, we have

λ−tV PV
t ψ → 〈ψ, µV 〉hV in Cb(XR) ∩ L

1(H, µV ) as t→ ∞, (1.13)

λ−tV PV ∗
t ν → 〈hV , ν〉µV in M+(H) as t→ ∞. (1.14)

This result is proved in Section 6. Here we apply it to establish Theorem 1.2.

Proof of Theorem 1.2. Step 1: Upper and lower bounds. We apply Theorem 7.1
to prove estimates (1.10) and (1.11). Let us consider the following totally or-
dered set (Θ,≺), where Θ = R∗

+ ×XR and ≺ is a relation defined by (t1, u1) ≺
(t2, u2) if and only if t1 ≤ t2. For any θ = (t, u) ∈ Θ, we set rθ := t and ζθ := ζt,
where ζt is the random probability measure given by (1.6) defined on the prob-
ability space (Ωθ,Fθ,Pθ) := (Ω,F ,Pu). The conditions of Theorem 7.1 are
satisfied for the family {ζθ}θ∈Θ. Indeed, a family {xθ ∈ R, θ ∈ Θ} converges
if and only if it converges uniformly with respect to u ∈ XR as t → +∞.

4When we write Cw(Hs) or C(XR), the sets Hs and XR are assumed to be endowed with
the topology induced by H.
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Hence (7.1) holds with Q = QR, and for any V ∈ V , Properties 1 and 2 imply
limit (7.3) and the uniqueness of the equilibrium state. It remains to check the
following condition, which we postpone to Section 5.

Exponential tightness. There is a function Φ : H → [0,+∞] whose level sets
{u ∈ H : Φ(u) ≤ a} are compact for any a ≥ 0 and

Eu exp

(
∫ t

0

Φ(uτ ) dτ

)

≤ Cect, u ∈ XR, t > 0

for some positive constants C and c.

Theorem 7.1 implies that IR is a good rate function and the following two
inequalities hold for any closed set F ⊂ P(H) and open set G ⊂ P(H)

lim sup
θ∈Θ

1

rθ
logPθ{ζθ ∈ F} ≤ −IR(F ),

lim inf
θ∈Θ

1

rθ
log Pθ{ζθ ∈ G} ≥ −IR(W ∩G).

These inequalities imply (1.10) and (1.11), since we have the equalities

lim sup
θ∈Θ

1

rθ
logPθ{ζθ ∈ F} = lim sup

t→∞

1

t
log sup

u∈XR

Pu{ζt ∈ F},

lim inf
θ∈Θ

1

rθ
logPθ{ζθ ∈ G} = lim inf

t→∞

1

t
log inf

u∈XR
Pu{ζt ∈ G}.

Step 2: Proof of the inclusion Uδ ⊂ V . Let δ > 0 be the constant in
Theorem 1.3. Taking ψ = 1 in (1.13), we get Property 1 with QR(V ) := logλV
for any V ∈ Uδ (in particular, Q(V ) := QR(V ) does not depend on R).

Property 2 is deduced from limit (1.13) in the same way as in [JNPS14].
Indeed, for any V ∈ Uδ, we introduce the semigroup

S
V,F
t ψ(u) = λ−tV h−1

V PV+F
t (hV ψ)(u), ψ, F ∈ Cb(H), t ≥ 0, (1.15)

the function

QVR(F ) := lim sup
t→+∞

1

t
log sup

u∈XR

log(SV,F
t 1)(u), (1.16)

and the Legendre transform IVR : M(H) → [0,+∞] of QVR(·). The arguments of
Section 5.7 of [JNPS14] show that σ ∈ P(H) is an equilibrium state for V if and
only if IVR (σ) = 0. So the uniqueness follows from the following result which is
a continuous-time version of Proposition 7.5 in [JNPS14]. Its proof is given in
the Appendix.

Proposition 1.4. For any V ∈ Uδ and R > 0, the measure σV = hV µV is the
unique zero of IVR .
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Step 3: Non-triviality of IR. We argue by contradiction. Let us assume
that DIR is a singleton. By Proposition 1.4 with V = 0, we have that the sta-
tionary measure µ is the unique zero 5 of IR, so DIR = {µ}. Then (1.8) implies
that Q(V ) = 〈V, µ〉 for any V ∈ Cb(H). Let us choose any non-constant V ∈ Uδ
such that 〈V, µ〉 = 0. Then Q(V ) = 0, and limit (1.13) with ψ = 1 implies
that λV = eQ(V ) = 1 and

sup
t≥0

E0 exp

(
∫ t

0

V (uτ ) dτ

)

<∞, (1.17)

where E0 means that we consider the trajectory issued from the origin. Com-
bining this with the central limit theorem (see Theorem 2.5 in [Mar14] and The-
orem 4.1.8 and Proposition 4.1.4 in [KS12]), we get V = 0. This contradicts the
assumption that V is non-constant and completes the proof of Theorem 1.2.

2 Proof of the Main Theorem

Step 1: Proof in the case ψ ∈ U . For any R > 0 and non-constant ψ ∈ U , we
denote

IψR(p) = inf{IR(σ) : 〈ψ, σ〉 = p, σ ∈ P(H)}, p ∈ R,

where IR is given by (1.7). Then QR(βψ) is convex in β ∈ R, and using (1.8),
it is straightforward to check that

QR(βψ) = sup
p∈R

(

βp− IψR(p)
)

for β ∈ R.

By well-known properties of convex functions of a real variable (e.g., see [RV73]),
QR(βψ) is differentiable in β ∈ R, except possibly on a countable set, the right
and left derivativesD+QR(βψ) andD

−QR(βψ) exist at any β andD−QR(βψ) ≤
D+QR(βψ). Moreover, the following equality holds for some β, p ∈ R

QR(βψ) = βp− IψR(p) (2.1)

if and only if p ∈ [D−QR(βψ), D
+QR(βψ)]. Let us set β0 := δ/(4‖ψ‖∞),

where δ > 0 is the constant in Theorem 1.2. Then for any |β| ≤ β0, we
have βψ ∈ Uδ ⊂ V and QR(βψ) does not depend on R > 0; we set Q(βψ) :=
QR(βψ). Let us show that D−Q(βψ) = D+Q(βψ) for any |β| < β0, i.e., Q(βψ)
is differentiable at β. Indeed, assume that p1, p2 ∈ [D−Q(βψ), D+Q(βψ)]. Then
equality (2.1) holds with p = pi, i = 1, 2. As IR is a good rate function, there

are measures σi ∈ P(H) such that 〈ψ, σi〉 = pi and IR(σi) = IψR(pi), i = 1, 2.
Thus

Q(βψ) = βpi − IψR(pi) = 〈βψ, σi〉 − IR(σi),

i.e., σ1 and σ2 are equilibrium states corresponding to V = βψ. As βψ ∈ V , from
Property 2 we derive that σ1 = σ2, hence p1 = p2. Thus Q(βψ) is differentiable

5Note that when V = 0, we have λV = 1, hV = 1, IV
R

= IR, and µV = µ.
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at β for any |β| < β0. Let us define the convex function

Qψ(β) :=

{

Q(βψ), for |β| ≤ β0,

+∞, for |β| > β0
(2.2)

and its Legendre transform

Iψ(p) := sup
β∈R

(

βp−Qψ(β)
)

for p ∈ R. (2.3)

Then Iψ is a finite convex function not depending on R > 0. As Qψ(β) is
differentiable at any |β| < β0 and (7.3) holds with Q = Qψ(β) (with respect to
the directed set (Θ,≺) defined in the proof of Theorem 1.2), we see that the
conditions of Theorem A.5 in [JOPP12] are satisfied 6. Hence, we have (0.5) for
any open subset O of the interval Jψ := (D+Qψ(−β0), D

−Qψ(β0)).

Step 2: Proof in the case ψ ∈ Cb(H). Let us first define the rate function
Iψ : R → R+ in the case of a general function ψ ∈ Cb(H). To this end, we
take a sequence ψn ∈ U such that ‖ψn‖∞ ≤ ‖ψ‖∞ and ψn → ψ in C(K) for
any compact K ⊂ H. The argument of the proof of property (a) in Section 5.6
in [JNPS14] implies that Property 1 holds with V = βψ for any |β| ≤ β0,
where β0 is defined as in Step 1, and for any compact set K ⊂ P(H), we have

sup
σ∈K

|〈ψn − ψ, σ〉| → 0 as n→ ∞. (2.4)

Moreover, from the proof of Proposition 3.17 in [FK06] it follows that

QR(βψn) → QR(βψ) for |β| ≤ β0. (2.5)

This implies that QR(βψ) does not depend on R when |β| ≤ β0, so we can
define the functions Qψ and Iψ by (2.2) and (2.3), respectively.

Let Jψ be the interval defined in Step 1. To establish limit (0.5), it suffices
to show that for any open subset O ⊂ Jψ the following two inequalities hold

lim sup
t→∞

1

t
log sup

u∈XR

Pu{ζ
ψ
t ∈ O} ≤ −Iψ(O), (2.6)

lim inf
t→∞

1

t
log inf

u∈XR
Pu{ζ

ψ
t ∈ O} ≥ −Iψ(O), (2.7)

where ζψt := 〈ψ, ζ〉. To prove (2.6), we first apply (1.10) for a closed subset
F ⊂ P(H) defined by F = {σ ∈ P(H) : 〈ψ, σ〉 ∈ O}, where O is the closure
of O in R:

lim sup
t→∞

1

t
log sup

u∈XR

Pu{ζ
ψ
t ∈ O} ≤ lim sup

t→∞

1

t
log sup

u∈XR

Pu{ζ
ψ
t ∈ O}

= lim sup
t→∞

1

t
log sup

u∈XR

Pu{ζt ∈ F}

≤ −IR(F ). (2.8)

6 Theorem A.5 in [JOPP12] is stated in the case Θ = R+. However, the proof presented
there remains valid for random variables indexed by a directed set.
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As QR(βψ) ≤ Qψ(β) for any β ∈ R, we have

Iψ(O) ≤ IψR(O). (2.9)

It is straightforward to check that

IψR(O) = IR(F ). (2.10)

From the continuity of Iψ it follows that Iψ(O) = Iψ(O). Combining this
with (2.8)-(2.10), we get (2.6).

To establish (2.7), we first recall that the exponential tightness property and
Lemma 3.2 in [JNPS14] imply that for any a > 0 there is a compact Ka ⊂ P(H)
such that

lim sup
t→∞

1

t
log sup

u∈XR

Pu{ζt ∈ Kca} ≤ −a. (2.11)

Let us take any p ∈ O and choose ε > 0 so small that that (p− 2ε, p+2ε) ⊂ O.
Then for any a > 0, we have

Pu{ζ
ψ
t ∈ O} ≥ Pu{ζ

ψ
t ∈ (p− 2ε, p+ 2ε), ζt ∈ Ka}. (2.12)

By (2.4), we can choose n ≥ 1 so large that

sup
σ∈Ka

|〈ψn − ψ, σ〉| ≤ ε.

Using (2.12), we get

Pu{ζ
ψ
t ∈ O} ≥ Pu{ζ

ψn
t ∈ (p− ε, p+ ε), ζt ∈ Ka}

≥ Pu{ζ
ψn
t ∈ (p− ε, p+ ε)} − Pu{ζt ∈ Kca}. (2.13)

We need the following elementary property of convex functions; see the Ap-
pendix for the proof.

Lemma 2.1. Let J ⊂ R be an open interval and fn : J → R be a sequence of
convex functions converging pointwise to a finite function f . Then we have

lim sup
n→∞

D+fn(x) ≤ D+f(x),

lim inf
n→∞

D−fn(x) ≥ D−f(x), x ∈ J.

This lemma implies that, for sufficiently large n ≥ 1, we have

(p− ε, p+ ε) ⊂ Jψn = (D+Qψn(−βn0 ), D
−Qψn(βn0 )),

where βn0 := δ/(4‖ψn‖∞). Hence the result of Step 1 implies that

lim
t→∞

1

t
logPu{ζ

ψn
t ∈ (p− ε, p+ ε)} = −Iψn((p− ε, p+ ε))
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uniformly with respect to u ∈ XR. As

lim sup
n→∞

Qψn(β) ≤ Qψ(β), β ∈ R,

we have
lim inf
n→∞

Iψn(q) ≥ Iψ(q), q ∈ R.

This implies that

lim inf
n→∞

Iψn((p− ε, p+ ε)) ≥ Iψ((p− ε, p+ ε)).

