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Analyzing the noise in the momentum profiles of single realizations of one-dimensional Bose
gases, we present the experimental measurement of the full momentum-space density correlations
〈δnpδnp′〉, which are related to the two-body momentum correlation function. Our data span the
weakly interacting region of the phase diagram, going from the the ideal Bose gas regime to the qua-
sicondensate regime. We show experimentally that the bunching phenomenon, which manifests itself
as super-Poissonian local fluctuations in momentum space, is present in all regimes. The quasicon-
densate regime is however characterized by the presence of negative correlations between different
momenta, in contrast to Bogolyubov theory for Bose condensates, predicting positive correlations
between opposite momenta. Our data are in good agreement with ab-initio calculations.

PACS numbers: 03.75.Kk, 67.85.-d

Introduction. Ultracold-atom experiments have
proven their efficiency as quantum simulators of models
in quantum many-body physics [1]. One dimensional
(1D) gases in particular are accurately simulated, as
shown by the excellent agreement between experimental
results and ab initio theoretical predictions [2–9]. Among
the least understood properties of quantum many-body
systems is the out-of-equilibrium dynamics, addressed
recently by several cold-atom experiments [10–12].

Correlation functions are essential tools to describe the
physics of a system, as they fundamentally character-
ize the different phases the system can exhibit. This is
particularly true for 1D gases, where the role of fluc-
tuations is enhanced. For instance, the local two-body
correlation function in real space distinguishes the ideal
Bose gas (IBG) regime (characterized by bunching) from
the quasicondensate (qBEC) regime (with the absence of
bunching) from the fermionized regime (characterized by
strong antibunching) [7][13]. The two-body correlation
function in an expanding Bose gas has been measured
in [14] and can be used for thermometry in the qBEC
regime [15], while higher order correlation functions per-
mit to identify non thermal states [16]. Correlation func-
tions are also essential to describe out-of-equilibrium dy-
namics. For example, the light-cone effect has been re-
ported on the time evolution of the correlation functions
after a sudden perturbation of the system [10, 11], and
the dynamical Casimir effect was identified by studying
a two-body correlation function in [17]. Investigating the
behavior of correlation functions is thus an important is-
sue in the domain of quantum simulators. However, cor-
relation functions, especially those of higher orders, are
in general not known theoretically, not even at thermal
equilibrium, so that further knowledge in this domain is
highly desirable.

In this letter, we investigate for the first time the full

structure of the second-order correlation function in mo-
mentum space of a 1D Bose gas at thermal equilibrium.
The measurements rely on the statistical noise analysis
of sets of momentum profiles taken under similar experi-
mental conditions. Our data span the weakly interacting
region of the phase diagram of 1D Bose gases [18], go-
ing from the qBEC regime to the ideal Bose gas (IBG)
regime. The bunching phenomenon, which manifests
itself by strong, super-Poissonian local fluctuations in
momentum space, is seen in all regimes. The qBEC
regime is however characterized by the presence of neg-
ative correlations associating different momenta, as pre-
dicted in [19]. This contrasts with the positive corre-
lations between opposite momenta expected for systems
with true or quasi long-range order [20]. In both asymp-
totic regimes, our data compare well with appropriate ap-
proximations of the Lieb-Liniger model, while the data
in the crossover are in good agreement with Quantum
Monte Carlo simulations. These comparisons involve no
fitting parameters. Finally, we propose a quantitative
criterion to characterize the crossover.

Experiment. Single tubes of nearly 1D ultracold
87Rb clouds are realized on an atom-chip setup, as de-
scribed in [21]. Atoms in the |F = 2,mF = 2〉 ground
state are evaporatively cooled in a harmonic potential
whose transverse and longitudianl oscillations frequencies
are ω⊥/(2π) ≃ 1.9 kHz and ωz/(2π) ≃ 7 Hz, respectively.
The estimated population in the transverse excited states
is at most 40%, such that the data are indeed close to the
1D regime of Bose gases. We perform thermometry by
fitting the measured in situ linear density profile ρ(z) and
density fluctuations to the thermodynamic predictions of
the modified Yang-Yang (MYY) model [2], where the in-
teratomic interaction is taken into account only in the
transverse ground state, modeled by a contact term of
coupling constant g = 2~ω⊥a, with a = 5.3 nm being the
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3D scattering length.

