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In this paper, we propose an improvement of the adaptive biasing force (ABF) method,
by projecting the estimated mean force onto a gradient. The associated stochastic process

satisfies a non linear stochastic differential equation. Using entropy techniques, we prove

exponential convergence to the stationary state of this stochastic process. We finally
show on some numerical examples that the variance of the approximated mean force is

reduced using this technique, which makes the algorithm more efficient than the standard

ABF method.

Keywords: Adaptive biasing force; Helmholtz projection; Free energy; Variance reduc-

tion.

1. Introduction

1.1. The model

Let us consider the Boltzmann-Gibbs measure :

µ(dx) = Z−1
µ e−βV (x)dx, (1.1)

where x ∈ DN denotes the position of N particles in D. The space D is called the

configuration space. One should think of D as a subset of Rn, or the n-dimensional

torus Tn (where T = R/Z denotes the one dimensional torus). The potential energy

function V : D −→ R associates to the positions of the particles x ∈ D its energy

V (x). In addition, Zµ =

∫
D
e−βV (x)dx (assumed to be finite) is the normalization

constant and β = 1/(kBT ) is proportional to the inverse of the temperature T , kB
being the Boltzmann constant.
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The probability measure µ is the equilibrium measure sampled by the particles

in the canonical statistical ensemble. A typical dynamics that can be used to sample

this measure is the Overdamped Langevin Dynamics:

dXt = −∇V (Xt)dt+

√
2

β
dWt, (1.2)

where Xt ∈ DN and Wt is a Nn-dimensional standard Brownian motion. Under

loose assumptions on V , the dynamics (Xt)t≥0 is ergodic with respect to the measure

µ, which means: for any smooth test function ϕ,

lim
T→+∞

1

T

∫ T

0

ϕ(Xt)dt =

∫
ϕdµ, (1.3)

i.e. trajectory averages converge to canonical averages.

1.2. Metastability, reaction coordinate and free energy

In many cases of interest, there exists regions of the configuration space where

the dynamics (1.2) remains trapped for a long time, and jumps only occasionally

to another region, where it again remains trapped for a long time. This typically

occurs when there exist high probability regions separated by very low probability

areas. The regions where the process (Xt)t≥0 remains trapped for very long times,

are called metastable.

Because of the metastability, trajectorial averages (1.3) converge very slowly to

their ergodic limit. Many methods have been proposed to overcome this difficulty,

and we concentrate here on the Adaptive Biasing Force (denoted ABF) method

(see [5, 7]). In order to introduce the ABF method, we need another ingredient: a

reaction coordinate (also known as an order parameter), ξ = (ξ1, ..., ξm) : D −→ Rm,

ξ(x) = z, where m < nN . Typically, in (1.2), the time-scale for the dynamics on

ξ(Xt) is larger than the time-scale for the dynamics on Xt due to the metastable

states, so that ξ can be understood as a function such that ξ(Xt) is in some sense

a slow variable compared to Xt. We can say that ξ describes the metastable states

of the dynamics associated to the potential V . For a given configuration x, ξ(x)

represents some macroscopic information. For example, it could represent angles or

bond lengths in a protein, positions of defects in a material, etc ... In any case, it is

meant to be a function with values in a small dimensional space (i.e. m ≤ 4), since

otherwise, it is difficult to approximate accurately the associated free energy which

is a scalar function defined on the range of ξ (see equation (1.5) below). The choice

of a ”good” reaction coordinate is a highly debatable subject in the literature. One

aim of the mathematical analysis conducted here or in previous papers (see for

example [9]) is to quantify the efficiency of numerical algorithms once a reaction

coordinate has been chosen.

The image of the measure µ by ξ is defined by:

ξ ∗ µ := exp(−βA(z))dz, (1.4)
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where A is the so-called free energy associated with the reaction coordinate ξ. By

the co-formula (see [9], Appendix A), the following formula for the free energy can

then be obtained: up to an additive constant,

A(z) = −β−1 ln(ZΣz ), (1.5)

where ZΣz =

∫
Σz

e−βV (x)δξ(x)−z(dx), the submanifold Σz is defined by

Σz = {x = (x1, ..., xn) ∈ D | ξ(x) = z},

and δξ(x)−z(dx) represents a measure with support Σz, such that δξ(x)−z(dx)dz = dx

(for further details on delta measures, we refer to [10], Section 3.2.1). We assume

henceforth that ξ and V are such that ZΣz <∞, for all z ∈ Rm.

The idea of free energy biasing methods, such as the adaptive biasing force

method (see [5, 7]) or the Wang Landau algorithm (see [14]), is that, if ξ is well

chosen, the dynamics associated to V −A ◦ ξ is less metastable than the dynamics

associated to V . Indeed, from the definition of the free energy (1.4), for any compact

subspace M ⊂ Rm, the image of Z̃−1e(−β(V−A◦ξ)(x))1ξ(x)∈M by ξ is the uniform

law
1M
|M|

, where Z̃ =

∫
ZΣz

e(−β(V−A◦ξ)(x))1ξ(x)∈M and |M| denotes the Lebesgue

measure on M. The uniform law is typically easier to sample than the original

measure ξ ∗ µ. If the function ξ is well chosen (i.e. if the dynamics in the direction

orthogonal to ξ is not too metastable), the free energy can be used as a biasing

potential to accelerate the sampling of the dynamics (see [9]). The difficulty is

of course that the free energy A is unknown and difficult to approximate using

the original dynamics (1.2) because of metastability. Actually, in many practical

cases, it is the quantity of interest that one would like to approximate by molecular

dynamics simulations (see [4, 10]). The principle of adaptive biasing methods is thus

to approximate A (or its gradient) on the fly in order to bias the dynamics and to

reduce the metastable features of the original dynamics (1.2).

1.3. Adaptive biasing force method (ABF)

In order to introduce the ABF method, we need a formula for the derivatives of

A. The so called mean force ∇A(z), can be obtained from (1.5) as (see [10], Sec-

tion 3.2.2):

∇A(z) =

∫
Σz

f(x)dµΣz , (1.6)

where dµΣz is the probability measure µ conditioned to a fixed value z of the

reaction coordinate:

dµΣz = Z−1
Σz

e−βV (x)δξ(x)−z(dx), (1.7)
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and f is the so-called local mean force defined by

fi =

m∑
j=1

G−1
i,j∇ξj .∇V − β

−1div

 m∑
j=1

G−1
i,j∇ξj

 , (1.8)

where G = (Gi,j)i,j=1,...,m, has components Gi,j = ∇ξi ·∇ξj . This can be rewritten

in terms of conditional expectation as: for a random variable X with law µ (defined

by (1.1)),

∇A(z) = E(f(X)|ξ(x) = z). (1.9)

We are now in position to introduce the standard adaptive biasing force (ABF)

technique, applied to the overdamped Langevin dynamics (1.2):
dXt = −

(
∇V −

m∑
i=1

F it ◦ ξ∇ξi +∇(W ◦ ξ)

)
(Xt)dt+

√
2β−1dWt,

F it (z) = E[fi(Xt)|ξ(Xt) = z], i = 1, ...,m,

(1.10)

where f is defined in (1.8). Compared with the original dynamics (1.2), two modi-

fications have been made to obtain the ABF dynamics (1.10):

(1) First and more importantly, the force

m∑
i=1

F it ◦ ξ∇ξi has been added to the

original force −∇V . At time t, Ft approximates ∇A defined in (1.6).

(2) Second, a potential W ◦ ξ has been added. This is actually needed in the

case when ξ lives in an unbounded domain. In this case, a so-called con-

fining potential W is introduced so that the law of ξ(Xt) admits a long-

time limit Z−1
W e−βW (z)dz (see Remark 2 at the end of Section 2.2), where

ZW =

∫
Ran(ξ)

e−βW is assumed to be finite. When ξ is living in a compact

subspace of Rm, there is no need to introduce such a potential and the law of

ξ(Xt) converges exponentially fast to the uniform law on the compact subspace

(as explained in Section 1.2 and Section 2.2). Typically, W is zero in a chosen

compact subspace M of Rm and is harmonic outside M. For example, in di-

mension two, suppose that ξ = (ξ1, ξ2) and M = [ξmin, ξmax] × [ξmin, ξmax],

then W can be defined as:

W (z1, z2) =

2∑
i=1

1zi≥ξmax(zi − ξmax)2 +

2∑
i=1

1zi≤ξmin(zi − ξmin)2. (1.11)

It is proven in [9] that, under appropriate assumptions, Ft converges exponentially

fast to ∇A. In addition, for well chosen ξ, the convergence to equilibrium for (1.10)

is much quicker than for (1.2). This can be quantified using entropy estimates and

Logarithmic Sobolev Inequalities, see [9].