Thus we can choose n ≥ 1 so large that

lim inf
t→∞

1

t
log inf

u∈XR
Pu{ζ

ψn
t ∈ (p− ε, p+ ε)} ≥ −Iψ((p− ε, p+ ε))− ε.

Combining this with (2.13) and (2.11) and choosing a > Iψ((p− ε, p+ ε)) + ε,
we obtain

lim inf
t→∞

1

t
log inf

u∈XR
Pu{ζ

ψ
t ∈ O} ≥ −Iψ((p− ε, p+ ε))− ε.

Since p ∈ O is arbitrary and ε > 0 can be chosen arbitrarily small, we get (2.7).

Step 3: The interval Jψ. Let us show that if ψ ∈ Cqb (H), q ∈ (0, 1] is non-
constant, then the interval Jψ = (D+Qψ(−β0), D

−Qψ(β0)) is non-empty and
contains the point 〈ψ, µ〉. Clearly we can assume that 〈ψ, µ〉 = 0. As Qψ(0) = 0,
it is sufficient to show that β = 0 is the only point of the interval [−β0, β0],
where Qψ(β) vanishes. Assume the opposite. Then, replacing ψ by −ψ if
needed, we can suppose that there is β ∈ (0, β0] such that Qψ(β) = 0. As in
Step 3 of Theorem 1.2, this implies

sup
t≥0

E0 exp

(

β

∫ t

0

ψ(uτ ) dτ

)

<∞

and ψ ≡ 0. This contradicts our assumption that ψ is non-constant and com-
pletes the proof of the Main Theorem.

3 Checking conditions of Theorem 7.4

The proof of Theorem 1.3 is based on an application of Theorem 7.4. In this
section, we verify the growth condition, the uniform irreducibility property, and
the existence of an eigenvector for the following generalised Markov family of
transition kernels (see Definition 7.3)

PVt (u,Γ) = (PV ∗
t δu)(Γ), V ∈ Cb(H), Γ ∈ B(H), u ∈ H, t ≥ 0

in the phase space X = H endowed with a sequence of compacts XR = BHs(R),
R ≥ 1 and a weight function w defined by (1.5). The uniform Feller property
is the most delicate condition to check in Theorem 7.4, it will be established in
Section 4. In the rest of the paper, we shall always assume that the hypotheses
of Theorem 1.2 are fulfilled.
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3.1 Growth condition

Since we takeXR = BHs(R), the setX∞ in the growth condition in Theorem 7.4
will be equal to Hs which is dense in H. For any u ∈ Hs and t ≥ 0, we
have u(t; u) ∈ Hs, so the measure PVt (u, ·) is concentrated on Hs. As V is a
bounded function, condition (7.12) is verified. Let us show that estimate (7.11)
holds for any V with a sufficiently small oscillation.

Proposition 3.1. There is a constant δ > 0 and an integer R0 ≥ 1 such that,
for any V ∈ Cb(H) satisfying Osc(V ) < δ, we have

sup
t≥0

‖PV
t w‖L∞

w

‖PV
t 1‖R0

<∞, (3.1)

where 1 is the function on H identically equal to 1 and ‖ · ‖R0 is the L∞ norm
on XR0 .

Proof. Without loss of generality, we can assume that V ≥ 0 and Osc(V ) =
‖V ‖∞. Indeed, it suffices to replace V by V − infH V . We split the proof
of (3.1) into two steps.

Step 1. Let us show that there are δ0 > 0 and R0 ≥ 1 such that

sup
t≥0

‖PV
t 1‖L∞

w

‖PV
t 1‖R0

<∞, (3.2)

provided that ‖V ‖∞ < δ0. To prove this, we introduce the stopping time

τ(R) = inf{t ≥ 0 : |ut|Hs ≤ R}

and use the following result.

Lemma 3.2. There are positive numbers δ0, C, and R0 such that

Eue
δ0τ(R0) ≤ Cw(u), u ∈ Hs. (3.3)

We omit the proof of this lemma, since it is carried out by standard ar-
guments, using the Lyapunov function w and estimate (5.24) for m = 1 (see
Lemma 3.6.1 in [KS12]). Setting Gt := {τ(R0) > t} and

ΞV (t) := exp

(
∫ t

0

V (us) ds

)

, (3.4)

we get

PV
t 1(u) = EuΞV (t) = Eu

{

IGtΞV (t)
}

+ Eu

{

IGctΞV (t)
}

=: I1 + I2. (3.5)

Since V ≥ 0, we have PV
t 1(u) ≥ 1. Combining this with (3.3) and ‖V ‖∞ < δ0,

we obtain for any u ∈ Hs

I1 ≤ EuΞV
(

τ(R0)
)

≤ Eu exp
(

δ0τ(R0)
)

≤ C w(u) ≤ C w(u) ‖PV
t 1‖R0 .
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The strong Markov property and (3.3) imply

I2 ≤ Eu

{

IGtΞV (τ(R0))Eu(τ(R0))ΞV (t)
}

≤ Eu{e
δ0τ(R0)} ‖PV

t 1‖R0 ≤ C w(u) ‖PV
t 1‖R0 ,

where we write u(τ(R0)) instead of uτ(R0). Using (3.5) and the estimates for I1
and I2, we get (3.2).

Step 2. To prove (3.1), we set δ := δ0 ∧ (α/2) and assume that ‖V ‖∞ < δ
and t = Tk, where k ≥ 1 is an integer and T > 0 is so large that q := 2e−T

α
2 < 1.

Then, using the Markov property and (5.24), we get

PV
Tkw(u) ≤ eTδEu {ΞV (T (k − 1))w(uTk)}

= eTδEu

{

ΞV (T (k − 1))Eu(T (k−1))w(uT )
}

≤ eTδEu

{

ΞV (T (k − 1))[2e−Tαw(uT (k−1)) + C1]
}

≤ qPV
T (k−1)w(u) + eTδC1P

V
T (k−1)1(u).

Iterating this and using fact that V ≥ 0, we obtain

PV
Tkw(u) ≤ qkw(u) + (1− q)−1eTδC1P

V
Tk1(u).

Combining this with (3.2), we see that

A := sup
k≥0

‖PV
Tkw‖L∞

w

‖PV
Tk1‖R0

<∞.

To derive (3.1) from this, we use the semigroup property and the fact that V is
non-negative and bounded:

‖PV
t w‖L∞

w
= ‖PV

t−Tk(P
V
Tkw)‖L∞

w
≤ C2‖P

V
Tkw‖L∞

w
,

‖PV
t 1‖R0 ≥ ‖PV

Tk1‖R0 ,

where k ≥ 0 is such that Tk ≤ t < T (k + 1) and

C2 := sup
s∈[0,T ]

‖PV
s w‖L∞

w
≤ eT‖V ‖∞ sup

s∈[0,T ]

‖Psw‖L∞

w
<∞.

So we get

sup
t≥0

‖PV
t w‖L∞

w

‖PV
t 1‖R0

≤ C2A < +∞.

This completes the proof of the proposition.
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3.2 Uniform irreducibility

In this section, we show that the family {PVt } satisfies the uniform irreducibility
condition with respect to the sequence of compacts {XR}. Since V is bounded,
we have

PVt (u, dv) ≥ e−t‖V ‖∞Pt(u, dv), u ∈ H,

where Pt(u, ·) stands for the transition function of (ut,Pu). So it suffices to
establish the uniform irreducibility for {Pt}.

Proposition 3.3. For any integers ρ,R ≥ 1 and any r > 0, there are positive
numbers l = l(ρ, r, R) and p = p(ρ, r) such that

Pl(u, BH(û, r)) ≥ p for all u ∈ XR, û ∈ Xρ. (3.6)

Proof. Let us show that, for sufficiently large d ≥ 1 and any R ≥ 1, there is a
time k = k(R) such that

Pk(u, Xd) ≥
1

2
, u ∈ XR. (3.7)

Indeed, by (5.24) for m = 1, we have

Eu|ut|
2
Hs ≤ Euw(ut) ≤ 2e−αtw(u) + C1.

Combining this with the estimate

|E(u)| ≤ C2(1 + |u|4H), (3.8)

we get
Eu|ut|

2
Hs ≤ C3e

−αtR16 + C1, u ∈ XR.

The Chebyshev inequality implies that

Pt(u, Xd) ≥ 1− d−2(C3e
−αtR16 + C1).

Choosing t = k and d so large that e−αkR16 ≤ 1 and d2 > 2(C3 + C1), we
obtain (3.7).

Combining (3.7) with Lemma 3.4 and the Kolmogorov–Chapman relation,
we get (3.6) for l = k +m and p = q/2.

Lemma 3.4. For any integers d, ρ ≥ 1 and any r > 0, there are positive
numbers m = m(d, ρ, r) and q = q(d, ρ, r) such that

Pm(v, BH(û, r)) ≥ q for all v ∈ Xd, û ∈ Xρ. (3.9)

Proof. It is sufficient to prove that there is m ≥ 1 such that

Pm(v, BH(û, r/2)) > 0 for all v ∈ Xd, û ∈ X̃ρ, (3.10)
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where X̃ρ = {u = [u1, u2] ∈ Xρ : u1, u2 ∈ C∞
0 (D)}. Indeed, let us take

this inequality for granted and assume that (3.9) is not true. Then there are
sequences vj ∈ Xd and ûj ∈ Xρ such that

Pm(vj , BH(ûj , r)) → 0. (3.11)

Moreover, up to extracting a subsequence, we can suppose that vj and ûj
converge in H. Let us denote by v∗ and û∗ their limits. Clearly, v∗ ∈ Xd

and û∗ ∈ Xρ. Choosing j ≥ 1 so large that |ûj − û∗|H < r/2 and applying the
Chebyshev inequality, we get

Pm(v∗, BH(û∗, r)) ≤ Pm(vj , BH(ûj , r/2)) + P{|u(m; vj)− u(m; v∗)|H ≥ r/2}

≤ Pm(vj , BH(ûj , r/2)) + 4/r2 E|u(m; uj)− u(m; v∗)|
2
H.

Combining this with (3.11) and using the convergence vj → v∗ and a density
property, we arrive at a contradiction with (3.10). Thus, inequality (3.9) is
reduced to the derivation of (3.10). We shall prove the latter in three steps.

Step 1: Exact controllability. In what follows, given any ϕ ∈ C(0, T ;H1),
we shall denote by Sϕ(t; v) the solution at time t of the problem

∂2t u+ γ∂tu−∆u+ f(u) = h+ ϕ̇, u|∂D = 0, t ∈ [0, T ]

issued from v. Let v̂ = [v̂, 0], where v̂ ∈ H1 is a solution of

−∆v̂ + f(v̂) = h(x).

In this step we prove that for any û = [û1, û2] ∈ X̃ρ, there is ϕ∗ satisfying

ϕ∗ ∈ C(0, 1;H1) and Sϕ∗
(1; v̂) = û. (3.12)

First note that, since the function f is continuous from H1 to L2, we have

−∆v̂ = −f(v̂) + h ∈ L2,

so that v̂ ∈ H2. Moreover, since f is also continuous from H2 to H1 (recall that
f vanishes at the origin), we have f(v̂) ∈ H1. As h ∈ H1, it follows that

−∆v̂ ∈ H1. (3.13)

Let us introduce the functions

u(t) = a(t)v̂ + b(t)û1 + c(t)û2, (3.14)

ϕ∗(t) =

∫ t

0

(∂2t u+ γ∂tu−∆u+ f(u)− h) dτ,

where a, b, c ∈ C∞([0, 1],R) satisfy

a(0) = 1, a(1) = ȧ(0) = ȧ(1) = 0, b(1) = 1, b(0) = ḃ(0) = ḃ(1) = 0,

ċ(1) = 1, c(0) = c(1) = ċ(0) = 0.
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Then, we have [u(0), u̇(0)] = v̂, [u(1), u̇(1)] = û, and Sϕ∗
(1; v̂) = û. Let us

show the first relation in (3.12). In view of (3.14) and the smoothness of the
functions a, b and c, we have

∂2t u+ γ∂tu− h ∈ C(0, 1;H1)

and thus it is sufficient to prove that

−∆u+ f(u) ∈ C(0, 1;H1). (3.15)

Since u ∈ C(0, 1;H2), we have f(u) ∈ C(0, 1;H1). Moreover, in view of (3.13)
and the smoothness of û1 and û2, we have −∆u ∈ C(0, 1;H1). Thus, inclusion
(3.15) is established and we arrive at (3.12). Let us note that by continuity and
compactness, there is κ = κ(v̂, ρ, r) > 0, not depending on û ∈ X̃ρ, such that

Sϕ∗
(1; v) ∈ BH(û, r/4) for any v ∈ BH(v̂,κ). (3.16)

Step 2: Feedback stabilisation. We now show that there is m̃ ≥ 1 depending
only on d and κ such that for any v ∈ Xd there is ϕ̃v satisfying

ϕ̃v ∈ C(0, m̃;H1) and Sϕ̃v
(m̃, v) ∈ B(v̂,κ). (3.17)

To see this, let us consider the flow ṽ(t; v) associated with the solution of the
equation

∂2t ṽ + γ∂tṽ −∆ṽ + f(ṽ) = h+ PN [f(ṽ)− f(v̂)], t ∈ [0, m̃] (3.18)

issued from v ∈ Xd, where PN stands for the orthogonal projection in L2 onto
the subspace spanned by the functions e1, e2, . . . , eN . Then, in view of Propo-
sition 6.5 in [Mar15], for N ≥ N(|v̂|H, d), we have

|ṽ(m̃; v)− v̂|2H ≤ |v− v̂|2H e−αm̃ ≤ Cd e
−αm̃ < κ

for m̃ sufficiently large. It follows that (3.17) holds with the function

ϕ̃v(t) =

∫ t

0

PN [f(ṽ)− f(v̂)] dτ.