A single shot of the momentum distribution n(p) is
obtained by imaging the atomic cloud in the Fourier
plane of a magnetic lens using the focusing technique [21].
The images are discretized with a pixel size in momen-
tum space ∆. Moreover, the resolution of the opti-
cal system and the atomic motion during the imaging
pulse are responsible for blurring, which can be mod-
eled by a Gaussian impulse response function of root-
mean-square width δ. The effective atom number mea-
sured in pixel α is thus Nα =

∫
dp n(p)A(α, p), where

A(α, p) =
∫
∆α

dq e−(p−q)2/(2δ2)/(δ
√
2π). The second-

order correlation function is deduced from a set of mo-
mentum profiles taken under similar experimental con-
ditions. The standard deviation of shot-to-shot atom-
number fluctuations ranges from 4% at high densities to
40% at low densities. To mitigate this effect, we order
profiles according to their atom number and, for each pro-
file, we use a running average to compute the correspond-
ing mean profile 〈Nα〉. We moreover normalize each pro-
file to the atom number of the running average, before
computing the fluctuations δNα = Nα − 〈Nα〉. We fi-
nally extract the momentum-correlation map 〈δNαδNβ〉.
Fig. 1 (top row) shows the results for three different
clouds lying respectively A) in the IBG regime, B) in the
qBEC-IBG crossover, and C) deep in the qBEC regime.
For the data presented in this letter, the focusing time
is τ = 25 ms, leading to a pixel size in momentum space
∆/~ = 0.15 µm−1. The resolution is δ/∆ ≃ 1.1 [22].

Ideal Bose gas regime. The thermometries based on
the analysis of the density profile and of the in situ den-
sity fluctuations [see Supplementary Material (SM) [23]]
indicate that the data set A lies within the IBG regime.
Fig. 1 (A1) shows the corresponding momentum corre-
lations. We observe large correlations on the diagonal
α ≃ β, while 〈δNαδNβ〉 takes substantially smaller and
rather erratic values in the rest of the plane [24]. This
is consistent with what is expected for a homogeneous
IBG in the grand canonical ensemble: since the single-
particle eigenstates have well defined momenta, the corre-
lations between different momenta are vanishing. More-
over, fluctuations of the occupation number Np in the
state of momentum p are 〈δN2

p 〉 = 〈Np〉 + 〈Np〉2, where
the second term is the famous bunching term. In the case
of a trapped gas, the momentum states are no longer the
eigenstates, and the results above do not apply directly.
Using the fact that the correlation length of 〈ψ†(z)ψ(z′)〉
is much smaller than the cloud length L, however, pre-
vious results generalise through a local density approx-
imation (LDA), as outlined in the SM [23] [25]. The
momentum-space density correlations is then the sum of
the shot noise and bunching contributions,

〈δnpδnp′〉 = δ(p− p′)〈np〉+B(p, p′), (1)

B(p, p′) =

∣∣∣∣
∫
dz

〈
ν
(h)
ρ(z),T ((p+ p′)/2)

〉
ei(p−p′)z/~

∣∣∣∣
2

,

where the LDA expression for the bunching term B(p, p′)

uses the momentum distribution ν
(h)
ρ,T (p) of a homoge-

neous gas of temperature T and linear density ρ, normal-

ized to ρ =
∫
dp ν

(h)
ρ,T (p). B(p, p′) takes non-zero values

only for |p′ − p| of the order of ~/L. Since here ~/L≪ δ,
one can make the approximation B(p, p′) = B(p)δ(p−p′),
where

B(p) = 2π~

∫
dz〈ν(h)ρ(z),T (p)〉

2. (2)

Note that for a degenerate cloud, for p within the width

of n(p), one has 〈ν(h)ρ(z),T (p)〉 ≫ 1 such that the bunching

term is much larger than the shot-noise term. Taking into
account the discretization and the imaging resolution, the
momentum-correlation map writes

〈δNαδNβ〉 =
∫ ∫

dpdp′ A(α, p)A(β, p′)〈δnpδnp′〉. (3)

The theoretical prediction quantitatively describes our
measurements, as shown in Fig. 1 (A1-A2). Here we

evaluate Eq. (2) approximating 〈ν(h)ρ(z),T (p)〉 by its value

for highly degenerate IBG gases: a Lorentzian of full
width at half maximum (FWHM) of 2~/lφ, where lφ =
~
2ρ/(mkBT ). Since correlations between different pixels

are introduced by the finite resolution alone [26], the
only relevant information is the diagonal term 〈δN2

α〉,
whose scaling behavior is discussed in the SM [23]. In
Fig. 1 (A3), we overlay the measured 〈δN2