Notice that even though Ft converges to a gradient (∇A), there is no reason why

Ft would be a gradient at time t. In this paper, we propose an alternative method,
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where we approximate ∇A, at any time t, by a gradient denoted ∇At. The gradient

∇At is defined as the Helmholtz projection of Ft. One could expect improvements

compared to the original ABF method since the variance of ∇At is then smaller

than the variance of Ft (since At is a scalar function). Reducing the variance is

important since the conditional expectation in (1.10) is approximated by empirical

averages in practice.

1.4. Projected adaptive biasing force method (PABF)

A natural algorithm to reconstruct At from Ft, consists in solving the following

Poisson problem:

∆At = divFt onM, (1.12)

with appropriate boundary conditions depending on the choice of ξ and M. More

precisely, if ξ is periodic andM is the torus Tm, then we are working with periodic

boundary conditions. If ξ is with values in Rm and M is a bounded subset of

Rm, then Neumann boundary conditions are needed (see Remark 8 at the end

of Section 2.3.2). To solve this Poisson problem, standard methods such as finite

difference methods, finite element methods, spectral methods or Fourier transforms

can be used. Note that (1.12) is the Euler equation associated with the minimization

problem:

At = argmin
g∈H1(M)/R

∫
M
|∇g − Ft|2, (1.13)

where H1(M)/R =

{
g ∈ H1(M) |

∫
M
g = 0

}
denotes the subspace of H1(M) of

zero average functions. In view of (1.13), At can be interpreted as the function

such that its gradient is the closest to Ft. Solving (1.12) amounts to computing the

so-called Helmholtz-Hodge decomposition of the vector field Ft as (see [6], Section 3):

Ft = ∇At +Rt, onM, (1.14)

where Rt is a divergence free vector field.

Finally, the projected ABF dynamics we propose to study is the following non

linear stochastic differential equation:
dXt = −∇(V −At ◦ ξ +W ◦ ξ)(Xt)dt+

√
2β−1dWt,

∆At = divFt onM, with appropriate boundary conditions,

F it (z) = E[fi(Xt)|ξ(Xt) = z], i = 1, ...,m.

(1.15)

Compared with the standard ABF dynamics (1.10), the only modification is that

the mean force Ft is replaced by ∇At, which is meant to be an approximation of

∇A at time t.

The main theoretical result of this paper is that At converges exponentially

fast to the free energy A in M (at least in a specific setting and for a slightly
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modified version of (1.15), see Section 2 for more details). Moreover, we illustrate

numerically this result on a typical example. From a numerical point of view, the

interest of the method is that the variance of the projected estimated mean force

(i.e. ∇At) is smaller than the variance of the estimated mean force (i.e. Ft). We

observe numerically that this variance reduction enables a faster convergence to

equilibrium for PABF compared with the original ABF.

The paper is organized as follows. In Section 2, the longtime convergence of the

projected ABF method is proven. Section 3 is devoted to a numerical illustration of

the interest of the projected ABF compared to the standard ABF approach. Finally,

the proofs of the results presented in Section 2 are provided in Section 4.

2. Longtime convergence of the projected ABF method

For the sake of simplicity, we assume in this Section that D = Tn and that ξ(x) =

(x1, x2). Then ξ lives in the compact space M = T2 and we therefore take W = 0.

The free energy can be written as:

A(x1, x2) = −β−1 ln(ZΣ(x1,x2)
), (2.1)

where ZΣ(x1,x2)
=

∫
Σ(x1,x2)

e−βV (x)dx3...dxn and Σ(x1,x2) = {x1, x2} × Tn−2. The

mean force becomes:

∇A(x1, x2) =

∫
Σ(x1,x2)

f(x)dµΣ(x1,x2)
, (2.2)

where f = (f1, f2) = (∂1V, ∂2V ) and the conditional probability measure dµΣ(x1,x2)

is:

dµΣ(x1,x2)
= Z−1

Σ(x1,x2)
e−βV dx3...dxn.

Finally, the vector field Ft(x1, x2) writes

∫
Σ(x1,x2)

fdµΣ(x1,x2)
(t, .), or equivalently:

F it (x1, x2) = E
(
∂iV (Xt)|ξ(Xt) = (x1, x2)

)
, i = 1, 2.

2.1. Helmholtz projection

In section 2.1.1, weighted Helmholtz-Hodge decomposition of Ft is presented. In

section 2.1.2, the associated minimization problem and projection operator are in-

troduced.

Let us first fix some notations. For x ∈ Rn and 1 ≤ i < j ≤ n, xji denotes

the vector (xi, xi+1, ..., xj) and dxji denotes dxi dxi+1 ... dxj . Moreover, ∇x2
1
, divx2

1

and ∆x2
1

represent respectively the gradient, the divergence and the laplacian in

dimension two for the first two variables (x1, x2). Likewise, ∇xn3 = (∂3, ..., ∂n)T

represents the gradient vector starting from the third variable of Rn.
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2.1.1. Helmholtz decomposition

The space T2 is a bounded and connected space. For any smooth positive probability

density function ϕ : T2 → R, let us define the weighted Hilbert space: L2
ϕ(T2) =

{f : T2 → R,
∫
T2 |f |2ϕ <∞}. Let us also introduce the Hilbert space Hϕ(div;T2) =

{g ∈ L2
ϕ(T2) × L2

ϕ(T2), divx2
1
(g) ∈ L2(T2)}. It is well-known that any vector field

Ft : T2 → R2 ∈ H1(div,T2) can be written (see [6], Section 3 for example) as

(Helmholtz decomposition): Ft = ∇x2
1
At +Rt, where Rt is a divergence free vector

field. We will need a generalization of the standard Helmholtz decomposition to the

weighted Hilbert spaces L2
ϕ(T2) and Hϕ(div;T2)):

Ftϕ = ∇x2
1
(At)ϕ+Rt, (2.3)

s.t. divx2
1
(Rt) = 0. This weighted Helmholtz decomposition is required to simplify

calculations when studying the longtime convergence (see Remark 10 in Section 4.1

for more details). Recall the space: H1(T2)/R =
{
g ∈ H1(T2) |

∫
T2 g = 0

}
. The

function At is then the solution to the following problem:∫
T2

∇x2
1
At · ∇x2

1
g ϕ =

∫
T2

Ft · ∇x2
1
g ϕ, ∀g ∈ H1(T2)/R, (2.4)

which is the weak formulation of the Poisson problem:

divx2
1
(∇x2

1
Atϕ(t, .)) = divx2

1
(Ftϕ(t, .)), (2.5)

with periodic boundary conditions. Using standard arguments (Lax-Milgram the-

orem), it is straight forward to check that (2.4) admits a unique solution At ∈
H1(T2)/R.

2.1.2. Minimization problem and projection on a gradient

Proposition 1. Suppose that Ft ∈ Hϕ(div;T2). Then for any smooth positive prob-

ability density function ϕ, the equation (2.4) is the Euler Lagrange equation asso-

ciated with the following minimization problem:

At = min
h∈H1(T2)/R

∫
T2

|∇x2
1
h− Ft|2ϕ = min

h∈H1(T2)/R
||∇x2

1
h− Ft||2L2

ϕ(T2). (2.6)

Furthermore, At belongs to H2(T2).

Proof. Let us introduce the application I : H1(T2)/R → R+, defined by

I(g) = ||∇x2
1
h − Ft||2L2

ϕ(T2). It is easy to prove that I is α-convex and coercive, i.e.

lim
‖g‖H1→+∞

I(g) = +∞. Thus I admits a unique global minimum At ∈ H1(T2)/R.
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Furthermore, ∀ε > 0,∀g ∈ H1(T2),

I(At + εg) =

∫
T2

|∇x2
1
(At + εg)− Ft|2ϕ

=

∫
T2

|∇x2
1
At − Ft|2ϕ− 2ε

∫
T2

(∇x2
1
At − Ft) · ∇x2

1
g ϕ+ ε2

∫
T2

|∇x2
1
g|2ϕ

= I(At)− 2ε

∫
T2

(∇x2
1
At − Ft) · ∇x2

1
g ϕ+ ε2

∫
T2

|∇x2
1
g|2ϕ.

(2.7)

Since At is the minimum of I, then I(At + εg) ≥ I(At), ∀ε > 0,∀g ∈ H1(T2).

