
HAL Id: hal-01151882
https://hal.science/hal-01151882v1

Submitted on 4 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Global vs local search on multi-objective NK-landscapes:
contrasting the impact of problem features

Fabio Daolio, Arnaud Liefooghe, Sébastien Verel, Hernan Aguirre, Kiyoshi
Tanaka

To cite this version:
Fabio Daolio, Arnaud Liefooghe, Sébastien Verel, Hernan Aguirre, Kiyoshi Tanaka. Global vs lo-
cal search on multi-objective NK-landscapes: contrasting the impact of problem features. Genetic
and Evolutionary Computation Conference (GECCO 2015), Jul 2015, Madrid, Spain. pp.369-376,
�10.1145/2739480.2754745�. �hal-01151882�

https://hal.science/hal-01151882v1
https://hal.archives-ouvertes.fr


Global vs Local Search on Multi-objective NK-Landscapes:
Contrasting the Impact of Problem Features

Fabio Daolio
Shinshu University

fdaolio@shinshu-u.ac.jp

Arnaud Liefooghe
Univ. Lille, CRIStAL, Inria

arnaud.liefooghe@inria.fr

Sébastien Verel
Univ. du Littoral Côte d’Opale
verel@lisic.univ-littoral.fr

Hernán Aguirre
Shinshu University

ahernan@shinshu-u.ac.jp

Kiyoshi Tanaka
Shinshu University

ktanaka@shinshu-u.ac.jp

ABSTRACT
Computationally hard multi-objective combinatorial optimization
problems are common in practice, and numerous evolutionary multi-
objective optimization (EMO) algorithms have been proposed to
tackle them. Our aim is to understand which (and how) prob-
lem features impact the search performance of such approaches.
In this paper, we consider two prototypical dominance-based al-
gorithms: a global EMO strategy using an ergodic variation op-
erator (GSEMO) and a neighborhood-based local search heuristic
(PLS). Their respective runtime is estimated on a benchmark of
combinatorial problems with tunable ruggedness, objective space
dimension, and objective correlation (ρMNK-landscapes). In other
words, benchmark parameters define classes of instances with in-
creasing empirical problem hardness; we enumerate and character-
ize the search space of small instances. Our study departs from sim-
ple performance comparison to systematically analyze the correla-
tions between runtime and problem features, contrasting their asso-
ciation with search performance within and across instance classes,
for both chosen algorithms. A mixed-model approach then allows
us to further generalize from the experimental design, supporting a
sound assessment of the joint impact of instance features on EMO
search performance.

1. MOTIVATIONS
Despite the increasing number of available heuristics for evo-

lutionary multi-objective optimization, the understanding of their
search dynamics is comparatively less advanced than in the single-
objective case. This knowledge is all the more valuable in a black-
box scenario, where such approaches are mostly adopted. Finding
what makes a problem hard, which features have an influence on
algorithm performance, and how that changes across different al-
gorithm and problem classes, are relevant and still open challenges
in multi-objective optimization.

Following [17], we precisely investigate the impact of instance
features on search performance. We decline this research question
in three complementary sub-questions: (i) how strongly are fea-
tures associated to performance? (ii) what performance change is

.

to be expected when varying each feature? (iii) what is the relative
importance of features in explaining the performance variance? We
consider a global and a local EMO heuristics and try to highlight
the differences and similarities in the behavior of both algorithm
classes, with respect to a set of relevant problem features. As such,
the emphasis is more on making inferences, e.g. [8], rather than
making predictions, e.g. [11]. Hence, this work attempts to provide
both insightful understandings and methodological suggestions.

We introduce the experimental setup of our analysis in Section 2,
in particular the considered problems, ρMNK-landscapes [24], and
the search algorithms, namely the global simple EMO optimizer
(GSEMO) [14] and the Pareto local search (PLS) [21], of which
we measure the estimated runtime to find a (1+ε)−approximation
of the Pareto set. In Section 3, we examine the performance of
GSEMO and PLS depending on the ruggedness, the objective space
dimension, and the objective correlation of ρMNK-landscapes. In
Section 4, we provide an overview of the features that characterize
the hardness of problem instances, relating to the difficulties ran-
domized search heuristics might have to face. Via a correlation and
regression analysis, we are able to point out how such features in-
fluence the performance of global and local search algorithms like
GSEMO and PLS. The last section concludes the paper.