α〉 (circles) to
theoretical predictions (dashed line), and find a good
agreement up to statistical error of the measurement.
The fluctuations are well above the shot-noise level (dash-
dotted line), which is obtained by setting B(p) = 0 in
Eq. (2), showing that this IBG is highly degenerate.
We remark that it is legitimate to compare our data

with theories in the grand canonical ensemble since one
has ~/lφ ≫ ∆ ≫ ~/L: a pixel may be described, within
a semiclassical approach, by a subsystem at equilibrium
with the reservoir of energy and particles formed by the
rest of the cloud.
Quasicondensate regime. The analysis of the in situ

density fluctuations and density profiles, presented in the
SM [23], shows that the data set C lies in the qBEC
regime. We show the measured momentum correlations
in Fig. 1 (C1) and its diagonal cuts along α = β (circles)
and α = −β (squares) in (C3). We first observe that
a strong bunching in momentum space is also present
here: the measured 〈δN2

α〉 (circles) is well above the shot-
noise level alone (dash-dotted line). This is in stark con-
trast with the behavior in real space, where the qBEC
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FIG. 1. Momentum correlations 〈δNαδNβ〉 for a gas in the IBG regime (Data A, right column), in the qBEC regime (Data C,
left column), and in the qBEC-IBG crossover (Data B, middle column). The pixel size is ∆/~ = 0.15 µm−1. The experimental
data are shown in the top row. Data A, B and C are compared with the IBG theory, QMC calculations, and qBEC theory
respectively, at the temperature of the data determined by independent thermometry methods. The middle row gives the
computed momentum correlations. The bottom row shows the diagonal cuts: the experimental data in circles for α = β
(squares for α = −β for Data B and C only) are compared with their respective theory model in dashed (dotted) lines. The
error bars are statistical. The dash-dotted lines give the shot-noise limit.

regime is characterized by the suppression of the bosonic
bunching [27]. Moreover, the correlation map 〈δNαδNβ〉
shows strong anticorrelations around the region α = −β
(i.e. p′ = −p). These features are characteristic of the
qBEC regime in a grand canonical ensemble, and have
been computed for a homogeneous gas in [19]. Since the
correlation length of the gas is much smaller than L [28],
LDA applies and, as shown in the SM [23], we have

〈δnpδnp′〉≃ δ(p− p′)〈np〉+B(p, p′) + 〈δnpδnp′〉reg,(4)

〈δnpδnp′〉reg=
∫
dz

lφ(z)
3ρ(z)2

(2π~)2
F
(
2lφ(z)p

~
,
2lφ(z)p

′

~

)
,(5)

where F is the dimensionless function given in Eq. (29)
of [19], and B(p, p′) should be evaluated substituting

ν
(h)
ρ,T (p) by a Lorentzian function of FWHM ~/lφ. The
effect of the finite resolution and pixelization is taken
into account using Eq. (3). These predictions are plotted
in Fig. 1, showing the full map in (C2) and the cuts in

(C3), and they are found in quantitative agreement with
experimental data. Note that the center-of-mass (COM)
motion is decoupled from the internal degrees of free-
dom in a harmonic trap, and COM fluctations are about
twice as large as those expected at thermal equilibrium
for this data set [29]. To mitigate their effect, we post
select the data by bounding the COM fluctuations while
retaining sufficient statistics. Moreover, since the exper-
imental resolution is not sufficient to resolve momentum
scales of the order of ~/lφ, the effect of 〈δnpδnp′〉reg on
the diagonal reduces the signal that would be expected
from bunching alone by almost a factor 10, while the
measured negative parts are in fact due to the wings of
the function F .

Our results provide the first experimental proof of
the persistence of bunching in momentum space in a
qBEC, as well as the presence of negative correlations
between opposite momenta. The latter contrasts with
the behaviour expected for a weakly interacting Bose-
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FIG. 2. Ctγ2
0 versus γ0, the interaction parameter at the

center of the cloud. Theoretical predictions from Eq. (7) are
plotted for highly degenerate IBG (dashed line), qBEC (dot-
ted line), and for IBG (dashed line). The IBG prediction,
temperature-dependant, is computed at t = 1000. Experi-
mental results for Data A-C (right to left) are shown as cir-
cles. They correspond to t = 919, 1760, 1172. The error bars
accounts for both fitting (in t) and statistics (in C and γ0).