Step 3: Proof of (3.10). Let us take m = m̃+ 1 and, for any v ∈ Xd, define
a function ϕv(t) on the interval [0,m] by

ϕv(t) =

{

ϕ̃v(t) for t ∈ [0,m− 1],

ϕ̃v(m− 1) + ϕ∗(t−m+ 1) for t ∈ [m− 1,m].

In view of (3.12), (3.16), and (3.17), we have ϕv(t) ∈ C(0,m;H1) and Sϕv
(m; v) ∈

BH(û, r/2). Hence there is δ > 0 such that Sϕ(m; v) ∈ BH(û, r/2) provided
‖ϕ− ϕv‖C(0,m;H1) < δ. It follows that

Pm(v, BH(û, r/2)) ≥ P{‖ξ − ϕv‖C(0,m;H1) < δ}.

To complete the proof, it remains to note that, due to the non-degeneracy of ξ,
the term on the right-hand side of this inequality is positive.
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3.3 Existence of an eigenvector

For any m ≥ 1, let us define functions wm, w̃m : H → [1,+∞] by

wm(u) = 1 + |u|2mHs + E4m(u), (3.19)

w̃m(u) = wm(u) + exp(κE(u)), u ∈ H, (3.20)

where κ is the constant in Theorem 1.3. The following proposition proves the
existence of an eigenvector µ = µ(t, V,m) for the operator PV ∗

t for any t > 0.
We shall see in Section 6 that the measure µ actually does not depend on t
and m.

Proposition 3.5. For any t > 0, V ∈ Cb(H) and m ≥ 1, the operator PV ∗
t

admits an eigenvector µ = µ(t, V,m) ∈ P(H) with a positive eigenvalue λ =
λ(t, V,m):

PV ∗
t µ = λµ.

Moreover, we have
∫

H

w̃m(u)µ(du) <∞, (3.21)

‖PV
t wm‖XR

∫

XcR

wm(u)µ(du) → 0 as R → ∞. (3.22)

Proof. Step 1. We first establish the existence of an eigenvector µ for PV ∗
t with

a positive eigenvalue and satisfying (3.21). Let t > 0 and V be fixed. For
any A > 0 and m ≥ 1, let us introduce the convex set

DA,m = {σ ∈ P(H) : 〈w̃m, σ〉 ≤ A},

and consider the continuous mapping from DA,m to P(H) given by

G(σ) = PV ∗
t σ/PV ∗

t σ(H).

Thanks to inequality (5.25), we have

〈w̃m, G(σ)〉 ≤ exp (tOscH(V )) 〈w̃m,P
∗
tσ〉

≤ 2 exp (t(OscH(V )− αm)) 〈w̃m, σ〉+ Cm exp (tOscH(V )) .
(3.23)

Assume that m is so large that

OscH(V ) ≤ αm/2 and exp(−αmt/2) ≤ 1/4,

and let A := 2Cme
αmt. Then, in view (3.23), we have 〈w̃m, G(σ)〉 ≤ A for

any σ ∈ DA,m, i.e., G(DA,m) ⊂ DA,m. Moreover, it is easy to see that the
set DA,m is compact in P(H) (we use the Prokhorov compactness criterion to
show that it is relatively compact and the Fatou lemma to prove that it is closed).
Due to the Leray–Schauder theorem, the map G has a fixed point µ ∈ DA,m.
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Note that, by the definitions of DA,m and G, the measure µ is an eigenvector
of PV ∗

t with positive eigenvalue λ := PV ∗
t µ(H) and satisfies (3.21).

Step 2. We now establish (3.22). Let us fix an integerm ≥ 1 and let n = 17m.
In view of the previous step, there is an eigenvector µ satisfying 〈wn, µ〉 < ∞.
From the Cauchy–Schwarz and Chebyshev inequalities it follows that

∫

XcR

wm(u)µ(du) ≤ 〈w2
m, µ〉

1/2(µ(Xc
R))

1/2 ≤ Cm〈wn, µt,V 〉R
−n. (3.24)

On the other hand, using (5.24) and (3.8), we get

‖PV
t wm‖XR ≤ exp(t‖V ‖∞) sup

u∈XR

Euwm(ut) ≤ C′
m exp(t‖V ‖∞)(R16m + 1).

Combining this with (3.24), we obtain (3.22).

4 Uniform Feller property

4.1 Construction of coupling processes

As in the case of discrete-time models considered in [JNPS, JNPS14], the proof
of the uniform Feller property is based on the coupling method. This method has
proved to be an important tool for the study of the ergodicity of randomly forced
PDE’s (see Chapter 3 in [KS12] and the papers [KS02, Mat02, Oda08, Mar14]).
In this section, we recall a construction of coupled trajectories from [Mar14],
which was used to establish the exponential mixing for problem (0.1), (0.3).
This construction will play a central role in the proof of the uniform Feller
property in the next section.

For any z, z′ ∈ H, let us denote by ut and u′t the flows of (0.1), (0.3) issued
from z and z′, respectively. For any integer N ≥ 1, let v = [v, ∂tv] be the flow
of the problem

∂2t v+γ∂tv−∆v+f(v)+PN(f(u)−f(v)) = h+ϑ(t, x), v|∂D = 0, v(0) = z′.
(4.1)

The laws of the processes {vt, t ∈ [0, 1]} and {u′t, t ∈ [0, 1]} are denoted by λ(z, z′)
and λ(z′), respectively. We have the following estimate for the total variation
distance between λ(z, z′) and λ(z′).

Proposition 4.1. There is an integer N1 ≥ 1 such that, for any N ≥ N1,
ε > 0, and z, z′ ∈ H, we have

|λ(z, z′)− λ(z′)|var ≤ C∗ε
a + C∗

[

exp
(

CNε
a−2|z− z′|2He

(|E(z)|+|E(z′)|)
)

− 1
]1/2

,

(4.2)
where a < 2, C∗, and CN are positive numbers not depending on ε, z, and z′.

This proposition is essentially established in Section 4.2 in [Mar14] in a dif-
ferent form, and we shall omit the proof. By Proposition 1.2.28 in [KS12], there
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is a probability space (Ω̂, F̂ , P̂) and measurable functions V ,V ′ : H×H× Ω̂ →
C([0, 1],H) such that (V(z, z′),V ′(z, z′)) is a maximal coupling for (λ(z, z′), λ(z′))
for any z, z′ ∈ H. We denote by ṽ = [ṽt, ∂tṽ] and ũ′t = [ũ′t, ∂tũ

′] the restrictions
of V and V ′ to time t ∈ [0, 1]. Then ṽt is a solution of the problem

∂2t ṽ + γ∂tṽ −∆ṽ + f(ṽ)− PNf(ṽ) = h+ ψ(t), ṽ|∂D = 0, ṽ(0) = z′,

where the process {
∫ t

0
ψ(τ) dτ, t ∈ [0, 1]} has the same law as

{

ξ(t)−

∫ t

0

PNf(uτ ) dτ, t ∈ [0, 1]

}

.

Let ũt = [ũ, ∂tũ] be a solution of

∂2t ũ+ γ∂tũ−∆ũ + f(ũ)− PNf(ũ) = h+ ψ(t), ũ|∂D = 0, ũ(0) = z.

Then {ũt, t ∈ [0, 1]} has the same law as {ut, t ∈ [0, 1]} (see Section 6.1 in [Mar14]
for the proof). Now the coupling operators R and R′ are defined by

Rt(z, z
′, ω) = ũt, R′

t(z, z
′, ω) = ũ′t, z, z′ ∈ H, ω ∈ Ω̂.

By Proposition 4.1, if N ≥ N1, then for any ε > 0, we have

P̂{∃t ∈ [0, 1] s.t. ṽt 6= ũ′t}

≤ C∗ε
a + C∗

[

exp
(

CNε
a−2|z− z′|2He

(|E(z)|+|E(z′)|)
)

− 1
]1/2

. (4.3)

Let (Ωk,Fk,Pk), k ≥ 0 be a sequence of independent copies of the probabil-

ity space (Ω̂, F̂ , P̂). We denote by (Ω,F ,P) the direct product of the spaces
(Ωk,Fk,Pk), and for any z, z′ ∈ H, ω = (ω1, ω2, . . .) ∈ Ω, and k ≥ 0, we
set ũ0 = u, ũ′0 = u′, and

ũt(ω) = Rτ (ũk(ω), ũ
′
k(ω), ω

k), ũ′t(ω) = R′
τ (ũk(ω), ũ

′
k(ω), ω

k),

ṽt(ω) = Vτ (ũk(ω), ũ
′
k(ω), ω

k),

where t = τ + k, τ ∈ [0, 1). We shall say that (ũt, ũ
′
t) is a coupled trajectory at

level N issued from (z, z′).

4.2 The result and its proof

The following theorem establishes the uniform Feller property for the semi-
group PV

t for any function V ∈ Uδ with sufficiently small δ > 0. The property
is proved with respect to the space C = U which is a determining family for P(H)
and contains the constant functions.

Theorem 4.2. There are positive numbers δ and R0 such that, for any func-
tion V ∈ Uδ, the family {‖PV

t 1‖
−1
R PV

t ψ, t ≥ 1} is uniformly equicontinuous
on XR for any ψ ∈ U and R ≥ R0.
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Proof. To prove this result, we develop the arguments of the proof of Theo-
rem 6.2 in [JNPS14]. For any δ > 0, V ∈ Uδ, and ψ ∈ U , we have

PV
t ψ(u) = Eu

{

(ΞV ψ)(ut, t)
}

,

where

(ΞV ψ)(ut, t) := exp

(
∫ t

0

V (uτ ) dτ

)

ψ(ut). (4.4)

We prove the uniform equicontinuity of the family {gt, t ≥ 1} on XR, where

gt(u) = ‖PV
t 1‖

−1
R PV

t ψ(u).

Without loss of generality, we can assume that 0 ≤ ψ ≤ 1 and infH V = 0,
so that OscH(V ) = ‖V ‖∞. We can assume also that the integer N entering
representation (1.9) is the same for ψ and V and it is denoted by N0.

Step 1: Stratification. Let us take any N ≥ N0 and z, z′ ∈ XR such that
d := |z− z′|H ≤ 1, and denote by (Ω,F ,P) the probability space constructed in
the previous subsection. Let us consider a coupled trajectory (ut, u

′
t) := (ũt, ũ

′
t)

at level N issued from (z, z′) and the associated process vt := ṽt. For any
integers r ≥ 0 and ρ ≥ 1, we set7

Ḡr =

r
⋂

j=0

Gj , Gj = {vt = u′t, ∀t ∈ (j, j + 1]}, Fr,0 = ∅,

Fr,ρ =

{

sup
τ∈[0,r]

(
∫ τ

0

(

‖∇uτ‖
2 + ‖∇u′τ‖

2
)

dτ − Lτ

)

≤ |E(z)| + |E(z′)|+ ρ;

|E(ur)|+ |E(u′r)| ≤ ρ

}

,

where L is the constant in (4.11). We also define the pairwise disjoint events

A0 = Gc0, Ar,ρ =
(

Ḡr−1 ∩G
c
r ∩ Fr,ρ

)

\ Fr,ρ−1, r ≥ 1, ρ ≥ 1, Ã = Ḡ+∞.