2. INGREDIENTS

2.1 Multi-objective Optimization
We are interested in maximizing a black-box objective function

vector f : X → Z, that maps any solution from the solution space
x ∈ X to a vector in the objective space z ∈ Z, with Z ⊆ IRM ,
such that z = f(x). We assume that the solution space is a discrete
set X = {0, 1}N , where N is the problem size, i.e. the number
of binary (zero-one) variables. An objective vector z ∈ Z is dom-
inated by an objective vector z′ ∈ Z, denoted by z ≺ z′, iff for
all i ∈ {1, . . . ,M} zi 6 z′i, and there is a j ∈ {1, . . . ,M} such
that zj < z′j . Similarly, a solution x ∈ X is dominated by a so-
lution x′ ∈ X iff f(x) ≺ f(x′). An objective vector z? ∈ Z is
non-dominated if there does not exist any objective vector z ∈ Z
such that z? ≺ z. A solution x? ∈ X is non-dominated, or Pareto-
optimal, if f(x) is non-dominated. The set of Pareto-optimal solu-
tions is the Pareto set (PS) ; its mapping in the objective space is
the Pareto front (PF). One of the main challenges in multi-objective
optimization is to identify the Pareto set/front, or a good approxi-
mation of it, for large-size and difficult problems.

2.2 ρMNK-Landscapes
The family of ρMNK-landscapes constitutes a problem-indepen-

dent model used for constructing multi-objective multimodal land-



scapes with objective correlation [24]. They extend single-objective
NK-landscapes [12] and multi-objective NK-landscapes with in-
dependent objective functions [1]. Candidate solutions are binary
strings of size N , i.e. the solution space is X = {0, 1}N . The
objective function vector f = (f1, . . . , fi, . . . , fM ) is defined as
f : {0, 1}N → [0, 1]M such that each objective function fi is to be
maximized. As in the single-objective case, each separate objec-
tive function value fi(x) of a solution x = (x1, . . . , xj , . . . , xN )
is an average value of the individual contributions associated with
each variable xj . Indeed, for each objective fi, i ∈ {1, . . . ,M},
and each variable xj , j ∈ {1, . . . , N}, a component function fij :
{0, 1}K+1 → [0, 1] assigns a real-valued contribution for every
combination of xj and itsK epistatic interactions {xj1, . . . , xjK}.
These fij-values are uniformly distributed in the range [0, 1]. Thus,
the individual contribution of a variable xj depends on its value
and on the values of K < N other variables {xj1 , . . . , xjK}. The
problem can be formalized as follows.

max fi(x) =
1

N

N∑
j=1

fij(xj , xj1 , . . . , xjK ) i ∈ {1, . . . ,M}

s.t. xj ∈ {0, 1} j ∈ {1, . . . , N}

In this work, the epistatic interactions, i.e. the K variables that in-
fluence the contribution of xj , are set uniformly at random among
the (N − 1) variables other than xj , following the random neigh-
borhood model from [12]. By increasing the number of epistatic
interactions K from 0 to (N − 1), problem instances can be grad-
ually tuned from smooth to rugged. In ρMNK-landscapes, fij-
values additionally follow a multivariate uniform distribution of
dimension M , defined by an M × M positive-definite symmet-
ric covariance matrix (cpq) such that cpp = 1 and cpq = ρ for
all p, q ∈ {1, . . . ,M} with p 6= q, were ρ > −1

M−1
defines the

objective correlation degree; see [24] for details. The positive (re-
spectively negative) data correlation ρ decreases (respectively in-
creases) the degree of conflict between the objective function val-
ues. The same correlation coefficient ρ is then defined between all
pairs of objectives, and the same epistatic degree K and epistatic
interactions are set for all the objectives.