By considering the asymptotic regime ε→ 0 in the last equation, one thus obtains

the equation (2.4):∫
T2

∇x2
1
At · ∇x2

1
g ϕ =

∫
T2

Ft · ∇x2
1
g ϕ, ∀g ∈ H1(T2)/R.

This is the weak formulation of the following problem (2.5) in H1(T2)/R:

divx2
1
(∇x2

1
Atϕ(t, .)) = divx2

1
(Ftϕ(t, .)).

Since ϕ is a smooth positive function, then ∃ δ > 0, s.t. ϕ > δ. Furthermore, since

divx2
1
(Ftϕ(t, .)) ∈ L2(T2), thus ∆x2

1
At ∈ L2(T2). Therefore, using standard elliptic

regularity results, At ∈ H2(T2).

For any positive probability density function ϕ, the estimation vector field∇x2
1
At

is the projection of Ft onto a gradient. In the following, we will use the notation:

Pϕ(Ft) = ∇x2
1
At, (2.8)

where the projection operator Pϕ is a linear projection defined from Hϕ(div;T2) to

H1(T2)×H1(T2). Notice in particular that Pϕ ◦ Pϕ = Pϕ.

2.2. The projected ABF (PABF) method

We will study the longtime convergence of the following PABF dynamics:
dXt = −∇

(
V −At ◦ ξ

)
(Xt)dt+

√
2β−1dWt,

∇x2
1
At = Pψξ(Ft),

F it (x1, x2) = E[∂iV (Xt)|ξ(Xt) = (x1, x2)], i = 1, 2,

(2.9)

where Pψξ is the linear projection defined by (2.8) and Wt is a standard nN -

dimensional Brownian motion. Thanks to the diffusion term
√

2β−1dWt, Xt admits

a smooth density ψ with respect to the the Lebesgue measure on Tn and ψξ then

denotes the marginal distribution of ψ along ξ:

ψξ(t, x1, x2) =

∫
Σ(x1,x2)

ψ(t, x)dxn3 . (2.10)
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The dynamics (2.9) is the PABF dynamics (1.15) with ξ(x) = (x1, x2), W = 0

and a weighted Helmholtz projection. The weight ψξ is introduced to simplify the

convergence proof (see Remark 10 in Section 4).

Remark 1. If the law of Xt is ψ(t, x)dx then the law of ξ(Xt) is ψξ(t, x1, x2)dx1dx2

and the conditional distribution of Xt given ξ(Xt) = (x1, x2) is (see (1.7) for a sim-

ilar formula when ψ = Z−1
Σ(x1,x2)

e−βV ):

dµt,x1,x2 =
ψ(t, x)dxn3
ψξ(t, x1, x2)

. (2.11)

Indeed, for any smooth functions f and g,

E(f(ξ(Xt))g(Xt)) =

∫
Tn
f(ξ(x))g(x)ψ(t, x)dx

=

∫
T2

∫
Σ(x1,x2)

f ◦ ξgψdxn3dx1dx2

=

∫
T2

f(x1, x2)

∫
Σ(x1,x2)

gψdxn3

ψξ(x1, x2)
ψξ(x1, x2)dx1dx2.

♦

Let us now introduce the non linear partial differential equation (the so-called

Fokker-Planck equation) which rules the evolution of the density ψ(t, x) of Xt solu-

tion of (2.9):



∂tψ = div

((
∇V −

2∑
i=1

∂iAt ◦ ξ∇ξi

)
ψ + β−1∇ψ

)
, for (t, x) ∈ [0,∞[×Tn,

∀t ≥ 0, div(∇Atψξ(t, .)) = div(Ftψ
ξ(t, .)), in T2 with periodic boundary conditions,

∀t ≥ 0, ∀(x1, x2) ∈ T2, F it (x1, x2) =

∫
Σ(x1,x2)

∂iV ψdx
n
3

ψξ(x1, x2)
, i = 1, 2.

(2.12)

The first equation of (2.12) rewrites:

∂tψ = div[∇V ψ + β−1∇ψ]− ∂1((∂1At)ψ)− ∂2((∂2At)ψ). (2.13)

Suppose that (ψ, Ft, At) is a solution of (2.12) and let us introduce the expected

long-time limits of ψ, ψξ (defined by (2.10)) and µt,x1,x2 (defined by (2.11)) respec-

tively:

(1) ψ∞ = e−β(V−A◦ξ);

(2) ψξ∞ = 1 (uniform law);

(3)

µ∞,x1,x2 = Z−1
Σ(x1,x2)

e−βV dxn3 . (2.14)
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Notice that the probability measure ψξ∞(x1, x2)dx1dx2 is the image of the proba-

bility measure ψ∞(x)dx by ξ and that µ∞,x1,x2
= µΣ(x1,x2)

defined in (1.7). Fur-

thermore, we have that∫
Tn
ψ∞ = 1,

∫
T2

ψξ∞ = 1 and ∀(x1, x2) ∈ T2,

∫
Σ(x1,x2)

dµ∞,x1x2
= 1.

Remark 2. In the case when W 6= 0, the first equation of the Fokker-Plank prob-

lem (2.12) becomes:

∂tψ = div
(
∇ (V −At ◦ ξ −W ◦ ξ)ψ + β−1∇ψ

)
.

The expected long-time limits of ψ, ψξ and µt,x1,x2
are respectively:

(1) ψ∞ = Z−1
W e−β(V−A◦ξ−W◦ξ);

(2) ψξ∞ = Z−1
W e−βW ;

(3) µ∞,x1,x2
= Z−1

Σ(x1,x2)
e−βV dxn3 ,

where ZW =

∫
T2

e−βW .

2.3. Precise statements of the longtime convergence results

In section 2.3.1, some well-known results on entropy techniques are presented. For a

general introduction to logarithmic Sobolev inequalities, their properties and their

relation to long-time behaviours of solutions to partial differential equations, we

refer to [1, 2, 13]. Section 2.3.2 presents the main theorem of convergence.

2.3.1. Entropy and Fisher information

Define the relative entropy H(.|.) as follows: for any probability measures µ and ν

such that µ is absolutely continuous with respect to ν (denoted µ� ν),

H(µ|ν) =

∫
ln

(
dµ

dν

)
dµ.

Abusing the notation, we will denote H(ϕ|ψ) for H(ϕ(x)dx|ψ(x)dx) in case of

probability measures with densities. Let us recall the Csiszar-Kullback inequality

(see [2]):

‖µ− ν‖TV ≤
√

2H(µ|ν), (2.15)

where ‖µ−ν‖TV = sup
‖f‖L∞≤1

{∫
fd(µ− ν)

}
is the total variation norm of the signed

measure µ − ν. When both µ and ν have densities with respect to the Lebesque

measure, ‖µ−ν‖TV is simply the L1 norm of the difference between the two densities.

The entropy H(µ|ν) can be understood as a measure of how close µ and ν are.

Now, let us define the Fisher information of µ with respect to ν:

I(µ|ν) =

∫ ∣∣∣∣∇ln

(
dµ

dν

)∣∣∣∣2 dµ. (2.16)
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The Wasserstein distance is another way to compare two probability measures

µ and ν defined on a space Σ,

W (µ, ν) =

√
inf

π∈
∏

(µ,ν)

∫
Σ×Σ

dΣ(x, y)2dπ(x, y),

where the geodesic distance dΣ on Σ is defined as: ∀x, y ∈ Σ,

dΣ(x, y) = inf


√∫ 1

0

|ẇ(t)|2dt | w ∈ C1([0, 1],Σ), w(0) = x,w(1) = y

 ,

and
∏

(µ, ν) denotes the set of coupling probability measures, namely prob-

ability measures on Σ × Σ such that their marginals are µ and ν: ∀π ∈∏
(µ, ν),

∫
Σ×Σ

φ(x)dπ(x, y) =
∫

Σ
φdµ and

∫
Σ×Σ

ψ(y)dπ(x, y) =
∫

Σ
ψdν.

Definition 1. We say that a probability measure ν satisfies a logarithmic Sobolev

inequality with constant ρ > 0 (denoted LSI(ρ)) if for all probability measure µ

such that µ� ν ,

H(µ|ν) ≤ 1

2ρ
I(µ|ν).

Definition 2. We say that a probability measure ν satisfies a Talagrand inequality

with constant ρ > 0 (denoted T(ρ)) if for all probability measure µ such that µ� ν,

W (µ, ν) ≤
√

2

ρ
H(µ|ν).

Remark 3. We implicitly assume in the latter definition, that the probability mea-

sures have finite moments of order 2. This is the case for the probability measures

used in this paper.

The following lemma is proved in [11], Theorem 1:

Lemma 1. If ν satisfies LSI(ρ), then ν satisfies T (ρ).