Then, for any t ≥ 1, we have

PV
t ψ(z)−PV

t ψ(z
′) = E

{

IA0

[

(ΞV ψ)(ut, t)− (ΞV ψ)(u
′
t, t)
]}

+

∞
∑

r,ρ=1

E
{

IAr,ρ
[

(ΞV ψ)(ut, t)− (ΞV ψ)(u
′
t, t)
]}

+ E
{

IÃ

[

(ΞV ψ)(ut, t)− (ΞV ψ)(u
′
t, t)
]}

= It0(z, z
′) +

∞
∑

r,ρ=1

Itr,ρ(z, z
′) + Ĩt(z, z′), (4.5)

7The event Ḡr is well defined also for r = +∞.
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where

It0(z, z
′) := E

{

IA0

[

(ΞV ψ)(ut, t)− (ΞV ψ)(u
′
t, t)
]}

,

Itr,ρ(z, z
′) := E

{

IAr,ρ
[

(ΞV ψ)(ut, t)− (ΞV ψ)(u
′
t, t)
]}

,

Ĩt(z, z′) := E
{

IÃ

[

(ΞV ψ)(ut, t)− (ΞV ψ)(u
′
t, t)
]}

.

To prove the uniform equicontinuity of {gt, t ≥ 1}, we first estimate these three
quantities.

Step 2: Estimates for It0 and Itr,ρ. Let δ1 > 0 and R0 ≥ 1 be the numbers
in Proposition 3.1. Then, if Osc(V ) < δ1 and R ≥ R0, we have the following
estimates

|It0(z, z
′)| ≤ C1(R, V )‖PV

t 1‖R P{A0}
1/2, (4.6)

|Itr,ρ(z, z
′)| ≤ C2(R, V )er‖V ‖∞‖PV

t 1‖R P{Ar,ρ}
1/2 (4.7)

for any integers r, ρ ≥ 1. Let us prove (4.7), the other estimate is similar. First
assume that r ≤ t. Using the inequalities 0 ≤ ψ ≤ 1, the positivity of ΞV ψ, and
the Markov property, we derive

Itr,ρ(z, z
′) ≤ E

{

IAr,ρ(ΞV ψ)(ut, t)
}

≤ E
{

IAr,ρ(ΞV 1)(ut, t)
}

= E
{

IAr,ρE
[

(ΞV 1)(ut, t)
∣

∣Fr
]}

≤ er‖V ‖∞E
{

IAr,ρ(P
V
t−r1)(ur)

}

,

where {Ft} stands for the filtration generated by (ut, u
′
t). Then from (3.1) it

follows that
PV
t−r1(z) ≤M‖PV

t−r1‖R0w(z),

so we have

Itr,ρ(z, z
′) ≤ C3e

r‖V ‖∞‖PV
t−r1‖R0E

{

IAr,ρw(ur)
}

≤ C3e
r‖V ‖∞‖PV

t−r1‖R0

{

P(Ar,ρ)Ew2(ur)
}1/2

.

Using this, (5.24), and the symmetry, we obtain (4.7). If r > t, then

Itr,ρ(z, z
′) ≤ er‖V ‖∞P{Ar,ρ

}

≤ er‖V ‖∞‖PV
t 1‖R P{Ar,ρ}

1/2,

which implies (4.7) by symmetry.

Step 3: Estimates for P{A0} and P{Ar,ρ}. Let us show that, for sufficiently
large N ≥ 1, we have

P{A0} ≤ C4(R,N)da/2, (4.8)

P{Ar,ρ} ≤ C5(R)

{(

dae−aαr/2+
[

exp
(

C6(R,N)dae2ρ−aαr/2
)

− 1
]1/2

)

∧e−βρ

}

,

(4.9)
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where a, C∗, and β are the constants in (4.2) and (4.11). Indeed, taking ε = d
in (4.3), using (3.8), and recalling that d ≤ 1, we get

P
{

A0

}

≤ C∗d
a + C∗

[

exp
(

CNd
aeC7R

4
)

− 1
]1/2

≤ C4(R,N)da/2,

provided thatN is larger that the numberN1 in Proposition 4.1. This gives (4.8).
To show (4.9), we use the estimates

Eu exp (β|E(ut)|) ≤ C exp(β|E(u)|), u ∈ H, (4.10)

Pu

{

sup
t≥0

(
∫ t

0

‖∇uτ‖
2 dτ − Lt

)

≥ |E(u)| + ρ

}

≤ Ce−βρ, ρ > 0, (4.11)

where L, β, and C are some positive constants depending on γ, ‖h‖, and B;
they follow immediately from Propositions 3.1 and 3.2 in [Mar14]. From the
inclusion Ar,ρ ⊂ F cr,ρ−1 and inequalities (4.10), (4.11), and (3.8) it follows that

P{Ar,ρ} ≤ C8(R)e
−βρ. (4.12)

By the Foiaş–Prodi type estimate (see (7.29) in Proposition 7.5), there is N2 ≥ 1
such that for any N ≥ N2 on the event Ḡr−1 ∩ Fr,ρ we have

|ur − u′r|
2
H ≤ exp(−αr + ρ+ |E(z)| + |E(z′)|)d2 ≤ C9(R)e

−αr+ρd2, (4.13)

where we used (3.8). Recall that on the same event we have also

|E(ur)|+ |E(u′r)| ≤ ρ. (4.14)

So using the Markov property, (4.3) with ε = de−αr/2, (4.14) and (4.13), we
obtain

P{Ar,ρ} ≤ P
{

Ḡr−1) ∩G
c
r ∩ Fr,ρ

}

= E
{

IḠr−1∩Fr,ρE
(

IGcr
∣

∣Fr
)}

≤ C∗d
ae−aαr/2 + C∗E

{

IḠr−1∩Fr,ρ

×
[

exp
(

CNd
a−2e−(a−2)αr/2|ur − u′r|

2
He

(|E(ur)|+|E(u′

r)|)
)

− 1
]1/2 }

≤ C∗d
ae−aαr/2 + C∗

[

exp
(

C6(R,N)dae2ρ−aαr/2
)

− 1
]1/2

.

Combining this with (4.12) and choosing N ≥ N1 ∨ N2, we get the required
inequality (4.9).

Step 4: Estimate for Ĩt. Let us show that, for any N ≥ N0, we have

|Ĩtρ(z, z
′)| ≤ C10(ψ, V )‖PV

t 1‖Rd
q. (4.15)

Indeed, we write

Ĩt(z, z′) = E
{

IÃ(ΞV 1)(ut, t)[ψ(ut)− ψ(u′t)]
}

+ E
{

IÃ[(ΞV 1)(ut, t)− (ΞV 1)(u
′
t, t)]ψ(u

′
t)
}

. (4.16)
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Let us denote by J t1,ρ and J t2,ρ the expectations in the right-hand side of this

equality. Then by estimate (7.27), on the event Ã we have

|PN (uτ − u′τ )|
2
H ≤ e−ατd2, τ ∈ [0, t]. (4.17)

Since ψ ∈ Cqb (H), we derive from (4.17)

|J t1,ρ| ≤ E
{

IÃ(ΞV 1)(ut, t)|ψ(ut)− ψ(u′t)|
}

≤ ‖ψ‖Cqb e
−αt/2dq‖PV

t 1‖R

≤ ‖ψ‖Cq
b
‖PV

t 1‖Rd
q.

Similarly, as V ∈ Cqb (H),

|J t2,ρ| ≤ E
{

IÃ|(ΞV 1)(ut, t)− (ΞV 1)(u
′
t, t)|

}

≤ E

{

IÃ(ΞV 1)(ut, t)

[

exp

(
∫ t

0

|V (uτ )− V (u′τ )| dτ

)

− 1

]}

≤
[

exp
(

‖V ‖Cqb d
q(1 − e−αqt/2)

)

− 1
]

‖PV
t 1‖R

≤
[

exp
(

‖V ‖Cqb d
q
)

− 1
]

‖PV
t 1‖R.

Combining these estimates for J t1,ρ and J t2,ρ with (4.16), we get (4.15).

Step 5. From (4.5)–(4.9) and (4.15) it follows that, for any z, z′ ∈ XR, t ≥ 1,
and R ≥ R0, we have

∣

∣gt(z)− gt(z
′)
∣

∣ ≤ C11(R, V,N, ψ)

(

da/4 + dq

+

∞
∑

r,ρ=1

er‖V ‖∞

{(

da/2e−aαr/4 +
[

exp
(

C6d
ae2ρ−aαr/2

)

− 1
]1/4

)

∧ e−βρ/2
}

)

,

provided that N ≥ N0 ∨ N1 ∨ N2. When d = 0, the series in the right-hand
side vanishes. So to prove the uniform equicontinuity of {gt}, it suffices to show
that the series converges uniformly in d ∈ [0, 1]. Since its terms are positive and
monotone, it suffices to show the converge for d = 1:

∞
∑

r,ρ=1

er‖V ‖∞

{(

e−aαr/4 +
[

exp
(

C6e
2ρ−aαr/2

)

− 1
]1/4

)

∧ e−βρ/2
}

<∞.

(4.18)

To prove this, we will assume that Osc(V ) is sufficiently small. Let us consider
the sets

S1 = {(r, ρ) ∈ N2 : ρ ≤ aαr/8}, S2 = N2 \ S1.

Then taking δ < δ1 ∨ (aα/32) and Osc(V ) < δ, we see that

∑

(r,ρ)∈S1

er‖V ‖∞

(

e−aαr/4 +
[

exp
(

C6e
2ρ−aαr/2

)

− 1
]1/4

)

≤ C12(R,N)
∑

(r,ρ)∈S1

er‖V ‖∞e−aαr/16 ≤ C13(R,N)
∞
∑

r=1

e−aαr/32 <∞.
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Choosing δ < aαβ/32, we get

∑

(r,ρ)∈S2

er‖V ‖∞e−βρ/2 ≤ C14

∞
∑

ρ=1

e−βρ/4 <∞.

These two inequalities show that (4.18) holds.

5 Estimates for regular solutions

In this section, we establish the exponential tightness property and obtain some
higher order moment estimates for solutions in Hs.

5.1 Exponential tightness

Here we show that the exponential tightness property in Section 1.3 is verified
for the function Φ(u) = |u|κHs , if we choose κ > 0 sufficiently small. Clearly, the
level sets of Φ are compact in H.

Theorem 5.1. For any s < 1/2, there is κ ∈ (0, 1) such that, for any R ≥ 1,
we have

Ev exp

(
∫ t

0

|uτ |
κ

Hs dτ

)

≤ c ect for any v ∈ XR, t ≥ 0, (5.1)

where c is a positive constant depending on R.

Proof. It is sufficient to prove that there is κ ∈ (0, 1) such that, for any R ≥ 1,
we have

Ev exp

(

δ

∫ t

0

|uτ |
κ

Hs dτ

)

≤ c̃ ec̃t for any v ∈ XR, t ≥ 0, (5.2)

where δ and c̃ are positive constants depending on R. Indeed, once this is
proved, we can use the inequality

|u|
κ

2

Hs ≤ δ|u|κHs + δ−1

to derive (5.1), where κ should be replaced by κ/2. We divide the proof of (5.2)
into several steps.

Step 1: Reduction. Let us split the flow u(t) to the sum u = v1 + v2 + z,
where v1(t) = [v1(t), v̇1(t)] corresponds to the flow of (0.1) with f = h = ϑ = 0
issued from v and v2(t) = [v2(t), v̇2(t)] is the flow of (0.1) with f = 0 issued from
the origin. Some standard arguments show that the following a priori estimates
hold:

|v1(t)|
2
Hs ≤ |v|2Hse−αt, (5.3)

E exp

(

δ1

∫ t

0

|v2(τ)|
2
Hs dτ

)

≤ c1 e
c1t for any t ≥ 0, (5.4)
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where δ1 and c1 are positive constants depending only on α,B1, and ‖h‖1. Now
using the Cauchy–Schwarz inequality and (5.3), we get, for any δ < δ1/2,

Ev exp

(

δ

∫ t

0

|u(τ)|κHs dτ

)

≤ exp

(

δ

∫ t

0

|v1(τ)|
κ

Hs dτ

)

E exp

(

2δ

∫ t

0

|v2(τ)|
κ

Hs dτ

)

× E exp

(

2δ

∫ t

0

|z(τ)|κHs dτ

)

≤exp
(

2δRκ(ακ)−1
)

E exp

(

2δ

∫ t

0

(|v2(τ)|
2
Hs + 1) dτ

)

× E exp

(

2δ

∫ t

0

|z(τ)|κHs dτ

)

.