2.3 Multi-objective Search Heuristics
In this paper, we consider two randomized search heuristics for

ρMNK-landscapes: (i) global SEMO (GSEMO) [14], a simple eli-
tist steady-state global EMO algorithm (see Algorithm 1); and (ii)
Pareto local search (PLS) [21], a population-based multi-objective
local search (Algorithm 2). Both algorithms maintain an unbounded
archiveA of mutually non-dominated solutions. This archive is ini-
tialized with one random solution from the solution space. Then, at
each iteration, one solution is selected at random from the archive
x ∈ A. In GSEMO, each binary variable from x is independently
flipped with rate 1

N
in order to produce an offspring solution x′.

The archive is then updated by keeping the non-dominated solu-
tions from A∪{x′}. In PLS, the solutions located in the neighbor-
hood of x are evaluated. Let N(x) denote the set of solutions lo-
cated at a Hamming distance 1. The non-dominated solutions from
A ∪ N(x) are stored in the archive, and the current solution x is
then tagged as visited in order to avoid a useless revaluation of its
neighborhood. This process is iterated until a stopping condition
is satisfied. While for GSEMO there does not exists any explicit
stopping rule [14], PLS has a natural stopping condition which is
satisfied when all solutions from the archive are tagged as visited.

In other words, while PLS is based on the exploration of the
whole 1-bit-flip neighborhood from x, GSEMO rather uses an er-
godic operator, i.e. an independent bit-flip mutation. This means

Algorithm 1: GSEMO

1 Choose an initial solution x0 uniformly from X;
2 A← {x0};
3 repeat
4 Select an element x out of A uniformly;
5 Create x′ by flipping each bit of x with a rate 1/N ;
6 A← non-dominated solutions from A ∪ {x′};
7 until success ∨ maxeval;

Algorithm 2: PLS

1 Choose an initial solution x0 uniformly from X;
2 A← {x0};
3 repeat
4 Select a non-visited element x out of A uniformly;
5 Create N(x) by flipping each bit of x in turns;
6 Flag x as visited;
7 A← non-dominated solutions from A ∪ N(x);
8 until all-visited ∨ success ∨ maxeval;

that there is a non-zero probability of reaching any solution from
the solution space at every GSEMO iteration. This makes GSEMO
a global optimizer rather than a local optimizer as PLS. In this pa-
per, we are interested in the running time, in terms of a number of
function evaluations, until an (1+ ε)−approximation of the Pareto
set is identified and is contained in the internal memory A of the
algorithm, subject to a maximum budget of function evaluations.

2.4 Estimated Expected Running Time (ert)
Let ε be a constant value such that ε > 0. The (multiplicative) ε-

dominance relation (�ε) can be defined as follows. For x, x′ ∈ X ,
x is ε-dominated by x′ (x �ε x′) iff fi(x) 6 (1 + ε) · fi(x′),
∀i ∈ {1, . . . ,m}. A set Xε ⊆ X is an (1 + ε)−approximation
of the Pareto set if for any solution x ∈ X , there is one solu-
tion x′ ∈ Xε such that x �ε x′. This is equivalent to finding
an approximation set whose multiplicative epsilon quality indica-
tor value with respect to the (exact) Pareto set is lower than (1+ε),
see e.g. [25]. Interestingly, under some general assumptions, there
always exists an (1+ε)-approximation, for any given ε > 0, whose
cardinality is both polynomial in the problem size and in 1

ε
[20].

Following a conventional methodology from single-objective con-
tinuous black-box optimization [3], we measure algorithm perfor-
mance in the expected number of function evaluations to identify
an (1 + ε)−approximation. However, as any heuristic, GSEMO or
PLS can either succeed or fail to reach an accuracy of ε in a single
run. In case of success, we record the number of function evalua-
tions until an (1+ε)−approximation was found. In case of failure,
we simply restart the algorithm at random. Thus we obtain a “sim-
ulated running time” [3] from a set of independent trials on each
instance. Such performance measure allows us to take into account
both the success rate ps ∈ (0, 1] and the convergence speed of the
algorithm with restarts. Precisely, after (t − 1) failures, each one
requiring Tf evaluations, and the final successful run of Ts eval-
uations, the total runtime is T =

∑t−1
i=1 Tf + Ts. By taking the

expectation and by considering independent trials as a Bernoulli
process stopping at the first success, we have:

E[T ] =
(
1− ps
ps

)
E[Tf ] + E[Ts]

In our case, the success rate ps is estimated with the ratio of suc-
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Figure 1: distribution of estimated runtime ert (y-axis, fixed log-scale) w.r.t. to objectives correlation ρ (x-axis) for both algorithms
(see facets right labels). Results are grouped by problem non-linearity K (see facets top labels) and by number of objectives M (see
legend). Box-and-whisker plots give median and inter-quantile range; LOESS smooth curves show trends.

cessful runs over the total number of executions (p̂s), the expected
running time for unsuccessful runs E[Tf ] is set as a constant limit
on the number of function evaluation calls Tmax, and the expected
running time for successful runs E[Ts] is estimated with the aver-
age number of function evaluations performed by successful runs:

ert =

(
1− p̂s
p̂s

)
Tmax +

1

ts

ts∑
i=1

Ti

where ts is the number of successful runs, and Ti is the number of
evaluations for successful run i. For more details, we refer to [3].

3. EXPERIMENTAL ANALYSIS

3.1 Experimental Setup
We consider ρMNK-landscapes with an epistatic degree K ∈
{2, 4, 6, 8, 10}, an objective space dimension M ∈ {2, 3, 5}, and
ρ ∈ {−0.9,−0.7,−0.4,−0.2, 0.0, 0.2, 0.4, 0.7, 0.9}, such that
ρ > −1

M−1
, as objective correlation. The problem size is set to

N = 18 in order to enumerate the solution space exhaustively. A
set of 30 different landscapes are independently generated at ran-
dom for each parameter combination ρ, M , and K. They are made
available at the following URL: http://mocobench.sf.net.

The target is set at ε = 0.1. The time limit is set to Tmax =
2N · 10−1 < 26 215 function evaluations without identifying an
(1 + ε)−approximation. Each algorithm is executed 100 times
per instance. From these 100 repetitions, the success rate and the
expected number of evaluations for successful runs, hence the ex-
pected runtime on the given instance, are estimated. For the com-
parative analysis, we only consider pairwise-complete cases, i.e.
instances that have been solved by both algorithms. This brings the
total number of available observations to 2 874 per algorithm.

3.2 Exploratory Analysis
The expected runtime (ert) distribution across the experimen-

tal blocks that are defined by each combination of benchmark pa-
rameters is presented in Figure 1. For both algorithms, the ert
clearly increases with the ruggedness (K) and the number of ob-
jectives (M ), whereas the trend w.r.t. the objective correlation (ρ)
is a bit more complex. Indeed, for a small K and a large M , the
ert decreases when ρ increases. On the contrary, for large K,
problem instances seem to get harder when the objectives are in-
dependent (ρ ≈ 0) rather than anti-correlated (ρ < 0), despite the
fact that the cardinality of the Pareto set (PS) gets higher in such
cases [24]. This gives rise to the inverted u-shape observed on the
right side of the figure, which is particularly pronounced for PLS.
Actually, we observed that the ε-value of random approximation
sets follows a similar u-shaped trend w.r.t. objective correlation.
Also, this ε-value tends to increase with K. This holds for ap-
proximation sets containing a constant number of randomly gen-
erated solutions. Moreover, we know from [24] that the number
of Pareto local optimal solutions increases with K and decreases
with ρ. This could explain the relative advantage of PLS on prob-
lem instances with positively correlated objectives. Notice also that
the opposite is true for the connectedness of the PS: the smaller K,
the larger ρ, the more clustered are Pareto optimal solutions in the
solution space.

Figure 2 displays the runtime aggregated over all the instance pa-
rameters (ρ, M, K) but one. We clearly see that PLS is significantly
outperforming GSEMO overall, and in particular for positively cor-
related objectives. In fact, the runtime of PLS is shorter than that
of GSEMO for 88% of the instances; compared to PLS, on average
GSEMO requires more than 17 000 additional function evaluations
to identify a 1.1−approximation of the PS. The performance dif-
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Figure 2: interaction plots between the average estimated runtime ert (y-axis, log-scale) and the benchmark parameters: objective
correlation ρ (left), the number of objectives M (center), and the problem non-linearity K (right, see titles). Results are grouped by
algorithm (see legend). The average (lines) and is 0.95 confidence interval (shaded areas) are evaluated through bootstrapping.

ference between the two algorithms seems to be constant, except
for large ρ and w.r.t. K. Notably, the ruggedness of the underlying
single-objective objective functions appears to have the highest im-
pact on the search performance. In particular, the ruggedness seems
to have more impact on the performance of GSEMO than PLS. In
general, finding an (1 + ε)−approximation becomes harder as the
number of objectives grows and much harder for highly-rugged in-
stances, whereas the trend w.r.t. objective correlation is less clear,
more algorithm-dependent.