Einstein condensate, where Bogoliubov theory predicts
the presence of positive correlations between opposite
momenta. The opposite-p anticorrelations are a clear
consequence of the absence of true long range order in a
finite-temperature 1D qBEC.
One may a priori suspect that the measured anticor-

relations could come from the normalization procedure
used in the data treatment. We rule out such a possi-
bility by performing several checks, detailed in the SM
[23]. The agreement with theory in our case is ensured
by the fact that the fluctuations 〈δnpδnp′〉reg are dom-
inated by the contribution from the central part of the
cloud, where lφ is the largest [see Eq. (5)]. It is well de-
scribed by the grand canonical ensemble as the rest of
the cloud acts as a reservoir, and the corresponding anti-
correlations are much stronger than those introduced by
the normalization of the total atom number.
In the qBEC-IBG crossover. While the theoretical

analyses above describe reasonably well the two asymp-
totic regimes of IBG and qBEC, they do not permit
to investigate the crossover in between. To explore
the crossover, we use canonical Quantum Monte-Carlo
(QMC) calculations [30]. Discretizing space allows to
recast the Lieb-Liniger model in the form of a Bose-
Hubbard model [21], which can be simulated via the
Stochastic Series Expansion with directed-loop updates
[31]. In particular a double directed-loop update allows
one to compute the momentum correlations 〈δnpδnp′〉.
Blurring and pixelisation is then applied according to
Eq. (3). We observe that the features of 〈δnpδnp′〉
are washed out at the level of the experimental resolu-
tion [32]. Due to the large excursion of 〈δnpδnp′〉 from
negative to positive values, the blurring and pixelisation
reduces drastically the signal but not the numerical un-

certainty, demanding a high numerical precision. The
results for parameters of Data B, shown in Fig. 1 (B2)
and (B3), reproduce quantitatively the features seen in
the experimental data, shown in Fig. 1 (B1) and (B3).
Namely, the bunching phenomenon remains prominent
on the α = β diagonal, while the anticorrelations along
the α = −β is less pronounced than what is found for
Data C.
Quantifying the crossover. As shown in the SM [23],

Eqs. (4) and (5) generalize the computation of the mo-
mentum correlations to the whole parameter space, pro-
vided F is now a function of the reduced tempera-
ture t = 2~2kBT/(mg

2) and the interaction parameter
γ(z) = mg/

(
~
2ρ(z)

)
. The crossover between the IBG

regime (t≫ 1 and tγ3/2 ≫ 1) where F vanishes, and the
qBEC regime (tγ3/2 ≫ 1 and γ ≪ 1) where F is given
by Eq. (29) of [19], has been investigated with a clas-
sical field approximation in [19]. For the experimental
resolution of this paper, however, one cannot isolate the
contribution of F from that of the bunching term. We
thus consider the experimental quantity

C =
∑

α

〈δNαδN−α〉/〈N0〉. (6)

As shown in the SM [23], in the limit δ,∆ ≪ ~/lφ and
δ ≫ ∆, C depends neither on ∆ nor on δ. It reads

C =
1 + B(0)/〈n0〉

2
+

∫
dp 〈δnpδn−p〉reg/〈n0〉, (7)

and is an intensive quantity that depends only on t and
γ0 ≡ γ(z = 0). For a highly degenerate IBG, we find
C ≃ 1.08/(tγ20), whereas C ≃ −2.28/(tγ20) for a qBEC
(see SM [23]). These asymptotic behaviors are shown
as dash-dotted lines in Fig. 2. The solid line gives the
prediction of Eq. (7) for an IBG at t = 1000 [33].
Fig. 2 also displays the experimental values (dots) of

Ctγ20 for Data A-C. The error bars account for both fit-
ting (in t) and statistics (in C and γ0). Since δ, ∆ ≪ ~/lφ
and δ ≫ ∆ are not satisfied for our data sets, the results
from Eq. (7) should not be expected to quantitatively
agree with the experimental data. Moreover, comparing
different data sets is delicate since they correspond to dif-
ferent values of δ/lφ. However, both the measurements
and the theory models indicate a gradual change in the
value of Ctγ20 in the IBG to qBEC crossover.
Outlook. A future extension of our study of two-body

correlations in momentum space concerns the fermion-
ized regime of 1D Bose gases, where quantum fluctua-
tions, difficult to observe in momentum space for weakly
interacting gases, might have measurable effects. The
study of correlations in momentum space at thermal equi-
librium could serve as a reference for the investigation
of non-thermal states and that of out-of-equilibrium dy-
namics arising from, for example, a quench of the cou-
pling constant g. Correlations in momentum space have
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also been proposed as a probe of Hawking-like radiation
generated by a sonic black-hole [34], and the results of
this paper are certainly relevant for this quest.
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Expressing n(p) in terms of the field operator, we find
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(2π~)2