Combining this with (5.4), we see that inequality (5.2) will be established if we
prove that

E exp

(

δ

∫ t

0

|z(τ)|κHs dτ

)

≤ c ect for all t ≥ 0 (5.5)

for some δ > 0 and c > 0. The rest of the proof is devoted to the derivation of
this inequality.

Step 2: Pointwise estimates. Let us note that, by construction, z is the flow
of equation

∂2t z + γ∂tz −∆z + f(u) = 0, z|∂D = 0, [z(0), ż(0)] = 0. (5.6)

Let us differentiate this equation in time, and set a = ż(t). Then a solves

∂2t a+γ∂ta−∆a+f ′(u)∂tu = 0, a|∂D = 0, [a(0), ȧ(0)] = [0,−f(u(0))]. (5.7)

We write a(t) = [a(t), ȧ(t)]. Multiplying equation (5.7) by 2(−∆)s−1(ȧ + αa)
and integrating over D, we obtain

d

dt
|a|2Hs−1 +

3α

2
|a|2Hs−1 ≤ 2

∫

D

|f ′(u)||u̇||(−∆)s−1(ȧ+ αa)| dx = L. (5.8)

Let κ < 1 be a positive constant that will be fixed later. Then, by the triangle
inequality, we have

L

2
≤

∫

D

|f ′(u)||v̇1|
1−κ |u̇|κ|(−∆)s−1(ȧ+ αa)| dx

+

∫

D

|f ′(u)||v̇2|
1−κ |u̇|κ|(−∆)s−1(ȧ+ αa)| dx

+

∫

D

|f ′(u)||a|1−κ|u̇|κ |(−∆)s−1(ȧ+ αa)| dx = L1 + L2 + L3. (5.9)

Using the Hölder inequality, we derive

L1 ≤ |f ′(u)|Lp1 |v̇1|
1−κ

L(1−κ)p2
|u̇|κLκp3 |(−∆)s−1(ȧ+ αa)|Lp4 , (5.10)

L2 ≤ |f ′(u)|Lq1 |v̇2|
1−κ

L(1−κ)q2
|u̇|κLκq3 |(−∆)s−1(ȧ+ αa)|Lq4 , (5.11)

L3 ≤ |f ′(u)|Lp1 |a|
1−κ

L(1−κ)p2
|u̇|κLκp3 |(−∆)s−1(ȧ+ αa)|Lp4 , (5.12)
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where the exponents pi, qi are Hölder admissible. We now need the following
lemma, which is established in the appendix.

Lemma 5.2. Let us take p1 = 6/ρ, p3 = 2/κ, q1 = (ρ + 2)/ρ and q3 = 2/κ.
Then, for κ > 0 sufficiently small, the exponents p2, p4, q2 and q4 can be chosen
in such a way that we have the following embeddings:

Hs →֒ L(1−κ)p2 , H1−s →֒ Lp4 , (5.13)

H1 →֒ L(1−κ)q2 , H1−s →֒ Lq4 . (5.14)

Step 3: Estimation of L1 and L3. In view of Lemma 5.2 and inequalities (1.1)
and (5.10), we have

L1 ≤ C0|f
′(u)|L6/ρ‖v̇1‖

1−κ

s ‖u̇‖κ‖(−∆)s−1(ȧ+ αa)‖1−s

≤ C1‖v̇1‖
1−κ

s (‖u‖ρ1 + 1)‖u̇‖κ‖ȧ+ αa‖s−1.

Now let us suppose that κ < 2− ρ. Then using (5.3) together with the Young
inequality, we derive

L1 ≤ C2|v|
1−κ

Hs (‖u‖21+‖u̇‖2+Cκ)‖ȧ+αa‖s−1 ≤ C3R(E(u)+C3)|a|Hs−1 . (5.15)

To estimate L3, we again apply Lemma 5.2 and inequalities (1.1) and (5.12)

L3 ≤ C4(‖u‖
ρ
1 + 1)‖a‖1−κ

s ‖u̇‖κ‖ȧ+ αa‖s−1 ≤ C4(‖u‖
ρ
1 + 1)‖u̇‖κ|a|2−κ

Hs−1 .

Applying the Young inequality, we get

L3 ≤ C5(E(u) + C5)|a|
2−κ

Hs−1 . (5.16)

Step 4: Estimation of L2. It follows from Lemma 5.2 and inequalities (1.2)
and (5.11) that

L2 ≤ C6|f
′(u)|L(ρ+2)/ρ‖v̇2‖

1−κ

1 ‖u̇‖κ‖(−∆)s−1(ȧ+ αa)‖1−s

≤ C7‖v̇2‖
1−κ

1

(
∫

D

(F (u) + νu2 + C) dx

)ρ/ρ+2

‖u̇‖κ‖ȧ+ αa‖s−1

≤ C8‖v̇2‖
1−κ

1 (E(u) + C8)
ρ/ρ+2

‖u̇‖κ|a|Hs−1 .

Finally, applying the Young inequality, we obtain

L2 ≤ C9(E(u) + |v2|
2
Hs + C9)|a|Hs−1 . (5.17)

Step 5: Estimation of |a|Hs−1 . Combining inequalities (5.8), (5.9) and (5.15)-
(5.17), we see that

d

dt
|a(t)|2Hs−1 +α|a(t)|2Hs−1 ≤ C10 R

(

E(u(t)) + |v2(t)|
2
Hs + C10

) (

|a(t)|2−κ

Hs−1 + 1
)

.

(5.18)
We now need an auxiliary result, whose proof is presented in the appendix.
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Lemma 5.3. Let x(t) be an absolutely continuous nonnegative function satis-
fying the differential inequality

ẋ(t) + αx(t) ≤ g(t)x1−β(t) + b(t) for all t ∈ [0, T ], (5.19)

where α, T , and β < 1 are positive constants and g(t) and b(t) are nonnegative
functions integrable on [0, T ]. Then we have

α

2

∫ t

0

xβ(τ) dτ ≤ β−1(1+x(0))β+

∫ t

0

(α+g(τ)+b(τ)) dτ for t ∈ [0, T ]. (5.20)

Applying this lemma to inequality (5.18), we obtain

α

2

∫ t

0

|a(τ)|κHs−1 dτ ≤ 2κ−1(1 + |a(0)|2Hs−1)κ/2 + αt

+ 2C10R

∫ t

0

(

E(u(τ)) + |v2(τ)|
2
Hs + C10

)

dτ. (5.21)

Step 6: Completion of the proof. Note that

|z|2Hs = ‖z‖2s+1 + ‖ż + αz‖2s = ‖∆z‖2s−1 + ‖a+ αz‖2s.

On the other, in view of (5.6), we have

‖∆z‖2s−1 = ‖ȧ+ γa+ f(u)‖2s−1 ≤ C11(|a|
2
Hs−1 + ‖f(u)‖2),

whence we get
|z|2Hs ≤ C12

(

|a|2Hs−1 + E3(u) + C12

)

. (5.22)

It follows that
|z|κHs ≤ C13 (|a|

κ

Hs−1 + E(u) + C13) ,

provided κ < 2/3. Multiplying this inequality by α/2, integrating over [0, t]
and using (5.21) together with the fact that

|a(0)|2Hs−1 = ‖f(u(0))‖2s−1 ≤ ‖f(u(0))‖2 ≤ C14(‖v‖
6
1 + 1), (5.23)

we derive

α

2

∫ t

0

|z(τ)|κHs dτ ≤ C15

(

1 +

∫ t

0

[

E(u(τ)) + |v2(τ)|
2
Hs + C15

]

dτ

)

,

where C15 depends on R. Multiplying this inequality by a small constant δ(R) >
0, taking the exponent and then the expectation, and using (5.4) together with
Proposition 3.2 in [Mar14], we derive (5.5).
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5.2 Higher moments of regular solutions

For anym ≥ 1, let wm and w̃m be the functions given by (3.19) and (3.20). The
following result shows that they are both Lyapunov functions for the trajectories
of problem (0.1), (0.3).

Proposition 5.4. For any v ∈ Hs, m ≥ 1, and t ≥ 0, we have

Evwm(ut) ≤ 2e−αmtwm(v) + Cm, (5.24)

Evw̃m(ut) ≤ 2e−αmtw̃m(v) + Cm. (5.25)

Proof. Step 1: Proof of (5.24). We split the flow u(t; v) to the sum u(t; v) =
ũ(t)+z(t), where ũ is the flow issued from v corresponding to the solution of (0.1)
with f = 0. Let us note that here z = [z, ż] is the same as in Section 5.1. A
standard argument shows that

E|ũ(t)|2mHs ≤ e−αmt|v|2mHs + C(m, ‖h‖1,B1). (5.26)

As in Section 5.1, we set a = ż and write a = [a, ȧ]. Notice that thanks to the
Hölder inequality, the Sobolev embeddings H1 →֒ L6 and H1−s →֒ L6/(3−ρ) for
s < 1− ρ/2, and inequality |u|2H ≤ 2|E(u)|+3C, we can estimate the right-hand
side of inequality (5.8) by

L ≤ C1(|u|
ρ
L6 + 1)‖u̇‖|(−∆)s−1(ȧ+ αa)|L6/(3−ρ)

≤ C2(‖u‖
2
1 + 1)‖u̇‖‖(−∆)s−1(ȧ+ αa)‖1−s ≤ C3(|u|

3
H + 1)‖ȧ+ αa‖s−1

≤
α

4
|a|2Hs−1 + C4

(

E3(u) + C4

)

.

Combining this with (5.8), we infer

d

dt
|a|2Hs−1 ≤ −

5α

4
|a|2Hs−1 + C4

(

E3(u) + C4

)

.

It follows that8

d

dt
|a|2mHs−1 = m|a|2m−2

Hs−1

d

dt
|a|2Hs−1 ≤ −αm|a|2mHs−1 + C5

(

E3m(u) + C5

)

,

where we used the Young inequality. Taking the mean value in this inequality
and applying the comparison principle, we derive

E|a(t)|2mHs−1 ≤ e−αmt|a(0)|2mHs−1 + C6

∫ t

0

eαm(τ−t)
(

EE3m(u(τ)) + C6

)

dτ.

Combining this with (5.22) and (5.23), we get

E|z(t)|2mHs ≤ C7

(

e−αmtE3m(v) +

∫ t

0

eαm(τ−t)EE3m(u(τ)) dτ + C7

)

.

8All the constants Ci, i ≥ 5 depend on m.
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Using the Itô formula, it is not difficult to show (cf. Proposition 3.1 in [Mar14])
that

EEk(u(t)) ≤ exp(−αkt)Ek(v) + C(k, ‖h‖,B) for any k ≥ 1. (5.27)

It follows from the last two inequalities that

E|z(t)|2mHs ≤ C8(e
−αmtE3m(v) + C8).

Combining this with the inequality

(A+B)2m ≤ 2A2m + C9B
2m for any A,B ≥ 0.

and (5.26), we infer

E|u(t)|2mHs ≤ E(|ũ(t)|Hs + |z(t)|Hs )2m ≤ 2E|ũ(t)|2mHs + C9E|z(t)|
2m
Hs

≤ 2e−αmt|v|2mHs + C10(e
−αmtE3m(v) + C10).

So that we have

Ewm(u(t)) ≤ 2e−αmt|v|2mHs + C10(e
−αmtE3m(v) + C10) + EE4m(u(t))

≤ 2e−αmt
(

|v|2mHs + E4m(v)
)

+ C11 = 2e−αmtwm(v) + C11,

where we used the Young inequality together with (5.27).

Step 2: Proof of (5.25). It was shown in Section 3.2 of [Mar14], that for
any κ ≤ (2α)−1B, we have

Ev exp[κE(u(t))] ≤ exp(κE(v))

+ κ

∫ t

0

Ev exp[κE(u(τ))](−αE(u(τ)) + C(B, ‖h‖)) dτ.

Using this with inequality

er(−αr + C) ≤ −αmer + C12 for any r ≥ −C

and applying the Gronwall lemma, we see that

Ev exp[κE(u(t))] ≤ e−αmt exp(κE(v)) + C13.

Finally, combining this inequality with (5.24), we arrive at (5.25).

6 Proof of Theorem 1.3

The results of Sections 3-5 imply that the growth conditions, the uniform ir-
reducibility and uniform Feller properties in Theorem 7.4 are satisfied if we
take

X = H, XR = BHs(R), PVt (u,Γ) = (PV ∗
t δu)(Γ),

w(u) = 1 + |u|2Hs + E4(u), C = U , V ∈ Uδ
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for sufficiently large integer R0 ≥ 1, small δ > 0, and any s ∈ (0, 1 − ρ/2). Let
us show that the time-continuity property is also verified.