In the next section, we list the problem features that are intu-
itively impacting the performance of dominance-based search heuris-
tics for the class of ρMNK-landscapes, and we explicitly assess
their separate and joint effect on the runtime of PLS and GSEMO.

4. FEATURE-BASED ANALYSIS

4.1 Characterizing Problem Difficulty
Besides the benchmark parameters defining ρMNK-landscapes,

a total of twelve general-purpose problem features are summarized
in Table 1; they can be classified into the following three groups:

(i) Features related to the Pareto set (PS) includes the number
of non-dominated solutions, the number of supported solu-
tions [9], and the hypervolume of the Pareto front, setting
the reference point to the origin.

(ii) Features related to the distance and the connectedness of
Pareto optimal solutions includes the average and the maxi-
mum distance between any pair of solutions from the PS, the
number of clusters relative to the PS size, the proportional
size of the largest cluster, and the minimum distance to con-
sider such that all solutions belong to the same cluster. The
distance measure is here taken as the Hamming distance be-
tween binary strings, which is directly related to the bit-flip
neighborhood operator.

(iii) Features related to multimodality or ruggedness of the land-
scape includes the number of Pareto local optimal (PLO) so-
lutions, the length of a single-solution Pareto hill-climbing
that iteratively accepts a dominating neighbor until a PLO
is found, as well as the autocorrelation of hypervolume of
single solutions or of their neighborhood sets (local hyper-
volume), along a random walk. The random walk length is
set to ` = 104, and the neighborhood is the 1-bit-flip.

Obviously, since some of those features require the solution space
to be enumerated exhaustively, they are not practical for a perfor-
mance prediction purpose. However, we decided to include them

Table 1: Summary of ρMNK-landscape benchmark parame-
ters and problem instance features investigated in the paper.

Benchmark parameters (3)

K Number of variable (epistatic) interactions
M Number of objective functions
ρ Correlation between the objective values

Problem instance features (12)

npo Number of solutions from the PS [1, 13]
supp Proportion of supported solutions in the PS [13]
hv Hypervolume [25] of the PS [1]

avgd Avg. dist. between solutions from the PS [16]
maxd Max. dist. between solutions from the PS [13]

ncomp Relative number of clusters in the PS [23]
lcomp Proportional size of the PS largest cluster [15]
dconn Minimal distance to connect the PS [23]
nplo Number of Pareto local optima [22]

ladapt Length of adaptive walk [24]
corhv Autocorrelation of solution hypervolume [16]

corlhv Autocorrelation of local hypervolume [16]

in order to examine their impact on the algorithm performance. For
a more comprehensive explanation of those features and their in-
tercorrelation, we refer to [16]. In the next section, we relate the
value of those features for enumerable ρMNK-landscapes to the
performance of both GSEMO and PLS.

4.2 Correlation Analysis
A first assessment of the dependency of the search performance

on instance features can be done through visual inspection of scat-
ter plots, supported by a correlation analysis. Naturally, correlation
does not imply causation, and we do not draw any direct link be-
tween each considered feature and the algorithm runtime, even if in
our case the eventual link could only go in one direction. Instead,
we restrict ourself to measure the association of each feature to the
performance metric (ert). We quantify this dependency strength
via the Kendall’s τ statistic [18]. This rank-based nonlinear corre-
lation measure is based on the ordering of all possible pairs, and its
value is proportional to the difference between the number of con-
cordant and discordant pairs among all possible pairwise compar-
isons. As such, when the null hypothesis of mutual independence
(H0 : τ = 0) is rejected, τ can be directly interpreted as the prob-



Figure 3: interaction plots between the average estimated runtime ert (y-axis, fixed logscale) and the instance features (x-axis, see
facets titles). Results are grouped by algorithm (see legend). Lines represent a locally-fitted polynomial function (LOESS).

ability of observing agreement (τ > 0) or disagreement (τ < 0)
between the ranks of paired values.