∫
d4z eip(z1−z2)/~eip

′(z3−z4)/~

(
〈ψ†

1ψ2ψ
†
3ψ4〉 − 〈ψ†

1ψ2〉〈ψ†
3ψ4〉

)
,

(1)

where d4z ≡ dz1dz2dz3dz4 and ψi is a short-hand nota-
tion for ψ(zi). Let us assume the gas has a finite correla-
tion length, that we denote lc (For a finite temperature
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of lφ = ~

2ρ/(mkBT ).). Then, the four-point correlation
function can be written as a sum of singular and regu-
lar terms [Bouchoule et al., Phys. Rev. A 86, 033626
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(2012)],

〈ψ†
1ψ2ψ

†
3ψ4〉 − 〈ψ†

1ψ2〉〈ψ†
3ψ4〉 = 〈ψ†

1ψ4〉δ(z2 − z3)

+〈ψ†
1ψ4〉〈ψ†

3ψ2〉
+G̃2(1, 2, 3, 4).

(2)

The first term on the right-hand side is the shot noise.
The second is the bunching term, describing the exchange
interaction due to Bose quantum statistics. In infinite
uniform systems, both give rise to singular momentum
correlations. The last term is what remains and gives
a regular contribution to 〈δnpδnp′〉 as soon as the gas
has a finite correlation length. It describes the binary
elastic-scattering processes, and goes to zero whenever
one of the relative coordinates is much greater than the
correlation length. Isolating the contribution of each of
these three terms in Eq. (1), we write

〈δnpδnp′〉 = S(p, p′) +B(p, p′) + 〈δnpδnp′〉reg. (3)

The contribution of the shot-noise term S(p, p′) is

S(p, p′) = δ(p− p′)〈np〉. (4)

To compute the contribution of the bunching term
B(p, p′), we use a local density approximation (LDA),
which relies on the fact that the correlation length is
much smaller than the cloud size L. We then find that

B(p, p′) =

∣∣∣∣
∫
dz

〈
ν
(h)
ρ(z),T

(
(p+ p′)/2

)〉
ei(p−p′)z/~

∣∣∣∣
2

.

(5)

Here, ν
(h)
ρ,T (p) is the momentum distribution of a ho-

mogeneous gas of linear density ρ, normalized to∫
dp ν

(h)
ρ,T (p) = ρ. For a given p, 〈ν(h)ρ(z),T

(
(p + p′)/2

)
〉

has an extension in z on the order of L. B(p, p′) thus has
a width in p − p′ on the order of ~/L. Since the typical
size of our 1D gases is L ∼ 100 µm, and our resolution in
momentum space δ is δ/~ ≃ 0.15 µm−1 ≫ 1/L, one can
make the approximation

B(p, p′) ≃ δ(p− p′)B(p), (6)

where B(p) = 2π~
∫
dz 〈ν(h)ρ(z),T (p)〉2 is given in the main

text.
It is instructive at this stage to look at the scaling of

the experimental signal predicted by the above results.
The effect of discretization and resolution is taken into
account through Eq. (3) of the main text. Within the
approximation of Eq. (6), all information lies in the di-
agonal, which write

〈δN2
α〉 ≃

∫
dp A2(α, p)

(
〈np〉+ B(p)

)
. (7)

For an infinite resolution, i.e. δ → 0, we find that the
bunching term is on the order of 〈δN2

α〉 ≃ ∆L(ρlc)
2. We

recover here the prediction from a semi-classical anal-
ysis for an IBG: the typical occupation per mode is
n ≃ Nlc/L = ρlc, and the number of modes contribut-
ing to a pixel is M ≃ ∆L, such that the bunching
phenomenon should produce atom number fluctuations
〈δN2

α〉 ≃Mn2 ≃ ∆L(ρlc)
2 ≃ ρlc〈Nα〉. We thus find that

as soon as the gas is highly degenerate, i.e. for ρlc ≫ 1,
the bunching term is much larger than the shot-noise
term.
To compute the contribution of the regular term, we

apply LDA again. Together with dimensional analysis,
we have

〈δnpδnp′〉reg =

∫
dz

l3φρ
2

(2π~)2
F
(
2lφp

~
,
2lφp

′

~
; t, γ

)
, (8)

where lφ ≡ lφ(z) = ~
2ρ(z)/(mkBT ), F is a dimension-

less function, t is the reduced temperature parameter,
and γ ≡ γ(z) = mg/(~2ρ(z)) is the local interaction pa-
rameter. In the IBG regime (i.e. for tγ3/2 ≫ 1 and

t ≫ 1), Wick’s theorem ensures that G̃2 vanishes, such
that

F(q, q′) = 0. (9)