Recall that Xt solution to (2.9) has a density ψ(t, .). In the following, we denote

the Total Entropy by

E(t) = H(ψ(t, .)|ψ∞) =

∫
Tn

ln(ψ/ψ∞)ψ, (2.17)

the Macroscopic Entropy by

EM (t) = H(ψξ(t, .)|ψξ∞) =

∫
T2

ln(ψξ/ψξ∞)ψξ, (2.18)

and the Microscopic Entropy by

Em(t) =

∫
M
em(t, x1, x2)ψξ(t, x1, x2)dx1dx2, (2.19)
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where em(t, x1, x2) = H(µt,x1,x2 |µ∞,x1,x2). The following result is straightforward

to check:

Lemma 2. It holds, ∀t ≥ 0,

E(t) = EM (t) + Em(t).

Note that the Fisher information of µt,x1,x2
with respect to µ∞,x1,x2

can be

written as (see (2.16)):

I(µt,x1,x2
|µ∞,x1,x2

) =

∫
Σ(x1,x2)

|∇xn3 ln(ψ(t, .)/ψ∞)|2dµt,x1,x2
.

2.3.2. Convergence of the PABF dynamics (2.12)

The following proposition shows that the density function ψξ satisfies a simple

diffusion equation.

Proposition 2. Suppose that (ψ, Ft, At) is a smooth solution of (2.12). Then ψξ

satisfies: {
∂tψ

ξ = β−1∆x2
1
ψξ, in [0,∞[×T2,

ψξ(0, .) = ψξ0, on T2.
(2.20)

Remark 4. If ψξ0 = 0 at some points or is not smooth, then F at time 0 may

not be well defined or I(ψξ(0, .)/ψξ∞) may be infinite. Since, by Proposition 2, ψξ

satisfies a simple diffusion equation these difficulties disappear as soon as t > 0.

Therefore, up to considering the problem for t > t0 > 0, we can suppose that ψξ0 is

a smooth positive function. We also have that for all t > 0, ψξ(t, .) > 0,

∫
T2

ψξ = 1

and ψξ(t, .) ∈ C∞(T2).

Remark 5. In the case where W 6= 0, the probability density function ψξ satisfies

the modified diffusion equation:

∂tψ
ξ = ∇x2

1
·
(
β−1∇x2

1
ψξ + ψξ∇x2

1
W
)
.

Here are two simple corollaries of Proposition 2.

Corollary 1. There exists t0 > 0 and I0 > 0 (depending on ψξ0), such that

∀t > t0, I(ψξ(t, .)|ψξ∞) < I0e
−β−18π2t.

Corollary 2. The macroscopic entropy EM (t), defined by (2.18), converges expo-

nentially fast to zero:

∀t > t0, EM (t) ≤ I0
8π2

e−β
−18π2t,

where I0 is the constant introduced in Corollary 1.
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The assumptions we need to prove the longtime convergence of the biasing force

∇At to the mean force ∇A are the following:

[H1 ] V ∈ C2(Tn) and satisfies:

∃γ > 0, ∀ 3 ≤ j ≤ n, ∀x ∈ Tn, max(|∂1∂jV (x)|, |∂2∂jV (x)|) ≤ γ.

[H2 ] V is such that ∃ρ > 0, ∀(x1, x2) ∈ T2, µ∞,x1,x2 = µΣ(x1,x2) defined by (2.14)

satisfies LSI(ρ).

The main theorem is:

Theorem 1. Let us assume [H1] and [H2]. The following properties then hold:

(1) The microscopic entropy Em converges exponentially fast to zero:

∃C > 0,∃λ > 0,∀t ≥ 0,
√
Em(t) ≤ Ce−λt. (2.21)

Furthermore, if ρ 6= 4π2, then λ = β−1 min(ρ, 4π2) and

C =
√
Em(0) +

γ

β−1|ρ− 4π2|

√
I0
2ρ

. If ρ = 4π2, then for all λ < β−1ρ, there

exists a positive constant C such that (2.21) is satisfied.

(2)
√
E(t) and ‖ψ(t, .) − ψ∞‖L1(Tn) both converge exponentially fast to zero with

rate λ.

(3) The biasing force ∇x2
1
At converges to the mean force ∇x2

1
A in the following

sense:

∀ t ≥ 0,

∫
T2

|∇x2
1
At −∇x2

1
A|2ψξ(t, x1, x2)dx1dx2 ≤

8γ2

ρ
Em(t). (2.22)

The proofs of the results presented in this section are provided in Section 4.

Remark 6. We would like to emphasize that our arguments hold under the as-

sumption of existence of regular solutions. In particular, we suppose that the den-

sity ψ(t, .) is sufficiently regular so that the algebric manipulations in the proofs

(see Section 4) are valid.

Remark 7. This remark is devoted to show how the rate of convergence of the

dynamics (1.2) is improved thanks to PABF method. First of all, we mention a

classical computation to get a rate of convergence for (1.2). Precisely, if one denotes

ϕ(t, .) the probability density function of Xt satisfying (1.2), and ϕ∞ = Z−1
µ e−βV

its longtime limit, then by standard computations (see for example [2]), one obtains:

d

dt
H(ϕ(t, .)|ϕ∞) = −β−1I(ϕ(t, .)|ϕ∞).

Therefore, if ϕ∞ satisfies LSI(R), then one obtains the estimate

∃R > 0, ∀t > 0, H(ϕ(t, .)|ϕ∞) ≤ H(ϕ0|ϕ∞) e−2β−1Rt. (2.23)

From (2.15), we obtain that ‖ϕ(t, .) − ϕ∞‖L1(Tn) converges exponentially fast to

zero with rate β−1R. The constant R is known to be small if the metastable states
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are separated by large energy barriers or if high probability regions for µ are sepa-

rated by large regions with small probability (namely µ is a multimodal measure).

Second, by Theorem 1, one can show that ∇At converges exponentially fast to ∇A
in L2(ψξ∞(x1, x2)dx1dx2)−norm at rate λ = β−1 min(ρ, 4π2). Indeed, since ψξ∞ = 1,∫

T2

|∇At −∇A|2dx1dx2 =

∫
T2

|∇At −∇A|2
ψξ(t, x1, x2)

ψξ(t, x1, x2)
dx1dx2

≤ 8γ2

(1− ε)ρ
Em(t),

where ε > 0 such that ψξ(t, x1, x2) ≥ 1 − ε (for more details refer to the proof of

Corollary 1 in Section 4). This result must be compared with (2.23). More precisely,

λ is related to the rate of convergence 4π2 at the macroscopic level, for equation

(2.20) satisfied by ψξ, and the rate of convergence ρ at the microscopic level, com-

ing from the logarithmic Sobolev inequalities satisfied by the conditional measures

µ∞,x1,x2 . Of course, ρ depends on the choice of the reaction coordinate. In our

framework, we could state that a ”good reaction coordinate” is such that ρ is as

large as possible. Typically, for good choices of ξ, λ � R, and the PABF dynam-

ics converges to equilibrium much faster than the original dynamics (1.2). This is

typically the case if the conditional measures µ∞,x1,x2
are less multimodal than the

original measure µ.

Remark 8. (Extension to other geometric setting)

The results of Theorem 1 are easily generalized to the following setting:

If D = Rn, ξ(x) = (x1, x2) and M is a compact subspace of Rn, then choose a

confining potential W (defined in (1.11)) such that ZW =
∫

e−βW < +∞, Z−1
W e−βW

satisfies LSI(r∗) (for some r∗ > 0) and W is convex potential, then Corollary 1 is

satisfied with rate 2β−1(r∗ − ε), for any ε ∈ (0, r∗) (refer to Corollary 1 in [9] for

further details). In this case, Neumann boundary conditions are needed to solve the

Poisson problem (2.5):
div(∇Atψξ(t, .)) = div(Ftψ

ξ(t, .)) inM,

∂At
∂n

= Ft.n on ∂M,
(2.24)

where n denotes the unit normal outward to M. The convergence rate λ of The-

orem 1 becomes β−1 min(ρ, r∗ − ε). Neumann boundary conditions come from the

minimization problem (2.6) associated to the Euler-Lagrange equation. The numer-

ical applications in Section 3 are performed in this setting.

Remark 9. (Extension to more general reaction coordinates)

In this section, we have chosen ξ(x1, ..., xn) = (x1, x2). The results can be extended

to the following settings:

(1) In dimension one, the Helmholtz projection has obviously no sense. If D = Tn
and ξ(x) = x1, then Ft converges to A′, which is a derivative of a periodic
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function and thus

∫
T
A′ = 0. Since

∫
T
Ft is not necessary equal to zero, one can

therefore take a new approximation A
′

t = Ft −
∫
T
Ft, which approximates A′

at any time t. The convergence results of this section can be extended to this

setting, to show that A′t converges exponentially fast to A′.