Step 1: Time-continuity property. We need to show that the function t 7→
PV
t g(u) is continuous from R+ to R for any g ∈ Cw(H

s) and u ∈ Hs (recall that
X∞ = Hs). For any T, t ≥ 0 and u ∈ Hs, we have

PV
T g(u)−PV

t g(u) = Eu {[ΞV (T )− ΞV (t)] g(ut)} + Eu {[g(uT )− g(ut)] ΞV (T )}

=: S1 + S2, (6.1)

where ΞV is defined by (3.4). As V is bounded and g ∈ Cw(H
s), we see that

|S1| ≤ Eu

{
∣

∣

∣

∣

∣

exp

(

∫ T

t

V (uτ ) dτ

)

− 1

∣

∣

∣

∣

∣

ΞV (t)|g(ut)|

}

≤ C1

(

e|T−t|‖V ‖∞ − 1
)

eT‖V ‖∞Euw(ut).

Combining this with (5.24), we get S1 → 0 as t → T . To estimate S2, let us
take any R > 0 and write

e−T‖V ‖∞ |S2| ≤ Eu |g(uT )− g(ut)|

= Eu

{

IGcR |g(uT )− g(ut)|
}

+ Eu {IGR |g(uT )− g(ut)|}

=: S3 + S4,

where GR := {ut, uT ∈ XR}. From the Chebyshev inequality, the fact that
g ∈ Cw(H

s), and inequality (5.24) we derive

S3 ≤ C1Eu

{

IGc
R
(w(uT ) +w(ut))

}

≤ C1R
−2Eu

{

w2(uT ) +w2(ut)
}

≤ C2R
−2w2(u).

On the other hand, by the Lebesgue theorem on dominated convergence, for
any R > 0, we have S4 → 0 as t → T . Choosing R > 0 sufficiently large and t
sufficiently close to T , we see that S3 + S4 can be made arbitrarily small. This
shows that S2 → 0 as t → T and proves the time-continuity property.

Step 2: Application of Theorem 7.4. We conclude from Theorem 7.4 that
there is an eigenvector µV ∈ P(H) for the semigroup PV ∗

t corresponding to
some positive eigenvalue λV , i.e., P

V ∗
t µV = λtV µV for any t > 0. Moreover, the

semigroup PV
t has an eigenvector hV ∈ Cw(H

s)∩C+(H
s) corresponding to λV

such that 〈hV , µV 〉 = 1. The uniqueness of µV and hV follows immediately
from (1.13) and (1.14). The uniqueness of µV implies that it does not depend
onm and (1.12) holds for anym ≥ 1. It remains to prove limits (1.13) and (1.14).

Step 3: Proof of (1.13). By (7.16), we have (1.13) for any ψ ∈ U . To
establish the limit for any ψ ∈ Cw(H

s), we apply an approximation argument
similar to the one used in Step 4 of the proof of Theorem 5.5 in [JNPS14]. Let
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us take a sequence ψn ∈ U such that ‖ψn‖∞ ≤ ‖ψ‖∞ and ψn → ψ as n → ∞,
uniformly on bounded subsets of Hs. If we define

∆t(g) = sup
u∈XR

∣

∣λ−tV PV
t g(u)− 〈g, µV 〉hV (u)

∣

∣, ‖g‖
R
= sup

u∈XR

|g(u)|,

then

∆t(ψ) ≤ ∆t(ψn) + ‖hV ‖R |〈ψ − ψn, µV 〉|+ λ−tV ‖PV
t (ψ − ψn)‖R

for any t ≥ 0 and n ≥ 1. In view of (1.13) for ψn and the Lebesgue theorem on
dominated convergence,

∆t(ψn) → 0 as t→ ∞ for any fixed n ≥ 1,

|〈ψ − ψn, µV 〉| → 0 as n→ ∞.

Thus, it suffices to show that

sup
t≥0

λ−tV ‖PV
t (ψ − ψn)‖R → 0 as n→ ∞. (6.2)

To this end, for any ρ > 0, we write

‖PV
t (ψ − ψn)‖R ≤ J1(t, n, ρ) + J2(t, n, ρ),

where

J1(t, n, ρ) = ‖PV
t

(

(ψ − ψn)IXρ
)∥

∥

R
, J2(t, n, ρ) = ‖PV

t

(

(ψ − ψn)IXcρ
)

‖R.

Since ψn → ψ uniformly on Xρ, we have

J1(t, n, ρ) ≤ ε(n, ρ) ‖PV
t 1‖R,

where ε(n, ρ) → 0 as n→ ∞. Using convergence (1.13) for ψ = 1, we see that

λ−tV ‖PV
t 1‖R ≤ C3(R) for all t ≥ 0. (6.3)

Hence,
sup
t≥0

λ−tV J1(t, n, ρ) ≤ C3(R) ε(n, ρ) → 0 as n→ ∞.

We use (3.1) and (6.3), to estimate J2:

λ−tV J2(t, n, ρ) ≤ 2‖ψ‖∞ρ
−2λ−tV ‖PV

t w‖R ≤ C4(R)‖ψ‖∞ρ
−2λ−tV ‖PV

t 1‖R0

≤ C4(R)‖ψ‖∞ρ
−2C3(R0).

Taking first ρ and then n sufficiently large, we see that supt≥0 λ
−t
V ‖PV

t (ψ −
ψn)‖R can be made arbitrarily small. This proves (6.2) and completes the proof
of (1.13).

Step 4: Proof of (1.14). Let us show that

λ−tV 〈PV
t ψ, ν〉 → 〈ψ, µV 〉〈hV , ν〉 as t→ ∞
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for any ψ ∈ Cb(H). In view of (1.13), it suffices to show that

sup
t≥0

{
∫

H

IXcR

∣

∣λ−tV PV
t ψ(u)− 〈ψ, µV 〉hV (u)

∣

∣ ν(du)

}

→ 0 as R → ∞. (6.4)

From (3.2) and (6.3) we derive that

‖PV
t ψ‖L∞

w
≤ ‖ψ‖∞‖PV

t 1‖L∞

w
≤ C5‖P

V
t 1‖R0 ≤ C6(R0)λ

t
V , t ≥ 0,

hence
∣

∣λ−kV PV
t ψ(u)

∣

∣ ≤ C6(R0)w(u), u ∈ Hs, t ≥ 0.

Since hV ∈ Cw(H
s) and

∫

H

IXc
R
(u)w(u) ν(du) → 0 as R → ∞,

we obtain (6.4). This completes the proof of Theorem 1.3.

7 Appendix

7.1 Local version of Kifer’s theorem

In [Kif90], Kifer established a sufficient condition for the validity of the LDP
for a family of random probability measures on a compact metric space. This
result was extended by Jakšić et al. [JNPS14] to the case of a general Polish
space. In this section, we obtain a local version of these results. Roughly
speaking, we assume the existence of a pressure function (i.e., limit (7.3)) and
the uniqueness of the equilibrium state for functions V in a set V , which is not
necessarily dense in the space of bounded continuous functions. We prove the
LDP with a lower bound in which the infimum of the rate function is taken over
a subset of the equilibrium states. To give the exact formulation of the result,
we first introduce some notation and definitions. Assume that X is a Polish
space, and ζθ is a random probability measure on X defined on some probability
space (Ωθ,Fθ,Pθ), where the index θ belongs to some directed set9 Θ. Let r :
Θ → R be a positive function such that limθ∈Θ rθ = +∞. For any V ∈ Cb(X),
let us set

Q(V ) := lim sup
θ∈Θ

1

rθ
logEθ exp

(

rθ〈V, ζθ〉
)

, (7.1)

where Eθ is the expectation with respect to Pθ. The function Q : Cb(X) → R

is convex, Q(V ) ≥ 0 for any V ∈ C+(X), and Q(C) = C for any C ∈ R.
Moreover, Q is 1-Lipschitz. Indeed, for any V1, V2 ∈ Cb(X) and θ ∈ Θ, we have

1

rθ
logEθ exp

(

rθ〈V1, ζθ〉
)

≤ ‖V1 − V2‖∞ +
1

rθ
logEθ exp

(

rθ〈V2, ζθ〉
)

,

9i.e., a partially ordered set whose every finite subset has an upper bound.
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which implies that
Q(V1) ≤ ‖V1 − V2‖∞ +Q(V2).

By symmetry we get

|Q(V1)−Q(V2)| ≤ ‖V1 − V2‖∞.

The Legendre transform of Q is given by

I(σ) =

{

supV ∈Cb(X)

(

〈V, σ〉 −Q(V )
)

for σ ∈ P(X),

+∞ for σ ∈ M(X) \ P(X)
(7.2)

(see Lemma 2.2 in [BD99]). Then I is convex and lower semicontinuous function,
and

Q(V ) = sup
σ∈P(X)

(

〈V, σ〉 − I(σ)
)

.

A measure σV ∈ P(X) is said to be an equilibrium state for V if

Q(V ) = 〈V, σV 〉 − I(σV ).

We shall denote by V the set of functions V ∈ Cb(X) admitting a unique
equilibrium state σV and for which the following limit exists

Q(V ) = lim
θ∈Θ

1

rθ
logEθ exp

(

rθ〈V, ζθ〉
)

. (7.3)

We have the following version of Theorem 2.1 in [Kif90] and Theorem 3.3
in [JNPS14].

Theorem 7.1. Suppose that there is a function Φ : X → [0,+∞] whose level
sets {u ∈ X : Φ(u) ≤ a} are compact for all a ≥ 0 and

Eθ exp
(

rθ〈Φ, ζθ〉
)

≤ Cecrθ for θ ∈ Θ, (7.4)

for some positive constants C and c. Then I defined by (7.2) is a good rate
function, for any closed set F ⊂ P(X),

lim sup
θ∈Θ

1

rθ
logPθ{ζθ ∈ F} ≤ −I(F ), (7.5)

and for any open set G ⊂ P(X),

lim inf
θ∈Θ

1

rθ
logPθ{ζθ ∈ G} ≥ −I(W ∩G), (7.6)

where W := {σV : V ∈ V} and I(Γ) := infσ∈Γ I(σ), Γ ⊂ P(X).
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Proof. The fact that I is a good rate function is shown in Step 1 of the proof of
Theorem 3.3 in [JNPS14]. In Step 2 of the same proof, the upper bound (7.5)
is established, under the condition that the limit Q(V ) in (7.3) exists for any
V ∈ Cb(X). The latter condition can be removed, using literally the same proof,
if one defines Q(V ) by (7.1) for any V ∈ Cb(X) (see Theorem 2.1 in [dA85]).

To prove the lower bound, following the ideas of [Kif90], for any integer n ≥ 1
and any functions V1, . . . , Vn ∈ Cb(X), we define an auxiliary family of finite-
dimensional random variables ζnθ := fn(ζθ), where fn : P(X) → Rn is given
by

fn(µ) :=
(

〈V1, µ〉, . . . , 〈Vn, µ〉
)

.

Let us set
Wn := {σV : V ∈ V ∩ span{V1, . . . , Vn}}.

The following result is a local version of Lemma 2.1 in [Kif90] and Proposition 3.4
in [JNPS14]; its proof is sketched at the end of this section.

Proposition 7.2. Assume that the hypotheses of Theorem 7.1 are satisfied and
set Jn(Γ) = infσ∈f−1

n (Γ) I(σ),Γ ⊂ Rn. Then for any closed set M ⊂ Rn and
open set U ⊂ Rn, we have

lim sup
θ∈Θ

1

rθ
logP{ζnθ ∈M} ≤ −Jn(M), (7.7)

lim inf
θ∈Θ

1

rθ
log P{ζnθ ∈ U} ≥ −Jn(fn(Wn) ∩ U). (7.8)

To derive (7.6) from Proposition 7.2, we follow the arguments of Step 4 of
the proof of Theorem 3.3 in [JNPS14]. The case I(W ∩ G) = +∞ is trivial, so
we assume that I(W∩G) < +∞. Then for any ε > 0, there is νε ∈ W ∩G such
that

I(νε) ≤ I(W ∩G) + ε, (7.9)

and there is a function V1 ∈ V such that νε = σV1 . By Lemma 3.2 in [JNPS14],
the family {ζθ} is exponentially tight, hence there is a compact set K ⊂ P(X)
such that νε ∈ K and

lim sup
θ∈Θ

1

rθ
logP{ζθ ∈ Kc} ≤ −(I(W ∩G) + 1 + ε). (7.10)

We choose functions Vk ∈ Cb(X), k ≥ 2, ‖Vk‖∞ = 1 such that

d(µ, ν) :=

∞
∑

k=1

2−k|〈Vk, µ〉 − 〈Vk, ν〉|

defines a metric on K compatible with the weak topology. As G is open, there
are δ > 0 and n ≥ 1 such that if

n
∑

k=1

2−k|〈Vk, ν〉 − 〈Vk, νε〉| < δ
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for some ν ∈ K, then ν ∈ G. Let xε := fn(νε), and denote by B̊Rn(xε, δ) the
open ball in Rn of radius δ > 0 centered at xε, with respect to the norm

‖x‖n :=
n
∑

k=1

2−k|xk|, x = (x1, . . . , xn).