The scatter plots and the regressions (with local polynomial fit-
ting) of the average running time of both algorithms as a func-
tion of the instance features are provided in Figure 3. In addition,
Kendall’s τ coefficients are given by the red points in Figure 4. For
both algorithms, the average distance between Pareto optimal so-
lution (avgd) is highly positively correlated with ert: the larger
this distance, the longer the running time. On the contrary, both
ruggedness-related features based on measures of hypervolume au-
tocorrelation (corhv, corlhv), and one feature related to the
connectedness, i.e. the size of the largest cluster in the PS (lcomp),
are highly negatively correlated. As expected, ruggedness and con-
nectedness play a major role for both algorithms: the runtime de-
creases with corhv and corlhv, and when a large number of
Pareto optimal solutions are clustered in the solution space.

Some features have a different impact on the two algorithms,
possibly highlighting their respective strengths and weaknesses. In
particular, the runtime of PLS increases with the number of Pareto
optimal solutions and with the number of PLO solutions. Contrast-
ingly, the scatter plots show that having a high number of PLO
has less impact on GSEMO than PLS. Moreover, the runtime of
GSEMO is correlated with three others features related to the con-
nectedness of the PS (maxd, ncomp, dconn). Indeed, the rela-
tions between Pareto optimal solutions have a large effect on the
runtime of GSEMO, especially when the distance between those
solutions is large. Surprisingly, the runtime of PLS does not in-
crease when non-dominated solutions are disconnected.

However, we have to be careful when drawing conclusions by
aggregating data from different areas of the instance parameters

space, since feature values and their range depend, in turn, on the
levels of ρ,M , andK. This can be visually appreciated in Figure 3:
the autocorrelation measures corhv and corlhv, for example,
are clearly clustered around five levels that actually correspond to
the different K-values. Similarly, we are able to distinguish three
clusters in the hypervolume metric hv, which actually follow the
objective space dimension M .

Therefore, we deepen the analysis by evaluating the correlation
within the instance groups defined by each possible combination of
the 〈ρ,M,K〉-values under study. Black points and lines in Fig-
ure 4 display the average τ -value within groups, together with the
confidence interval associated to the mean. By comparing them
with red points, we can clearly notice how data aggregation slightly
enhances the correlation statistic in the corhv and corlhv case,
leading to the same inference nonetheless. On the contrary, al-
though hypervolume is very weakly associated with runtime over-
all, and that its impact is contradictory between GSEMO and PLS,
group results are more consistent, showing a strong positive asso-
ciation between ert and hv for both algorithms. Unfortunately, as
for features related to the connectedness of the PS, our confidence
on the average correlation within groups is too low to make further
comments, mainly due to the fact that, in many cases, we could
not reject the null hypothesis of mutual independency at the group
level. Nevertheless, the previous observations on data blocks and
their possible effect motivate the remainder of our analysis.

4.3 Regression Analysis
In this section we aim to quantify the impact of instance features,

and possibly disentangle their individual contribution to the per-
formance variance, by taking into account the dependency among



GSEMO PLS

corlhv
corhv

ladapt
supp

lcomp
dconn
ncomp

maxd
npo

hv
nplo
avgd

−0.6 −0.3 0.0 0.3 0.6 −0.6 −0.3 0.0 0.3 0.6
Kendall's τ correlation with ert

fe
at

ur
e

significant

FALSE

TRUE

groups

across

within

Figure 4: performance-feature association. Points give Kendall’s τ statistic for the correlation between runtime and instance feature,
evaluated on the whole set of instances (red) or within instance groups (black, see left legend). Group averages, 0.95 confidence
intervals, and significance, are estimated with a t-test considering only statistics that were already significant at the group level.
Group and overall significance are based on Kendall’s test p−value at the 0.05 level (H0 : τi = 0) [18].

measurements that is induced by the experimental plan. Our goal is
precisely to generalize from it as much as possible, in order to make
inferences about the effect and relative importance of features.