(2) More generally, for a reaction coordinate with values in Tm, the convergence

results presented in this paper still hold under the following orthogonality con-

dition:

∀i 6= j, ∇ξi · ∇ξj = 0. (2.25)

In the case when (2.25) does not hold, it is possible to resort to the following

trick used for example in metadynamics (refer to [3, 8]). The idea is to introduce

an additional variable z of dimension m, and an extended potential Vξ(x, z) =

V (x) + κ
2 |z − ξ(x)|2, where κ is a penalty constant. The reaction coordinate is

then chosen as ξmeta(x, z) = z, so that the associated free energy is:

Aξ(z) = −β−1 ln

∫
D
e−βVξ(x,z)dx,

which converges to A(z) (defined in (1.5)) when κ goes to infinity. The extended

PABF dynamics can be written as:

dXt = −

(
∇V (Xt) + κ

m∑
i=1

(ξi(Xt)− Zi,t)∇ξi(Xt)

)
dt+

√
2β−1dWt,

dZt = κ(ξ(Xt)−∇Et(Zt)) dt+
√

2β−1dW t,

∇Et = Pψξmeta (Gt) ,

Gt(z) = E(ξ(Xt)|Zt = z),

where W t is a m−dimensional Brownian motion independent of Wt. The results

of Theorem 1 apply to this extended PABF dynamics.

3. Numerical experiments

3.1. Presentation of the model

We consider a system composed of N particles (qi)0≤i≤N−1 in a two-dimensional

periodic box of side length L. Among these particles, three particles (numbered 0, 1

and 2 in the following) are designated to form a trimer, while the others are solvent

particles. In this model, a trimer is a molecule composed of three identical particles

linked together by two bonds (see Figure 1).

3.1.1. Potential functions

All particles, except the three particles forming the trimer, interact through the

purely repulsive WCA pair potential, which is the Lennard-Jones (LJ) potential
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truncated at the LJ potential minimum:

VWCA(d) =

{
ε+ 4ε

[(
σ
d

)12 −
(
σ
d

)6]
if d ≤ d0,

0 if d ≥ d0,

where d denotes the distance between two particles, ε and σ are two positive pa-

rameters and d0 = 21/6σ.

A particle of the solvent and a particle of the trimer also interact through the

potential VWCA. The interaction potential between two particles of the trimer (q0/q1

or q1/q2) is a double-well potential (see Figure 2):

VS(d) = h

[
1− (d− d1 − ω)2

ω2

]2

, (3.1)

where d1, h and ω are positive parameters.

The potential VS has two energy minima. The first one, at d = d1, corresponds to

the compact bond. The second one, at d = d1 + 2ω, corresponds to the stretched

bond. The height of the energy barrier separating the two states is h.

In addition, the interaction potential between q0 and q2 is a Lennard-Jones

potential:

VLJ(d) = 4ε′

[(
σ′

d

)12

−
(
σ′

d

)6
]
,

where ε′ and σ′ are two positive parameters.

Finally, the three particles of the trimer also interact through the following

potential function on the angle θ formed by the vectors −−→q1q0 and −−→q1q2:

Vθ0(θ) =
kθ
2

(cos(θ)− cos(θ0))
2
,

where θ0 is the equilibrium angle and kθ is the angular stiffness. Figure 1 presents

a schematic view of the system.

Fig. 1. Trimer (q0, q1, q2). Left: compact state; Center: mixed state; Right: stretched state.
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The total energy of the system is therefore, for q ∈ (LT)2N :

V (q) =
∑

3≤i<j≤N−1

VWCA(|qi − qj |) +

2∑
i=0

N−1∑
j=3

VWCA(|qi − qj |)

+

1∑
i=0

VS(|qi − qi+1|) + VLJ(|q0 − q2|) + Vθ0(θ).

Fig. 2. Double-well potential (3.1), with d1 = 21/6, ω = 2 and h = 2.

3.1.2. Reaction coordinate and physical parameters

The reaction coordinate describes the transition from compact to stretched state in

each bond. It is the normalised bond length of each bond of the trimer molecule.

More precisely, the reaction coordinate is ξ = (ξ1, ξ2), with ξ1(q) = |q0−q1|−d0

2ω and

ξ2(q) = |q1−q2|−d0

2ω . For i = 1, 2, the value ξi = 0 refers to the compact state (i.e.

d = d0) and the value ξi = 1 corresponds to the stretched state (i.e. d = d0 + 2ω).

We apply ABF and PABF dynamics to the trimer problem described above.

The inverse temperature is β = 1, we use N = 100 particles (N −3 solvent particles

and the trimer) and the box side length is L = 15. The parameters describing the

WCA and the Lennard-Jones interactions are set to σ = 1, ε = 1, σ′ = 1, ε′ = 0.1,

d0 = 21/6, d1 = 21/6 and the additional parameters for the trimer are ω = 2 and

h = 2. The parameters describing the angle potential are: θ0 such that cos(θ0) = 1/3

and kθ = 1 (we refer to [12], Section 10.4.2, for the choice of such parameters). The

initial condition on the trimer is as follows: Both bonds q0q1 and q1q2 are in compact

state, which means that the distance between q0 and q1 and the distance between

q1 and q2 are equal to d0. Moreover, the initial bond angle is θ0.
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3.1.3. Numerical methods and numerical parameters

Standard and projected ABF methods are used with Nreplicas = 100 replicas of the

system evolving according to the overdamped Langevin dynamics discretized with

a time-step ∆t = 2.5 × 10−4. The reaction coordinate space of interest is taken

of the form M = [ξmin, ξmax] × [ξmin, ξmax], where ξmin = −0.2 and ξmax = 1.2.

M is discretized into Nbins × Nbins = 50 × 50 = 2500 bins of equal sizes and

δ = δx = δy = ξmax−ξmin
Nbins

= 0.028 denotes the size of each bin along both axes.

To implement the ABF and PABF method, one needs to approximate F it (x, y) =

E[fi(x, y)|ξ(x, y) = (ξ1(x, y), ξ2(x, y))], i = 1, 2. The mean force Ft is estimated in

each bin as a combination of plain trajectorial averages and averages over replicas.

It is calculated at each time as an average of the local mean force in the bin over

the total number of visits in this bin. More precisely, at time t and for l = 1, 2, the

value of the mean force in the (i, j)th bin is:

F lt (i, j) =

∑
t′≤t

Nreplicas∑
k=1

fl(qk,t′)1{indx(ξ(qk,t′ ))=(i,j)}

∑
t′≤t

Nreplicas∑
k=1

1{indx(ξ(qk,t′ ))=(i,j)}

, (3.2)

where qk,t denotes the position (xk, yk) at time t, f = (f1, f2) is defined in (1.8)

and indx(ξ(qk,t′)) denotes the number of the bin where ξ(qk,t′) lives, i.e.

indx(ξ(q)) =

([
ξ1(q)− ξmin

δ

]
+

,

[
ξ2(q)− ξmin

δ

]
+

)
, ∀q ∈M.

If the the components of the index function (i.e. indx) are either equal to −1 or to

Nbins, it means that we are outsideM and then the confining potential is non zero,

and defined as:

W (ξ(qk,t)) =

2∑
i=1

[
1{ξi(qk,t)≥ξmax}(ξi(qk,t)− ξmax)2 + 1{ξi(qk,t)≤ξmin}(ξi(qk,t)− ξmin)2

]
.

To construct the PABF method, the solution to the following Poisson problem with

Neumann boundary conditions are approximated:{
∆A = divF in M = [ξmin, ξmax]× [ξmin, ξmax],
∂A
∂n = F · n on ∂M,

(3.3)

where n denotes the unit normal outward to M. We use for simplicity in the nu-

merical experiments the standard Helmholtz problem, without the weight ψξ. Prob-

lem (3.3) is solved using finite element method of type Q1 on the quadrilateral mesh

defined above, with nodes (xi, yj), where xi = ξmin + iδ and yj = ξmin + jδ, for

i, j = 0, .., Nbins. The space M is thus discretized into NT = N2
bins squares, with

Ns = (Nbins + 1)2 nodes. The associated variational formulation is the following:
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FindA ∈ H1(M)/R such that∫
M
∇A · ∇v =

∫
M
F · ∇v, ∀ v ∈ H1(M)/R.