Then we have f−1
n

(

B̊Rn(xε, δ)
)

∩K ⊂ G, hence

P{ζθ ∈ G} ≥ P{ζθ ∈ G ∩ K} ≥ P
{

ζθ ∈ f−1
n

(

B̊Rn(xε, δ)
)

∩K
}

= P{ζnθ ∈ B̊Rn(xε, δ)} − P{ζθ ∈ Kc}.

Using the inequality

log(u− v) ≥ log u− log 2, 0 < v ≤ u/2

and inequalities (7.8)-(7.10), we obtain

lim inf
θ∈Θ

1

rθ
logP{ζθ ∈ G} ≥ lim inf

θ∈Θ

1

rθ

(

logP{ζnθ ∈ B̊Rn(xε, δ)} − log 2
)

≥ −Jn(fn(Wn) ∩ B̊Rn(xε, δ)) ≥ −In(xε)

≥ −I(νε) ≥ −I(W ∩G)− ε,

which proves (7.6).

Sketch of the proof of Proposition 7.2. Inequality (7.7) follows from (7.5). To
show (7.8), for any β = (β1, . . . , βn) ∈ Rn and α = (α1, . . . , αn) ∈ Rn, we set
Vβ :=

∑n
j=1 βjVj , Qn(β) := Q(Vβ), and In(α) := infσ∈f−1

n (α) I(σ). One can
verify that

Qn(β) = sup
α∈Rn

(

n
∑

j=1

βjαj − In(α)
)

,

Jn(U) = inf
α∈U

In(α).

Assume that Jn(fn(Wn)∩U) < +∞, and for any ε > 0, choose αε ∈ fn(Wn)∩U
such that

In(αε) < Jn(fn(Wn) ∩ U) + ε.

Then αε = fn(σVβε ) for some βε ∈ Rn such that Vβε ∈ V . It is easy to verify
that the following equality holds

Qn(βε) =

n
∑

j=1

βεjαεj − In(αε).

Literally repeating the proof of Proposition 3.4 in [JNPS14] (starting from equal-
ity (3.16)) and using the uniqueness of the equilibrium state for V = Vβε and
the existence of limit (7.3), one obtains

−Jn(fn(Wn) ∩ U)− ε ≤ −In(αε) ≤ lim inf
θ∈Θ

1

rθ
logP{ζnθ ∈ U}

for any ε > 0. This implies (7.8).
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7.2 Large-time asymptotics for generalised Markov semi-

groups

In this section, we give a continuous-time version of Theorem 4.1 in [JNPS14]
with some modifications, due to the fact that the generalised Markov family
associated with the stochastic NLW equation does not have a regularising prop-
erty. See also [KS01, LS06, JNPS] for some related results.

We start by recalling some terminology from [JNPS14].

Definition 7.3. Let X be a Polish space. We shall say that {Pt(u, ·), u ∈
X, t ≥ 0} is a generalised Markov family of transition kernels if the following
two properties are satisfied.

Feller property. For any t ≥ 0, the function u 7→ Pt(u, ·) is continuous from X
to M+(X) and does not vanish.

Kolmogorov–Chapman relation. For any t, s ≥ 0, u ∈ X , and Borel set Γ ⊂
X , the following relation holds

Pt+s(u,Γ) =

∫

X

Ps(v,Γ)Pt(u, dv).

To any such family we associate two semigroups by the following relations:

Pt : Cb(X) → Cb(X), Ptψ(u) =

∫

X

ψ(v)Pt(u, dv),

P∗
t : M+(X) → M+(X), P∗

tµ(Γ) =

∫

X

Pt(v,Γ)µ(dv), t ≥ 0.

For a measurable function w : X → [1,+∞] and a family C ⊂ Cb(X), we denote
by Cw the set of functions ψ ∈ L∞

w (X) that can be approximated with respect
to ‖ · ‖L∞

w
by finite linear combinations of functions from C. We shall say that

a family C ⊂ Cb(X) is determining if for any µ, ν ∈ M+(X) satisfying 〈ψ, µ〉 =
〈ψ, ν〉 for all ψ ∈ C, we have µ = ν. Finally, a family of functions ψt : X → R

is uniformly equicontinuous on a subset K ⊂ X if for any ε > 0 there is δ > 0
such that |ψt(u) − ψt(v)| < ε for any u ∈ K, v ∈ BX(u, δ) ∩K, and t ≥ 1. We
have the following version of Theorem 4.1 in [JNPS14].

Theorem 7.4. Let {Pt(u, ·), u ∈ X, t ≥ 0} be a generalised Markov family of
transition kernels satisfying the following four properties.

Growth conditions. There is an increasing sequence {XR}
∞
R=1 of compact

subsets of X such that X∞ := ∪∞
R=1XR is dense in X. The measures

Pt(u, ·) are concentrated on X∞ for any u ∈ X∞ and t > 0, and there is a
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measurable function w : X → [1,+∞] and an integer R0 ≥ 1 such that 10

sup
t≥0

‖Ptw‖L∞

w

‖Pt1‖R0

<∞, (7.11)

sup
t∈[0,1]

‖Pt1‖∞ <∞, (7.12)

where ‖ · ‖R and ‖ · ‖∞ denote the L∞ norm on XR and X, respectively,
and we set ∞/∞ = 0.

Time-continuity. For any function g ∈ L∞
w (X∞) whose restriction to XR

belongs to C(XR) and any u ∈ X∞, the function t 7→ Ptg(u) is continuous
from R+ to R.

Uniform irreducibility. For sufficiently large ρ ≥ 1, any R ≥ 1 and r > 0,
there are positive numbers l = l(ρ, r, R) and p = p(ρ, r) such that

Pl(u, BX(û, r)) ≥ p for all u ∈ XR, û ∈ Xρ.

Uniform Feller property. There is a number R0 ≥ 1 and a determining fam-
ily C ⊂ Cb(X) such that 1 ∈ C and the family {‖Pt1‖

−1
R Ptψ, t ≥ 1} is

uniformly equicontinuous on XR for any ψ ∈ C and R ≥ R0.

Then for any t > 0, there is at most one measure µt ∈ Pw(X) such that
µt(X∞) = 1 and

P∗
tµt = λ(t)µt for some λ(t) ∈ R (7.13)

satisfying the following condition:

‖Ptw‖R

∫

X\XR

wdµt → 0 as R → ∞. (7.14)

Moreover, if such a measure µt exists for all t > 0, then it is independent
of t (we set µ := µt), the corresponding eigenvalue is of the form λ(t) = λt,
λ > 0, suppµ = X, and there is a non-negative function h ∈ L∞

w (X∞) such
that 〈h, µ〉 = 1,

(Pth)(u) = λth(u) for u ∈ X∞, t > 0, (7.15)

the restriction of h to XR belongs to C+(XR), and for any ψ ∈ Cw and R ≥ 1,
we have

λ−tPtψ → 〈ψ, µ〉h in C(XR) ∩ L
1(X,µ) as t→ ∞. (7.16)

Finally, if a Borel set B ⊂ X is such that

sup
u∈B

(
∫

X\XR

w(v)Ps(u, dv)

)

→ 0 as R → ∞ (7.17)

for some s > 0, then for any ψ ∈ Cw, we have

λ−tPtψ → 〈ψ, µ〉h in L∞(B) as t→ ∞. (7.18)

10The expression (Ptw)(u) is understood as an integral of a positive function w against a
positive measure Pt(u, ·).
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Sketch of the proof. Step 1: Existence of eigenvectors µ and h. For any t > 0,
the conditions of Theorem 4.1 in [JNPS14] are satisfied11 for the discrete-time
semigroup {P̃k = Ptk, k ≥ 1} generated by P̃ = Pt. So that theorem implies
the existence of at most one measure µt ∈ Pw(X) satisfying µt(X∞) = 1, (7.13),
and (7.14). Moreover, if such a measure µt exists for any t > 0, it follows from
the Kolmogorov–Chapman relation that µt = µ1 =: µ and λ(t) = (λ(1))t =: λt

for any t in the set Q∗
+ of positive rational numbers, i.e.,

P∗
tµ = λtµ for t ∈ Q∗

+. (7.20)

Using the time-continuity property and density, we get that (7.20) holds for
any t > 0. So we have µt = µ and λ(t) = λt for any t > 0, by uniqueness of the
eigenvector.

Theorem 4.1 in [JNPS14] also implies that suppµ = X,λ > 0, and there is a
non-negative function ht ∈ L∞

w (X∞) such that 〈ht, µ〉 = 1, the restriction of ht
to XR belongs to C+(XR), and

(Ptht)(u) = λtht(u) for u ∈ X∞, (7.21)

λ−tkPtkψ → 〈ψ, µ〉ht in C(XR) ∩ L
1(X,µ) as k → ∞ (7.22)

for any ψ ∈ Cw, R ≥ 1, and t > 0. Taking ψ = 1 in (7.22), we see that
ht = h1 =: h for any t ∈ Q∗

+. The continuity of the function t 7→ Pth(u)
and (7.21) imply that ht = h for any t > 0 and

λ−tkPtkψ → 〈ψ, µ〉h in C(XR) ∩ L
1(X,µ) as k → ∞. (7.23)

Step 2: Proof of (7.16). First let us prove (7.16) for any ψ ∈ C. Re-
placing Pt(u,Γ) by λ−tPt(u,Γ), we may assume that λ = 1. Taking ψ = 1

and t = 1 in (7.23), we obtain supk≥0 ‖Pk1‖R < ∞. So using (7.12), we get
supt≥0 ‖Pt1‖R < ∞. This implies that {Ptψ, t ≥ 1} is uniformly equicontin-
uous on XR for any R ≥ R0. Setting g = ψ − 〈ψ, µ〉h, we need to prove that
Ptg → 0 in C(XR) for any R ≥ 1. Since {Ptg, t ≥ 1} is uniformly equicontinu-
ous on XR, the required assertion will be established if we prove that

|Ptg|µ := 〈|Ptg|, µ〉 → 0 as t→ ∞. (7.24)

11Let us note that in Theorem 4.1 in [JNPS14] it is assumed that the measures Pt(u, ·)
are concentrated on X∞ for any u ∈ X. Here this is replaced by the condition that the
measures Pt(u, ·) and µt are concentrated on X∞ for any u ∈ X∞. The uniform irreducibility
property is slightly different from the one assumed in [JNPS14]. Both modifications are due
to the lack of a regularising property for the stochastic NLW equation. These changes do not
affect the proof given in [JNPS14], one only needs to replace inequality (4.16) in the proof by
the inequality

sup
k≥0

‖Pkψ‖L∞

w
(X) ≤ M1 ‖ψ‖L∞

w
(X) for any ψ ∈ L∞

w (X), (7.19)

and literally repeat all the arguments. The proof of (7.19) is similar to the one of (4.16). Under
these modified conditions, the concept of eigenfunction for Pt is understood in a weaker sense;
namely, relation (7.15) needs to hold only for u ∈ X∞.
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For any ϕ ∈ L∞
w (X), we have

|Ptϕ|µ ≤ 〈Pt|ϕ|, µ〉 = 〈|ϕ|, µ〉 = |ϕ|µ,

thus |Ptg|µ is a non-increasing function in t. By (7.23), we have |Ptkg|µ → 0
as k → ∞. This proves (7.24), hence also (7.16) for any ψ ∈ C.

An easy approximation argument shows that (7.16) holds for any ψ ∈ Cw (see
Step 4 of the proof of Theorem 4.1 in [JNPS14]). Finally, the proof of (7.18)
under condition (7.17) is exactly the same as in Step 7 of the proof of the
discrete-time case.