In the qBEC regime (i.e. for tγ3/2 ≪ 1 and γ ≪ 1), the
results obtained for homogeneous gases in [Bouchoule et

al., Phys. Rev. A 86, 033626 (2012)] show that

F(q, q′) =
256

(q2 + 1)2(q′2 + 1)2[(q + q′)2 + 16]
×
[
(q2 + 3qq′ + q′2)qq′ − 2(q2 − qq′ + q′2)− 7

]
.

(10)

Note that in [Bouchoule et al., Phys. Rev. A 86, 033626
(2012)] the crossover between the IBG and the qBEC
regimes is investigated by treating ψ as a classical field,
in which case F reduces to a function of three parameters
only: F(q, q′, γ, t) = F̃(q, q′, 3

√
4/(t2γ3)).

IBG to qBEC crossover: C function

To investigate the behavior of the function C defined
by Eq. (6) of main text, let us first assume that ~/L
is much smaller than all other momentum scales. The
momentum correlations can thus be written as

〈δnpδnp′〉 = δ(p− p′)
(
〈np〉+ B(p)

)
+ 〈δnpδnp′〉reg, (11)

where 〈δnpδnp′〉reg is given by Eq. (8). Separating the
contribution of both shot noise and bunching term from
that of the regular term, we can write U = C〈N0〉 ≡
Ui + Ur, where

Ui =

∫
dp R(p, p)

(
〈np〉+ B(p)

)
, (12)

Ur =

∫ ∫
dpdp′ R(p, p′)〈δnpδnp′〉reg, (13)
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and

R(p, p′) =
∑

α

A(α, p)A(−α, p′). (14)

For a given value of p′+p, the function R(p, p′) is periodic
in p: R(p + ∆, p′ − ∆) = R(p, p′). Its width in p′ +
p, depending on the distance of p to a pixel center, is
typically on the order of max(δ,∆).
The following asymptotic expressions can be deduced.

In the limit of ∆, δ ≪ ~/lc, we have

Ur ≃ ∆

∫
dp 〈δnpδn−p〉reg, (15)

regardless of the resolution (i.e. of the ratio δ/∆). In the
same limit, we also have

Ui ≃ ∆(〈n0〉+ B(0))I, (16)

where I =
∫
dp R(p, p)/∆. The value of I depends on

δ/∆, and the asymptotic behavior is given by

{
I = 1 for δ/∆ ≪ 1,
I ≃ 1

2 for δ/∆ ≫ 1.
(17)

Finally, for δ ≫ ∆ ≫ ~/lc, one obtains Eq. (7) of the
main text.
Using LDA and transforming integrals over z into in-

tegrals over the chemical potential µ, we find that C
is an intensive quantity which only depends on t and
γ0 ≡ γ(z = 0). For a highly degenerate IBG, using the

equation of state ρ ≃ kBT
√
m/(~

√
2|µ|) and ν

(h)
ρ,T (0) ≃

~ρ2/(πmkBT ), we find that C ≃ 0.54~2ρ2/(mkBT ). For

a qBEC, using ρ ≃ µ/g and ν
(h)
ρ,T (0) ≃ 2~ρ2/(πmkBT ),

we find C ≃ −1.14~2ρ2/(mkBT ).

Characterization of the data

The data are characterized using thermometry meth-
ods based on in situ density profiles and density fluctua-
tions measurements.
Data A and B. The in situ density profiles for Data

A and B are shown in Fig. 1 (A1) and (B1) respectively.
We fit our measurements (circles) to the MYY theory
(dashed lines), and obtain T = 144 nK and T = 103 nK.
The density fluctuations, shown in Fig. 1 (A2) and (B2),
are in agreement with the thermodynamic predictions us-
ing the MYY theory at the temperature obtained from
the profile. For Data A, the density fluctuations at large
densities do not saturate, which is characteristic of the
IBG regime. On the other hand, the measured fluctua-
tions are well above shot-noise level (dash-dotted line),
indicating that the gas is highly degenerate. Data B
shows the onset of saturation of the density fluctuations
at large densities, indicating that this data set lies within
the IBG-qBEC crossover.