3.2. Comparison of the methods

In this section, we compare results obtained with three different simulations: without

ABF, with ABF and with projected ABF (PABF). First, it is observed numerically

that both ABF methods overcome metastable states. Second, it is illustrated how

PABF method reduces the variance of the estimated mean force compared to ABF

method. As a consequence of this variance reduction, we observe that the conver-

gence of ∇At to ∇A with the PABF method is faster than the convergence of Ft
to ∇A with the ABF method.

3.2.1. Metastability

To illustrate numerically the fact that ABF methods improve the sampling for

metastable processes, we observe the variation, as a function of time, of the two

metastable distances (i.e. the distance between q0 and q1, and the distance between

q1 and q2). On Figures 3 and 4, the distance between q1 and q2 is plotted as a

function of time for three dynamics: without ABF, ABF and PABF.

Both ABF methods allow to switch faster between the compact and stretched

bond and thus to better explore the set of configurations. Without adding the

biasing term, the system remains trapped in a neighborhood of the first potential

minimum (i.e. d0 ' 1.12) region for 20 units of time at least (see Figure 3), while

when the biasing term is added in the dynamics, many jumps between the two local

minima are observed (see Figure 4).

Fig. 3. Without ABF.
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Fig. 4. Left: ABF; Right: PABF.

3.2.2. Variance reduction

Since we use Monte-Carlo methods to approximate ∇At, the variance is an impor-

tant quantity to assess the quality of the result. The following general proposition

shows that projection reduces the variance.

Proposition 3. Let F be a random function from T2 into R2 and belongs to

H(div,T2), and define P = P1 (i.e. without weight) the projection on gradient

vector fields defined in Section 2.1.2. Then, the variance of P(F ) is smaller than

the variance of F : ∫
M

Var(P(F )) ≤
∫
M

Var(F ),

where, for any vector field F , Var(F ) = E(|F |2)−E(|F |)2 and |F | being the Euclidian

norm.

Proof. Let F be a random vector field of H(div,T2). Let us introduce P(F ) ∈
H1(T2) × H1(T2) its projection. Notice that by the linearity of the projection

P(E(F )) = E(P(F )). By definition of P(F ), one gets:∫
T2

(F − P(F )) · ∇h = 0, ∀h ∈ H1(T2).

Therefore, using Pythagoras and the fact that P(F ) is agradient,∫
T2

|F |2 =

∫
T2

|F − P(F )|2 +

∫
T2

|P(F )|2

and ∫
T2

|F − E(F )|2 =

∫
T2

|F − E(F )− P(F − E(F ))|2 +

∫
T2

|P(F − E(F ))|2.

Using the linearity of P, we thus obtain∫
T2

Var(F ) =

∫
T2

Var(F − P(F )) +

∫
T2

Var(P(F )),

which concludes the proof.
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We illustrate the improvement of the projected method in terms of the variances

of the biasing forces, by comparing Var(∇At) = Var(∂1At) + Var(∂2At) (for the

PABF method) and Var(Ft) = Var(F 1
t ) + Var(F 2

t ) (for the ABF method). Figure 5

shows that the variance for the projected ABF method is smaller than for the

standard ABF method.

We have Nbins × Nbins = 2500 variable for each term (i.e. ∂1At, ∂2At, F
1
t and

F 2
t ). The variances are computed using 20 independent realizations as follows:

Var(F 1
t ) =

1

2500

50∑
i,j=1

1

20

20∑
k=1

F 1,k
t (xi, yj)

2 − 1

2500

50∑
i,j=1

(
1

20

20∑
k=1

F 1,k
t (xi, yj)

)2

.

Note that four averages are involved in this formula: an average with respect to the

space variable, an average over the 20 Monte-Carlo realizations, an average over

replicas and a trajectorial average (the last two averages are more explicit in (3.2)).

Notice that since the variance of the biasing force is smaller with PABF, one may

expect better convergence in time results. This will be investigated in Section 3.2.3

and Section 3.2.4.

Fig. 5. Variances as a function of time.

3.2.3. Free energy error

We now present, the variation, as a function of time, of the normalized L2− distance

between the real free energy and the estimated one, in both cases: ABF and PABF

methods. As can be seen in Figure 6, in both methods, the error decreases as time

increases. Moreover, this error is always smaller for the projected ABF method than

for the ABF method.
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Fig. 6. Free energy error as a function of time.

3.2.4. Distribution

Another way to illustrate that the projected ABF method converges faster than the

standard ABF method is to plot the density function ψξ as a function of time (see

Figure 7-11). It is illustrated that, as time increases, the probability of visiting all

bins (of the reaction coordinate space M) increases.

It is observed that, for the projected ABF method, the state where both bonds

are stretched is visited earlier (at time 5) than for the standard ABF method (at

time 20). The convergence to uniform law along (ξ1, ξ2) is faster with the projected

ABF method.
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Fig. 7. At time 0.025. Left:
∫
ψξ(x1, x2)dx2; Right:

∫
ψξ(x1, x2)dx1.
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Fig. 8. At time 5. Left:
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ψξ(x1, x2)dx2; Right:

∫
ψξ(x1, x2)dx1.
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Fig. 9. At time 10. Left:
∫
ψξ(x1, x2)dx2; Right:

∫
ψξ(x1, x2)dx1.
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Fig. 10. At time 20. Left:
∫
ψξ(x1, x2)dx2; Right:

∫
ψξ(x1, x2)dx1.

4. Proofs

The proofs are inspired from [9]. One may assume that β = 1 up to the following

change of variable: t̃ = β−1t, ψ̃(t̃, x) = ψ(t, x), Ṽ (x) = βV (x). Recall, that we work

in D = Tn, M = T2 and ∀x = (x1, ..., xn) ∈ Tn, ξ(x) = (x1, x2).
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Fig. 11. At time 25. Left:
∫
ψξ(x1, x2)dx2; Right:

∫
ψξ(x1, x2)dx1.

4.1. Proof of Proposition 2

Let g : T2 → R be a function in H1(T2).

d

dt

∫
T2

ψξgdx1dx2 =
d

dt

∫
Tn
ψg ◦ ξdxn1

=

∫
Tn

div[(∇V −
2∑
i=1

∂iAt ◦ ξ∇ξi)ψ +∇ψ]g ◦ ξdxn1

= −
∫
Tn

2∑
j=1

[(∇V −
2∑
i=1

∂iAt ◦ ξ∇ξi)ψ +∇ψ].∇ξj∂jg ◦ ξdxn1

= −
2∑
i=1

∫
Tn

[(∇V.∇ξiψ +∇ψ.∇ξi]∂ig ◦ ξdxn1

+

2∑
i=1

∫
Tn
∂iAt ◦ ξψ∂ig ◦ ξdxn1 .

Applying Fubini, it holds:

d

dt

∫
T2

ψξgdx1dx2 = −
2∑
i=1

∫
T2

∫
Σ(x1,x2)

[∂iV ψ + ∂iψ]dxn3∂ig(x1, x2)dx1dx2

+

2∑
i=1

∫
T2

∫
Σ(x1,x2)

∂iAt(x1, x2)ψdxn3∂ig(x1, x2)dx1dx2

= −
2∑
i=1

∫
T2

F itψ
ξ∂ig(x1, x2)dx1dx2 −

2∑
i=1

∫
T2

∂iψ
ξ∂ig(x1, x2)dx1dx2

+

2∑
i=1

∫
T2

∂iAt(x1, x2)ψξ∂ig(x1, x2)dx1dx2

=

∫
T2

∆ψξg(x1, x2)dx1dx2,
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where we used (2.4) with ϕ = ψξ(t, .). This is the weak formulation of:

∂tψ
ξ = ∆ψξ, on [0,∞[×T2.

Remark 10. The reason why we consider the weighted Helmholtz decomposi-

tion (2.3) with ϕ = ψξ(t, .) in the PABF dynamics (2.9) instead of the standard

one (1.14) is precisely to obtain this simple diffusion equation on the function ψξ.

This is will also be useful in the proof of Lemma 6 below.

4.2. Proof of Corollary 1

Let φ = ψξ and φ∞ = ψξ∞ = 1. It is known that ∀t ≥ 0 and ∀(x1, x2) ∈ T2, φ

satisfies:

∂tφ = ∆x2
1
φ. (4.1)

Moreover (See Remark 4), it is assumed that and is such that∫
T2

φ(0, .) = 1 andφ(0, .) ≥ 0.

Let us show that ∀ t ≥ 0,∀k > 0, ‖φ(t, .)− 1‖Hk(T2) ≤ ‖φ(0, .)− 1‖Hk(T2)e
−8π2t.