7.3 Proofs of some auxiliary assertions

The Foiaş-Prodi estimate

Here we briefly recall an a priori estimate established in Proposition 4.1 in [Mar14].
Let ut = [u, u̇] and vt = [v, v̇] be some flows of the equations

∂2t u+ γ∂tu−∆u+ f(u) = h(x) + ∂tϕ(t, x), (7.25)

∂2t v + γ∂tv −∆v + f(v) + PN [f(u)− f(v)] = h(x) + ∂tϕ(t, x), (7.26)

where ϕ is a function belonging to L2
loc(R+, L

2(D)). We recall that PN stands
for the orthogonal projection in L2(D) onto the vector span HN of the func-
tions e1, e2, . . . , eN and PN is the projection in H onto HN := HN ×HN .

Proposition 7.5. Assume that, for some non-negative numbers s and T , we
have u, v ∈ C(s, s+ T ;H). Then

|PN (vt − ut)|
2
H ≤ e−α(t−s)|vs − us|

2
H for s ≤ t ≤ s+ T, (7.27)

where α > 0 is the constant entering (1.4). If we suppose that the inequality
holds

∫ t

s

‖∇z‖2 dτ ≤ l +K(t− s) for s ≤ t ≤ s+ T (7.28)

for z = u and z = v and some positive numbers K and l, then, for any ε > 0,
there is an integer N∗ = N∗(ε,K) ≥ 1 such that

|vt − ut|
2
H ≤ e−α(t−s)+εl|vs − us|

2
H for s ≤ t ≤ s+ T (7.29)

for all N ≥ N∗ and s ≤ t ≤ s+ T .

Proof. Estimate (7.29) is proved in Proposition 4.1 in [Mar14]. To prove (7.27),
let us note that z = [z, ż] = PN (v− u) is a solution of the linear equation

∂2t z + γ∂tz −∆z = 0.

So we have

|PN (vt − ut)|
2
H = |zt|

2
H ≤ e−α(t−s)|zs|

2
H ≤ e−α(t−s)|vs − us|

2
H.
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Proof of Proposition 1.4

Step 1: Preliminaries. We denote by S
V,F
t the semigroup defined by (1.15), and

write SV
t instead of SV,0

t (i.e., F = 0). Let D(LV ) be the space of functions ψ ∈
Cb(H

s) such that

SV
t ψ(u) = ψ(u) +

∫ t

0

SV
τ g(u) dτ, t ≥ 0, u ∈ Hs (7.30)

for some g ∈ Cb(H
s). Then the continuity of the mapping t 7→ SV

t g(u) from R+

to R implies the following limit

g(u) = lim
t→0

SV
t ψ(u)− ψ(u)

t
,

and proves the uniqueness of g in representation (7.30). We set LV ψ := g. The
proof is based on the following two lemmas.

Lemma 7.6. For any F ∈ Cb(H
s), the following properties hold

i) For any ψ ∈ D(LV ), we have ϕt := S
V,F
t ψ ∈ D(LV ) and

∂tϕt = (LV + F )ϕt, t > 0.

ii) The set D+ := {ψ ∈ D(LV ) : infu∈Hs ψ(u) > 0} is determining for P(Hs),
i.e., if 〈ψ, σ1〉 = 〈ψ, σ2〉 for some σ1, σ2 ∈ P(Hs) and any ψ ∈ D+,
then σ1 = σ2.

This lemma is proved at the end of this subsection. The next result is estab-
lished exactly in the same way as Lemma 5.9 in [JNPS14], by using limit (1.13);
we omit its proof.

Lemma 7.7. The Markov semigroup SV
t has a unique stationary measure,

which is given by νV = hV µV .

Step 2. Let us show that, for any ψ ∈ D+, we have

QVR(Fψ) = 0, (7.31)

where Fψ := −LV ψ/ψ ∈ Cb(H
s) and QVR(Fψ) is defined by (1.16). Indeed, by

property i) in Lemma 7.6, the function ϕt = S
V,Fψ
t ψ satisfies

∂tϕt =

(

LV −
LV ψ

ψ

)

ϕt, ϕ0 = ψ.

From the uniqueness of the solution we derive that ψ = ϕt for any t ≥ 0, hence

lim
t→+∞

1

t
log sup

u∈XR

log(S
V,Fψ
t ψ)(u) = 0. (7.32)
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As c ≤ ψ(u) ≤ C for any u ∈ Hs and some constants C, c > 0, we have

QVR(Fψ) ≤ lim sup
t→+∞

1

t
log sup

u∈XR

log(S
V,Fψ
t ψ)(u) ≤ QVR(Fψ).

Combining this with (7.32), we obtain (7.31).

Step 3. Let us assume 12 that IVR (σ) = 0. Then σ ∈ P(Hs) and

0 = IVR (σ) = sup
F∈Cb(Hs)

(

〈F, σ〉 −QVR(F )
)

.

So taking here F = Fψ for any ψ ∈ D+ and using the result of Step 2, we get

0 ≤ inf
ψ∈D+

∫

Hs

LV ψ

ψ
σ(du).

Since SV
t is a Markov semigroup, we have LV 1 = 0. We see that θ = 0 is a

local minimum of the function

f(θ) :=

∫

Hs

LV (1 + θψ)

1 + θψ
σ(du)

for any ψ ∈ D+, so

0 = f ′(0) =

∫

Hs

LV ψ σ(du).

Combining this with property i) in Lemma 7.6, we obtain

∫

Hs

SV
t ψ σ(du) =

∫

Hs

ψ σ(du), t > 0.

From ii) in Lemma 7.6, we derive that σ is a stationary measure for SV
t , and

Lemma 7.7 implies that σ = hV µV . This completes the proof of Proposition 1.4.

Proof of Lemma 7.6. Step 1: Property i). Let us show that, for any ψ ∈ Cb(H
s),

the function ϕt = S
V,F
t ψ satisfies the equation in the Duhamel form

ϕt = SV
t ψ +

∫ t

0

SV
t−s(Fϕs) ds. (7.33)

Indeed, we have

ϕt −SV
t ψ = λ−tV h−1

V

× Eu

{

exp

(
∫ t

0

V (uτ ) dτ

)[

exp

(
∫ t

0

F (uτ ) dτ

)

− 1

]

hV (ut)ψ(ut)

}

.

12As IR defined by (1.7) is a good rate function, the set of equilibrium measures for V is
non-empty. So the set of zeros of IV

R
is also non-empty, by the remark made at the end of

Step 2 of the proof of Theorem 1.2.

44



Integrating by parts and using the the Markov property, we get

ϕt −SV
t ψ = λ−tV h−1

V

×

∫ t

0

Eu

{

exp

(
∫ t

0

V (uτ ) dτ

)[

F (us) exp

(
∫ t

s

F (uτ ) dτ

)]

hV (ut)ψ(ut)

}

ds

=

∫ t

0

λ−sV h−1
V Eu

{

exp

(
∫ s

0

V (uτ ) dτ

)

hV (us)F (us)ϕt−s(us)

}

ds

=

∫ t

0

SV
s (Fϕt−s) ds =

∫ t

0

SV
t−s(Fϕs) ds.

This proves (7.33). The identity

SV
t (ϕr)(u) = ϕr+t(u) = ϕr(u) +

∫ t

0

SV
τ (S

V
r g)(u) dτ, t ≥ 0, u ∈ Hs

shows that ϕr ∈ D(LV ) for ψ ∈ D(LV ) and r > 0.

Step 2: Property ii). Assume that, for some σ1, σ2 ∈ P(Hs), we have

〈ψ, σ1〉 = 〈ψ, σ2〉, ψ ∈ D+. (7.34)

Let us take any ψ ∈ Cb(H
s) such that c ≤ ψ(u) ≤ C for any u ∈ Hs and some

constants c, C > 0. Then ϕ̃r := 1
r

∫ r

0 SV
τ ψ dτ belongs to D+ for any r > 0.

Indeed, the inequality c ≤ ϕ̃r(u) ≤ C follows immediately from the definition
of SV

r , and the fact that ϕ̃r ∈ D(LV ) follows from the identity

SV
t ϕ̃r − ϕ̃r =

1

r

∫ r

0

(SV
τ+tψ −SV

τ ψ) dτ =
1

r

∫ r+t

r

SV
τ ψ dτ −

1

r

∫ t

0

SV
τ ψ dτ

=

∫ t

0

SV
τ

(

SV
r ψ − ψ

r

)

dτ.

Then, by (7.34), we have

〈ϕ̃r, σ1〉 = 〈ϕ̃r, σ2〉, r > 0. (7.35)

Using the continuity of the mapping r 7→ SV
r ψ(u) from R+ to R, we see

that ϕ̃r(u) → ψ(u) as r → 0. Passing to the limit in (7.35) and using the
Lebesgue theorem on dominated convergence, we obtain 〈ψ, σ1〉 = 〈ψ, σ2〉. It is
easy to verify that the set {ψ ∈ Cb(H

s) : infu∈Hs ψ(u) > 0} is determining, so
we get σ1 = σ2.

Proof of Lemma 2.1

The function f : J → R is convex, so the derivativesD±f(x) exist for any x ∈ J .
We confine ourselves to the derivation of the first inequality in the lemma.
Assume the opposite, and let x0 ∈ J , (nk) ⊂ N, and η > 0 be such that

D+fnk(x0) ≥ D+f(x0) + η for k ≥ 1. (7.36)
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Let us fix x1 ∈ J , x1 > x0 such that

D+f(x0) ≥
f(x1)− f(x0)

x1 − x0
− η/4.

Since fnk is a convex function, we have

D+fnk(x0) ≤
fnk(x1)− fnk(x0)

x1 − x0
.

Assume that k ≥ 1 is so large that we have

|fnk(x1)− f(x1)|+ |fnk(x0)− f(x0)| ≤ η(x1 − x0)/4.

Then, combining last three inequalities, we derive

D+fnk(x0) ≤ D+f(x0) + η/2,

which contradicts (7.36) and proves the lemma.

Proof of Lemma 5.2

Let us first prove (5.13). We take p4 = 6/(1 + 2s) the maximal exponent for
which the Sobolev embedding H1−s →֒ Lp4 holds. We choose p2 in such a way
that exponents (pi) are Hölder admissible. It follows that p2 = 6/(5−ρ−2s−3κ).
Now let κ > 0 be so small that ρ + 2sκ ≤ 2. Then a simple calculation shows
that (1−κ)p2 ≤ 6/(3−2s), so the Sobolev embedding implies the first inclusion
in (5.13).

We now prove (5.14). Proceeding as above, we take q4 = 6/(1+2s) and choose q2
such that the exponents (qi) are Hölder admissible, i.e., q2 = 6(ρ+2)/(12− (ρ+
2)(1+2s+3κ)). It is easy to check that for κ < 1/2− s, we have (1−κ)q2 ≤ 6.
The Sobolev embedding allows to conclude.

Proof of Lemma 5.3

In view of inequality (5.19), we have

β−1 d

dt
(1 + x)β = (1 + x)β−1ẋ ≤ (1 + x)β−1(−αx + gx1−β + b)

≤ −αx(1 + x)β−1 + g + b ≤ −
α

2
xβ + α+ g + b.

Fixing t ∈ [0, T ] and integrating this inequality over [0, t], we obtain

β−1(1 + x(t))β +
α

2

∫ t

0

xβ(τ) dτ ≤ β−1(1 + x(0))β +

∫ t

0

(α+ g(τ) + b(τ)) ds,

which implies (5.20).
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[BD99] T. Bogenschütz and A. Doebler, Large deviations in expanding random
dynamical systems, Discrete Contin. Dynam. Systems 5 (1999), no. 4,
805–812.

[dA85] A. de Acosta, Upper bounds for large deviations of dependent random
vectors, Z. Wahrsch. Verw. Gebiete 69 (1985), no. 4, 551–565.

[DS89] J.-D. Deuschel and D. W. Stroock, Large Deviations, Academic Press,
Boston, 1989.

[DV75] M. D. Donsker and S. R. S. Varadhan, Asymptotic evaluation of certain
Markov process expectations for large time, I–II, Comm. Pure Appl.
Math. 28 (1975), 1–47, 279–301.

[DZ92] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimen-
sions, Cambridge University Press, Cambridge, 1992.

[DZ00] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applica-
tions, Springer–Verlag, Berlin, 2000.

[FK06] J. Feng and T. G. Kurtz, Large Deviations for Stochastic Processes,
Mathematical Surveys and Monographs, vol. 131, AMS, Providence,
RI, 2006.

[Gou07a] M. Gourcy, A large deviation principle for 2D stochastic Navier–
Stokes equation, Stochastic Process. Appl. 117 (2007), no. 7, 904–927.

[Gou07b] , Large deviation principle of occupation measure for a stochas-
tic Burgers equation, Ann. Inst. H. Poincaré Probab. Statist. 43 (2007),
no. 4, 441–459.
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