4.3.1 Linear Mixed-Model
Let yi be the log-transformed expected runtime (ert) on the i-

th problem instance. We treat yi as an observation from a random
variable Y with expectation E(Y ) = µ, i.e. yi = µ+ εi where εi
are taken to be independent, identically distributed, and zero-mean.

In a classical multilinear regression, we would model µ as a lin-
ear combination of p predictors, notably (a subset of) the p problem
instance features that we can measure. Thus, the performance ob-
servation on instance i can be written as:

yi = β0 +

p∑
k=1

βkxki + εi εi ∼ N (0, σ2)

where εi is the usual random term, i.e. the regression residual. In
this model, performance observations are supposed to be i.i.d. from
a normal distribution yi ∼ N (µ, σ2). However, as discussed in
the previous sections, our observations are mostly clustered around
the different combinations of benchmark parameters; see Figure 1.
In fact, a simple linear regression on a dummy categorical predic-
tor having a different level for each combination of ρ, M , and
K, would explain 84.51% and 86.85% of the ert variance of
GSEMO and PLS, respectively.

Since we rather want to investigate the impact of instance fea-
tures, we need to decompose that global performance variance into
what is due to the grouping of benchmark parameters, from which
we would like to generalize, and what is due to the randomness
involved in the instance generation process; namely for ρMNK-
landscapes, the epistatic interaction links and their contributions to
the objective values. That conveys the feature variance within the
blocks of our experimental design. To this end, instead of fitting
an independent regression model for each instance group, we build
a linear mixed-model with random effects for experimental blocks.
In such framework, the performance on instance i from group j can
then be modelled as:

yij = β0 +

p∑
k=1

βkxkij + αj + εij εij ∼ N (0, σ2)

where αj are i.i.d random variables, with αj ∼ N (0, σ2
α) denot-

ing the group effect. By doing so, we suppose that features have

the same impact across groups; in linear terms, constant (fixed)
slopes and random intercepts. Notice that estimates β̂ and resid-
uals ε will likely not be the same as in the previous model. Notice
also that performance observations are now i.i.d. conditionally on
the grouping factor yij |αj ∼ N (µ+αj , σ

2), whereas the uncondi-
tional model yij ∼ N (µ, σ2 + σ2

α) carries a dependency between
measurements on the same group and yields the aforementioned
variance decomposition [8].

The usual approach to estimate the parameters of the uncondi-
tional model is the restricted maximum likelihood method; see [5,
10] for theoretical and implementation details. In the following,
we present the results of such estimation on the full model com-
prising all instance features and for both algorithms. In particular,
each estimated βi is tested against the null hypothesisH0 : βi = 0,
whereas as for the group effect we only need to checkH0 : σ2

α = 0.
In the multilinear framework, the regression coefficients that are
statistically significant allow us to assess the runtime effect of each
feature conditionally on all the others and, given the random effect
formulation, across experimental blocks.

Finally, in order to assess the accuracy of a regression model,
the conventional R2 (ratio of variance explained by the regression)
can be extended by taking into account the variance decomposition
that is specific to mixed-models [19]. We obtain a marginal R2

yielding the proportion of variance explained by instance features,
and a conditional R2 which, despite its name, gives the proportion
of variance explained by the entire model, i.e. including the ran-
dom effect of benchmark parameter combinations. Marginal and
conditional R2 are respectively 0.617 and 0.919 for the regression
modelling GSEMO’s ert, respectively 0.482 and 0.911 for PLS.

4.3.2 Predictors Effect Size
We report in Figure 5 the values of the regression coefficients

estimated from the mixed-model. In a multilinear regression, each
coefficient βi predicts the change in the conditional mean of the
response variable after a unitary change of the corresponding co-
variate xi. As such, higher values correspond, visually, to steeper
slopes of the partial regression lines where the given predictor is
the only covariate and all other predictors remain constant. This
simple interpretation motivates the choice of a multilinear model.