First, we prove that φ converges to 1 in L2(T2),

1

2

d

dt

∫
T2

|φ− 1|2 =

∫
T2

∂tφ(φ− 1)

=

∫
T2

∆φ(φ− 1)

= −
∫
T2

∇φ∇(φ− 1)

= −
∫
T2

|∇φ|2

≤ −4π2

∫
T2

|φ− 1|2,

where we have used the Poincaré-Wirtinger inequality on the torus T2, applied to

φ: for any function f ∈ H1(T2),

∫
T2

(
f −

∫
T2

f

)2

≤ 1

4π2

∫
T2

|∇f |2.

We therefore obtain, ‖φ(t, .)− 1‖2L2(T2) ≤ ‖φ(0, .)− 1‖2L2(T2)e
−8π2t.

Second, we prove that ∂iφ converges to 0 in L2(T2). For i = 1, 2, ∂iφ satis-
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fies (4.1): ∂t(∂iφ) = ∆x2
1
(∂iφ), with periodic boundary conditions. As above,

1

2

d

dt

∫
T2

|∂iφ|2 =

∫
T2

∂t(∂iφ)∂iφ

=

∫
T2

∆(∂iφ)∂iφ

= −
∫
T2

|∇(∂iφ)|2.

Using again Poincaré-Wirtinger inequality on ∂iφ,

1

2

d

dt

∫
T2

|∂iφ|2 ≤ −4π2

∫
T2

(
∂iφ−

∫
T2

∂iφ

)2

= −4π2

∫
T2

|∂iφ|2.

Where we used
∫
T2 ∂iφ = 0, since φ is periodic on T2. Therefore, it holds

‖∂iφ(t, .)‖2L2(T2) ≤ ‖∂iφ(0, .)‖2L2(T2)e
−8π2t.

Third, one can prove by induction that all higher derivatives of φ converge

exponentially fast to 0, with rate 8π2 and the following estimation is then proven:

∀ t ≥ 0,∀k > 0, ‖φ(t, .)− 1‖2Hk(T2) ≤ ‖φ(0, .)− 1‖2Hk(T2)e
−8π2t.

As Hk(T2) ↪→ L∞(T2), ∀k > 1, then ∃c > 0,

‖φ− 1‖2L∞ ≤ c‖φ− 1‖2Hk ≤ ce
−8π2t.

Therefore, ∀ε > 0, ∃t0 > 0, ∀x ∈ T2, ∀t > t0, φ(t, x) ≥ 1− ε. Finally, ∀t > t0

I(ψξ|ψξ∞) =

∫
T2

|∇x2
1
φ|2

φ
≤ 1

1− ε

∫
T2

|∇x2
1
φ|2 ≤

‖∇x2
1
φ(0, .)‖2L2(T2)

1− ε
e−8π2t.

4.3. Proof of Corollary 2

We have that ψξ∞ = 1 satisfies LSI(r), for some r > 0 (see Chapter 3, Section 3 in

[1]). Referring to Proposition 2 and since ψξ is a probability density function, one

gets:

d

dt
EM =

∫
T2

∂t
(
ψξ ln(ψξ)

)
=

∫
T2

∂tψ
ξ ln(ψξ) +

∫
T2

∂tψ
ξ

=

∫
T2

∆ψξ ln(ψξ)

= −
∫
T2

|∇x2
1

ln(ψξ)|2ψξ

= −I(ψξ|ψξ∞)

≤ −2rH(ψξ|ψξ∞)

= −2rEM .
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Therefore, EM converges exponentially fast to zero. Referring to Corollary 1 and

since EM converges to zero, we have that for any t > t0,

−EM (t) =

∫ ∞
t

d

ds
EM (s)ds = −

∫ ∞
t

I(ψξ|ψξ∞)ds

≥ −I0
∫ ∞
t

e−8π2sds

= − I0
8π2

e−8π2t,

which yields the desired estimation.

4.4. Proof of Theorem 1

To prove our main result, several intermediate lemmas are needed.

Lemma 3. ∀t ≥ 0, ∀(x1, x2) ∈ T2 and for i = 1, 2, we have:

(F it−∂iA)(x1, x2) =

(∫
Σ(x1,x2)

∂i ln(ψ/ψ∞)
ψ

ψξ
dxn3

)
(x1, x2)−

(
∂i ln(ψξ/ψξ∞)

)
(x1, x2).

Proof.∫
Σ(x1,x2)

∂i ln(ψ/ψ∞)
ψ

ψξ
dxn3 − ∂i ln(ψξ/ψξ∞)

=

∫
Σ(x1,x2)

∂i ln(ψ)
ψ

ψξ
dxn3 −

∫
Σ(x1,x2)

∂i ln(ψ∞)
ψ

ψξ
dxn3 − ∂i ln(ψξ) + ∂i ln(ψξ∞)

=
1

ψξ

∫
Σ(x1,x2)

∂iψdx
n
3 +

∫
Σ(x1,x2)

(∂iV −∇ξi∂iA ◦ ξ)
ψ

ψξ
dxn3 − ∂i ln(ψξ)

=
∂iψ

ξ

ψξ
+ F it − ∂iA−

∂iψ
ξ

ψξ

= F it − ∂iA.

Lemma 4. Suppose that [H1] and [H2] hold, then for all t ≥ 0, for all (x1, x2) ∈ T2

and for i = 1, 2, we have:

|F it (x1, x2)− ∂iA(x1, x2)| ≤ γ
√

2

ρ
em(t, x1, x2).

Proof. For any coupling measure π ∈
∏

(µt,x1,x2 , µ∞,x1,x2) defined on Σ(x1,x2) ×
Σ(x1,x2), it holds:

|F it − ∂iA| =

∣∣∣∣∣
∫

Σ(x1,x2)×Σ(x1,x2)

(∂iV (x)− ∂iV (x′))π(dx, dx′)

∣∣∣∣∣
= ‖∇xn3 ∂iV ‖L∞

√∫
Σ(x1,x2)×Σ(x1,x2)

dΣ(x1,x2)
(x, x′)2π(dx, dx′).
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Taking now the infimum over all π ∈
∏

(µ(t, .|(x1, x2)), µ(∞, .|(x1, x2))) and using

Lemma 1, we obtain

|F it − ∂iA| ≤ γW (µ(t, .|(x1, x2)), µξ(∞, .|(x1, x2)))

≤ γ
√

2

ρ
H(µξ(t, .|(x1, x2)), µξ(∞, .|(x1, x2)))

= γ

√
2

ρ
em(t, (x1, x2)).

Lemma 5. Suppose that [H2] holds, then for all t ≥ 0,

Em(t) ≤ 1

2ρ

∫
Tn
|∇xn3 ln(ψ(t, .)/ψ∞)|2ψ.

Proof. Using [H2],

Em =

∫
T2

emψ
ξdx1dx2

=

∫
T2

H(µ(t, .|(x1, x2))|µ(∞, .|(x1, x2)))ψξdx1dx2

≤
∫
T2

1

2ρ

∫
Σ
x2
1

|∇xn3 ln(ψ(t, .)/ψ∞)|2dxn3
ψ(t, .)

ψξ(t, x1, x2)
dx1dx2

=
1

2ρ

∫
Tn
|∇xn3 ln(ψ(t, .)/ψ∞)|2ψdxn1 .

Lemma 6. It holds for all t ≥ 0,∫
Tn

(∂1At − F 1
t )[∂1 ln(ψ/ψ∞)]ψ +

∫
Tn

(∂2At − F 2
t )[∂2 ln(ψ/ψ∞)]ψ ≤ 0.

Proof. Using Fubini,∫
Tn

(∂1At − F 1
t )[∂1 ln(ψ/ψ∞)]ψ +

∫
Tn

(∂2At − F 2
t )[∂2 ln(ψ/ψ∞)]ψ

=

∫
T2

(∂1At − F 1
t )

∫
Σ(x1,x2)

[∂1 ln(ψ/ψ∞)]ψ +

∫
T2

(∂2At − F 2
t )

∫
Σ(x1,x2)

[∂2 ln(ψ/ψ∞)]ψ.

For the first term, we have∫
Σ(x1,x2)

[∂1 ln(ψ/ψ∞)]ψ =

∫
Σ(x1,x2)

(∂1 lnψ)ψ −
∫

Σ(x1,x2)

(∂1 lnψ∞)ψ

= ∂1ψ
ξ +

∫
Σ(x1,x2)

∂1(V −A)ψ

= (∂1 lnψξ)ψξ + F 1
t ψ

ξ − ∂1Aψ
ξ.
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Similarly, we have

∫
Σ(x1,x2)

[∂2 ln(ψ/ψ∞)]ψ = (∂2 lnψξ)ψξ + F 2
t ψ

ξ − ∂2Aψ
ξ.