Data C. The in situ density profile is shown in
Fig. 1 (C1). We fit our measurements (circles) to the
MYY theory (dashed lines), and obtain T = 109 nK.
However, the central part of the profile follows very well
the zero-temperature Thomas-Fermi (TF) profile (grey
solid line, nearly overlapping with the MYY profile). The
information about the temperature lies in the (small)
wings, where the MYY profile differs from the TF pro-
file. The uncertainty on the temperature obtained from
a fit of such a density profile is large, and more precise
information can be extracted from density fluctuations,
shown in Fig. 1 (C2). The MYY predictions in the qBEC
regime suffer from two weaknesses when the linear den-
sity becomes large. First, this model does not account
for the inflation of the transverse wave function of the
transverse ground state, which becomes noticeable when
ρa approaches unity. Second, the treatment of the first
transverse excited states as an IBG no longer captures
the real behavior when ρ becomes sizable, with the pre-
dicted density even diverging as ρa approaches 1/2. For
these reasons, it is preferable to consider the qBEC equa-
tion of state µ = ~ω⊥

(√
1 + 4ρa− 1

)
instead of that of

the MYY model in the qBEC regime at large densities.
The fit (solid line) of the measured density fluctuations
gives T = 75 nK. Note that the failure of the MYY model
is first visible on the predicted fluctuations, proportional
to the derivative of the equation of state, before the pre-
dicted density profile is affected.

Effect of normalization

The experimental realizations of 1D Bose gases as sin-
gle systems do not correspond to the grand-canonical-
ensemble description: the atomic cloud is not in contact
with a reservoir of energy or particle at a well defined
temperature or chemical potential. The shot-to-shot fluc-
tuations of the total atom number are linked to the prepa-
ration procedures. We remove such fluctuations by nor-
malizing each experimental profile to the total atom num-
ber of the corresponding mean profile. This procedure
would be exact if the momentum distribution satisfied
a scaling form of the kind n(k;N1)/N1 ≈ n(k;N2)/N2.
However, this is not the case in degenerate 1D Bose gas,
since the width of the momentum distribution is pro-
portional to 1/ρ. One then expects that the normalisa-
tion procedure induces extra-fluctuations whose variance
is proportional to the variance of atom number within
the set of data used to compute the averaged profile.
Note that one also expects that this normalisation pro-
cedure introduces negative correlations between small p
and large p′ components. This may partly explain the
disagreement difference between theoretical and experi-
mental data in Fig. 1 of the main text.
Moreover the normalization procedure ensures a van-

ishing sum of the momentum correlation map 〈δNαδNβ〉,
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FIG. 1. Thermometry of data sets (from top to bottom, Data A, B and C). Left: density profiles. ∆z = 2.7 µm is the pixel
size in real space. Fitting the measured profile (circles) with the MYY theory (dashed lines) yields T = 109 nK for Data A,
T = 144 nK for Data B and T = 103 nK for Data C. The dotted lines are the contribution of the transverse excited states. We
also include the zero-temperature Thomas-Fermi profile (solid line) for Data C. Right: atom-number fluctuations. Experimental
data (circles) are compared to the prediction from MYY equation of state at the temperature deduced from the profile. The
dash-dotted lines show the shot-noise limit. For Data C, the fit to the qBEC predictions (solid line) gives T = 75 nK.

and hence it introduces additional negative regions. Since
the area covered by such negative regions in the plane
(α, β) scales typically as N∆

2 (where N∆ is the width in
pixels of the momentum distribution), their amplitude
is negligible as long as N∆ ≫ 1. While the condition
N∆ ≫ 1 is well fulfilled for the data set A, one may
worry about the effect of normalisation for the data set
C. In this appendix, we show that the negative correla-
tions observed in Data C cannot be accounted for solely
by the effect of normalization.

We first compute the anticorrelations that would arise
due to the normalization procedure for a gas confined in
a box, showing that it would be difficult to differenti-
ate between the effect of normalization and the expected
anticorrelations within the grand-canonical-ensemble de-

scription of a homogeneous qBEC. The experimental re-
alization of the qBEC is however inhomogeneous, and in
the second part of this appendix, we make several numer-
ical checks to confirm that the normalization procedure
does not account for the negative correlations observed
in the data. In fact, the observed anticorrelations arise
mainly due to the central part of the cloud, where lφ is
the largest.