For both algorithms, the features having the highest individual
impact on the runtime are the hypervolume (hv) and its autocor-
relation measures (corhv and corlhv, in order of importance).
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For GSEMO, the number of Pareto optimal solutions has a signif-
icant effect on estimated runtime, the larger npo the shorter ert,
whereas we cannot reject the hypothesis that the number of PLO
solutions has no effect on GSEMO’s ert. Still, the effect size
of the length of an adaptive walk (ladapt), which is a good es-
timator of nplo [24], is significant for GSEMO. Conversely, the
opposite is true for PLS. Once again, the relative size of the largest
connected component of the PS (lcomp) impacts the performance
of both algorithm. However, when controlling for all other features
(i.e. conditionally on all other predictors), we find that an increase
in the PS connectedness yields an increase in the expected runtime.
Surprisingly also, the number of supported solutions (supp) is a
significant predictor for both algorithms, even if none of them ex-
plicitly exploits this feature during the search process. Finally, de-
spite being one of the features with the highest correlation to ert,
the average distance between non-dominated solutions (avgd) has
little impact on GSEMO and no significant impact on PLS.

4.3.3 Relative Importance of Predictors
Variable importance is commonly assessed via feature selection.

However, stepwise selection can be misleading: intercorrelated pre-
dictors have a confounding effect on each other, but what the mul-
tilinear regression tries to measure is precisely the effect of one
variable controlling for the others (i.e. fixing all the others), which
leads to a poor estimation in the presence of collinearity. In an
information theoretical framework, the Akaike Information Crite-

rion (AIC) [2] measures the relative quality of a model on a given
dataset, not in terms of accuracy, but in terms of likelihood, i.e. the
relative distance to the unknown true mechanism generating the ob-
served data. The difference in AIC-values between two models can
then be used to estimate the strength of evidence for one model
against the other. On a set of alternate models, AIC differences
can be transformed into so-called Akaike weights, which can be di-
rectly interpreted as the probability for each model to be the “best”
one, conditionally on the considered set of models [6]. In this con-
text, instead of performing feature selection, variable importance
can be better assessed by making inference from all candidate mod-
els [7]. We perform an exhaustive search in the space of all 2p mod-
els we can build with our p predictors. The sum of Akaike weights
for the 2(p−1) models that contain a given predictor, can give us an
estimation of the relative importance of that particular variable.

Results are reported in Figure 6: hv, corhv, and corlhv are
strong explanatory features for both models, albeit in different or-
der of relative importance. For GSEMO, npo, ladapt, and lcomp
can also be considered as important features, whereas nplo is the
second most-important predictor of PLS runtime.

5. CONCLUSIONS
In this paper we investigated the impact of problem character-

istics on the performance of two simple dominance-based multi-
objective search heuristics. More particularly, we analyzed the ex-
pected runtime of GSEMO and PLS to identify a (1+ ε)−approxi-



mation of the Pareto set for enumerable ρMNK-landscapes. Be-
yond a more conventional performance assessment of competing
algorithms, we studied the correlations between algorithm perfor-
mance and a set of relevant problem features. We contrasted their
association with algorithm runtime, within and across instance clas-
ses. By building a mixed-model regression taking into account the
experimental design, we were able to make more general inferences
about the impact of problem features, their relative importance, as
well as similarities and differences between both algorithms in this
respect. Notably, the global hypervolume indicator value and its
local autocorrelation measures, which are related to the rugged-
ness of the fitness landscape, have the strongest impact for both
algorithms. In addition, as expected, our analysis reveals that the
runtime of PLS appears to be largely affected by the landscape mul-
timodality, here defined as the number of Pareto local optimal solu-
tions. Moreover, the Pareto set cardinality plays a more important
role for GSEMO than for PLS. At last, the features reflecting the
connectedness of the Pareto set are important predictors for the run-
time of GSEMO, which navigates the search space with an ergodic
variation operator. On the contrary, the same features have a non-
significant effect on the performance of PLS, which is constrained
by the exploration of a finite neighborhood.

A similar analysis on other problem classes and large-size in-
stances, with computationally affordable features, would allow us
to further understand and gain more knowledge about the main dif-
ficulties that EMO algorithms have to face, and eventually to pre-
dict their expected performance.
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