Therefore, one gets

∫
Tn

(∂1At − F 1
t )[∂1 ln(ψ/ψ∞)]ψ +

∫
Tn

(∂2At − F 2
t )[∂2 ln(ψ/ψ∞)]ψ

=

∫
T2

(∂1At − F 1
t )(∂1 lnψξ)ψξ +

∫
T2

(∂2At − F 2
t )(∂2 lnψξ)ψξ

−
∫
T2

(∂1At − F 1
t )2ψξ −

∫
T2

(∂2At − F 2
t )2ψξ

which concludes the assertion since the first line is equal to zero (by (2.4) with

ϕ = ψξ(t, .)) and the second line is non positive. Again the weighted Helmholtz

decomposition helps in simplifying terms.

Proof of Theorem 1:

Now we will prove the exponentially convergence of Em(t). Recall (2.13):

∂tψ = div(∇V ψ +∇ψ)− ∂1((∂1At)ψ)− ∂2((∂2At)ψ),

which is equivalent to

∂tψ = div

(
ψ∞∇

(
ψ

ψ∞

))
+ ∂1[(∂1A− ∂1At)ψ] + ∂2[(∂2A− ∂2At)ψ].

Using (2.17), (2.18) and (4.1), one obtains

dE

dt
= −

∫
Tn
|∇ ln(ψ/ψ∞)|2ψ +

∫
Tn

(∂1At − ∂1A)[∂1 ln(ψ/ψ∞)]ψ

+

∫
Tn

(∂2At − ∂2A)[∂2 ln(ψ/ψ∞)]ψ,

dEM
dt

= −
∫
T2

|∇ ln(ψξ)|2ψξ.
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Using then Lemma 2 and Lemma 3, one gets

dEm
dt

=
dE

dt
− dEM

dt

= −
∫
Tn
|∇ ln(ψ/ψ∞)|2ψ +

∫
Tn

(∂1At − ∂1A)∂1 ln(ψ/ψ∞)ψ

+

∫
Tn

(∂2At − ∂2A)∂2 ln(ψ/ψ∞)ψ +

∫
T2

|∂1 lnψξ|2ψξ +

∫
T2

|∂2 lnψξ|2ψξ

= −
∫
Tn
|∇ ln(ψ/ψ∞)|2ψ

+

∫
Tn

(∂1At − F 1
t )[∂1 ln(ψ/ψ∞)]ψ +

∫
Tn

(F 1
t − ∂1A)[∂1 ln(ψ/ψ∞)]ψ

+

∫
Tn

(∂2At − F 2
t )[∂2 ln(ψ/ψ∞)]ψ +

∫
Tn

(F 2
t − ∂2A)[∂2 ln(ψ/ψ∞)]ψ

+

∫
T2

|∂1 lnψξ|2ψξ +

∫
T2

|∂2 lnψξ|2ψξ.

Lemma 6 then yields

dEm
dt
≤ −

∫
Tn
|∇ ln(ψ/ψ∞)|2ψ

+

∫
Tn

(F 1
t − ∂1A)∂1 ln(ψ/ψ∞)ψ +

∫
Tn

(F 2
t − ∂2A)∂2 ln(ψ/ψ∞)ψ

+

∫
T2

|∂1 lnψξ|2ψξ +

∫
T2

|∂2 lnψξ|2ψξ.

Using lemma 3 and Fubini, one then obtains

dEm
dt
≤ −

∫
Tn
|∇ ln(ψ/ψ∞)|2ψ

+

∫
T2

[∫
Σ(x1,x2)

∂1 ln(ψ/ψ∞)
ψ

ψξ

]∫
Σ(x1,x2)

∂1 ln(ψ/ψ∞)ψ −
∫
Tn
∂1 ln(ψξ)∂1 ln(ψ/ψ∞)ψ

+

∫
T2

[∫
Σ(x1,x2)

∂2 ln(ψ/ψ∞)
ψ

ψξ

]∫
Σ(x1,x2)

∂2 ln(ψ/ψ∞)ψ −
∫
Tn
∂2 ln(ψξ)∂2 ln(ψ/ψ∞)ψ

+

∫
T2

|∂1 lnψξ|2ψξ +

∫
T2

|∂2 lnψξ|2ψξ

≤ −
∫
Tn
|∇ ln(ψ/ψ∞)|2ψ

+

∫
T2

[∫
Σ(x1,x2)

∂1 ln(ψ/ψ∞)ψ

]2
1

ψξ
−
∫
Tn
∂1 ln(ψξ)∂1 ln(ψ/ψ∞)ψ

+

∫
T2

[∫
Σ(x1,x2)

∂2 ln(ψ/ψ∞)ψ

]2
1

ψξ
−
∫
Tn
∂2 ln(ψξ)∂2 ln(ψ/ψ∞)ψ

+

∫
T2

|∂1 lnψξ|2ψξ +

∫
T2

|∂2 lnψξ|2ψξ.
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Applying Cauchy-Schwarz on the first terms of the second and third lines, we obtain

dEm
dt
≤ −

∫
Tn
|∇xn3 ln(ψ/ψ∞)|2ψ

−
∫
Tn
∂1 ln(ψξ)∂1 ln(ψ/ψ∞)ψ −

∫
Tn
∂2 ln(ψξ)∂2 ln(ψ/ψ∞)ψ

+

∫
T2

|∂1 lnψξ|2ψξ +

∫
T2

|∂2 lnψξ|2ψξ

≤ −
∫
Tn
|∇xn3 ln(ψ/ψ∞)|2ψ −

∫
T2

∂1 ln(ψξ)

[∫
Σ(x1,x2)

∂1 ln(ψ/ψ∞)
ψ

ψξ
− ∂1 lnψξ

]
ψξ

−
∫
T2

∂2 ln(ψξ)

[∫
Σ(x1,x2)

∂2 ln(ψ/ψ∞)
ψ

ψξ
− ∂2 lnψξ

]
ψξ.

Applying Lemma 5, Lemma 3, Cauchy-Schwarz, Lemma 4 and Corollary 1,

dEm
dt
≤ −2ρEm +

√∫
T2

|∂1 ln(ψξ)|2ψξ
√∫

T2

2

ρ
em(t, (x1, x2))ψξ

+

√∫
T2

|∂2 ln(ψξ)|2ψξ
√∫

T2

2

ρ
em(t, (x1, x2))ψξ

≤ −2ρEm + 2γ

√
2

ρ
Em

√∫
T2

|∇x2
1

ln(ψξ)|2ψξ

≤ −2ρEm + 2γ

√
2

ρ
Em

√
I(ψξ/ψξ∞)

≤ −2ρEm + 2γ

√
2

ρ
Em
√
I0e
−4π2t.

Finally we obtain

d

dt

√
Em(t) ≤ −ρ

√
Em(t) + γ

√
I0
2ρ
e−4π2t.

First, if ρ 6= 4π2, using Gronwall inequality, one obtains

√
Em(t) ≤

√
Em(0) e−ρt + γ

√
I0
2ρ

∫ t

0

eρ(−t+s)e−4π2sds

≤
√
Em(0) e−ρt + γ

√
I0
2ρ

e−ρt

ρ− 4π2

(
e(ρ−4π2)t − 1

)
≤
√
Em(0) e−ρt + γ

√
I0
2ρ

e−ρt

|ρ− 4π2|
e(ρ−4π2)t.
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√
Em(t) ≤

√
Em(0) e−ρt + γ

√
I0
2ρ

∫ t

0

e−ρtds

≤

(√
Em(0) + γ

√
I0
2ρ
t

)
e−ρt,

which leads the desired estimation (2.21).

Using this above convergence, Corollary 2 and Lemma 2, it is then easy to see

that E converges exponentially fast to zero. Using (2.15), one obtains the conver-

gence of ψ to ψ∞ since:

‖ψ − ψ∞‖L1(Tn) ≤
√

2H(ψ|ψ∞) =
√

2E.

The second point of the theorem is checked. Finally, we are now in position to prove

the last point of Theorem 1. Using (2.6) and Lemma 4,

‖∇At −∇A‖2L2

ψξ
(T2) ≤ 2‖∇At − Ft‖2L2

ψξ
(T2) + 2‖Ft −∇A‖2L2

ψξ
(T2)

≤ 4‖Ft −∇A‖2L2

ψξ
(T2)

≤ 8
γ2

ρ
Em.
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