Effect of normalization on a homogeneous cloud

Let us consider a cloud confined in a box potential
of length L, whose momentum correlations are assumed
to be purely described by the bosonic bunching. For
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FIG. 2. (a) function Fn [see Eq. (20)] that describes the
effect of normalization to a given total atom number, for a
homogeneous gas that exhibits only the bosonic bunching in
its momentum-space fluctuations. Fn is even in both q and
q′, so that it has a symmetry upon reflection about q = 0
and q′ = 0. (b) function F [see Eq. (10)] that describes the
momentum-space anticorrelations of a homogenous qBEC in
grand canonical ensemble. These two functions have the same
value at the origin, and would be difficult to distinguish in
practice.

simplicity, we will disregard effect of resolution, assuming
δ = 0. The number of momentum states contributing to
a pixel of size ∆ is M = ∆L/(2π~). Thus, for ∆ ≫ ~/L,
the fluctuations δNα of the atom number in a pixel, which
fulfill

〈δN2
α〉 = 〈Nα〉2/M, (18)

are small compared to 〈Nα〉2. Linearizing in δNα, the
normalization procedure to a total atom number N ,
changes the momentum profile to Ñα = 〈Nα〉 + δNα −
〈Nα〉
N

∑
β δNβ , leading to

〈δÑαδÑβ〉 = 〈δN2
α〉δα,β − 〈Nα〉

N 〈δN2
α〉 −

〈Nβ〉
N 〈δN2

β〉
+

〈Nα〉〈Nβ〉
N

∑
γ〈δN2

γ 〉
(19)

Replacing 〈Nα〉 by the Lorentzian of FWHM equal to

2~/lφ in Eq. (18) and (19), we obtain 〈δÑαδÑβ〉 =
〈δN2

α〉δα,β + (∆L/(2π))2Fn(2lφp/~, 2lφp
′/~)(ρlc)

3/N
where

Fn(q, q
′) =

−64(1 + q2)− 64(1 + q′2) + 16(1 + q′2)(1 + q2)

(1 + q2)2(1 + q′2)2
.

(20)

This function is plotted in Fig. 2 (a). For a homogeneous
qBEC in a grand canonical ensemble, one expects similar
fluctuations, but the function Fn should be replaced by
the function F of Eq. (10), plotted in Fig. 2 (b). These
two functions have the same integral, and their value at
q = q′ = 0 is identical. Although they differ slightly in
shape (Fn is even in both q and q′ whereas F is not), it
would be difficult to distinguish them in practice.
Effect of normalization on a inhomogeneous cloud

Here we focus on Data C, and present different anal-
yses showing that the negative regions observed are not
accounted for by the normalization of the data.
Firstly, we numerically simulate the effect of normal-

ization, assuming a statistical ensemble that would ex-
hibit a pure bunching. The negative correlations in-
duced by the normalization are lower than those mea-
sured about a factor 5.
Secondly, the total atom number of the experimental

data fluctuates with a standard deviation of∼ 4%. With-
out normalizing, the momentum correlations are shown
in Fig. 3 (a), which has a similar features as Fig. 1 (C1)
of the main text but differ slightly in the extreme values.
In addition, we see that the normalization procedure

applied to Data A does not introduce anticorrelations
as large as those observed in Data C. Since Data A lies
within the IBG regime, the anticorrelations are mostly a
consequence of the normalization, whose effect depends
on ∆lc and δlc, where ~/lc is the width of the momentum
distribution. In order to compare Data A and C on equal
footing, we blur and rebin Data A (which has a broader
momentum distribution) such that its values of ∆lc and
δlc are similar to those of Data C, and show the resulting
momentum correlations in Fig. 3 (b). We observe that
the anticorrelations are much weaker than the positive
correlations in rebinned Data A than those in Data C,
seen as the absence of dark blue in Fig. 3 (b). This
further eliminates the possibility that the normalization
is responsible for the observed anticorrelations in Data
C.
We remark that a similar procedure could in principle

be employed to compute the value of the quantity C in
order to compare across different data sets on an equal
footing. However, the smaller lc value of Data A and
the convergence of function C requires to access the mo-
mentum distribution at larger momenta and at a higher
signal-to-noise ratio. Both items are beyond the current
data sets and will be reserved for future investigations.
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FIG. 3. Effect of normalizing the data. (a) Data C analyzed
without normalization procedure. The total atom number of
the experimental data fluctuates with a standard deviation of
∼ 4%. (b) Momentum correlations for Data A, rebinned and
blurred in order to have similar value of ∆lc and δlc as Data
C. The color scale of these two plots are symmetric so that
that the zero-crossing occurs at the same color. The absence
of the dark blue regions in (b) indicates that the negative
correlations introduced by normalization applied to data A
would not explain the negative correlations observed in data
C.


