
HAL Id: hal-01151755
https://hal.science/hal-01151755v1

Submitted on 13 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Exact Hyper-Graph Matching with Dynamic
Programming for Spatio-Temporal Data

Oya Celiktutan, Christian Wolf, Bülent Sankur, Eric Lombardi

To cite this version:
Oya Celiktutan, Christian Wolf, Bülent Sankur, Eric Lombardi. Fast Exact Hyper-Graph Matching
with Dynamic Programming for Spatio-Temporal Data. Journal of Mathematical Imaging and Vision,
2015, 51, pp.1-21. �hal-01151755�

https://hal.science/hal-01151755v1
https://hal.archives-ouvertes.fr

Journal of Mathematical Imaging and Vision manuscript No.
(will be inserted by the editor)

Fast Exact Hyper-Graph Matching with Dynamic Programming for
Spatio-Temporal Data

Oya Çeliktutan · Christian Wolf · Bülent Sankur · Eric Lombardi

Received: date / Accepted: date

Abstract Graphs and hyper-graphs are frequently used to
recognize complex and often non-rigid patterns in computer
vision, either through graph matching or point-set matching
with graphs. Most formulations resort to the minimization
of a difficult energy function containing geometric or struc-
tural terms, frequently coupled with data attached terms in-
volving appearance information. Traditional methods solve
the minimization problem approximately, for instance re-
sorting to spectral techniques. In this paper, we deal with
the spatio-temporal data, for a concrete example, human ac-
tions in video sequences. In this context, we first make three
realistic assumptions: (i) causality of human movements; (ii)
sequential nature of human movements; and (iii) one-to-one
mapping of time instants. We show that, under these as-
sumptions, the correspondence problem can be decomposed
into a set of subproblems such that each subproblem can be
solved recursively in terms of the others, and hence an effi-
cient exact minimization algorithm can be derived using dy-
namic programming approach. Secondly, we propose a spe-
cial graphical structure which is elongated in time. We argue
that, instead of approximately solving the original problem,
a solution can be obtained by exactly solving an approxi-
mated problem. An exact minimization algorithm is derived
for this structure and successfully applied to action recogni-
tion in two settings: video data and Kinect coordinate data.

Keywords Hyper-graph matching · Dynamic program-
ming · Action recognition

O. Çeliktutan · Bülent Sankur
Dept. of Electrical-Electronics Eng.,
Boğaziçi University, Istanbul, Turkey

O. Çeliktutan
E-mail: oya.celiktutan@boun.edu.tr

C. Wolf · E. Lombardi
Université de Lyon, CNRS,
INSA-Lyon, LIRIS, UMR CNRS 5205, F-69621, France

1 Introduction

Many computer vision problems can be formulated as
graphs and their associated algorithms, since graphs pro-
vide a structured, flexible and powerful representation for
visual data. Graph representation has been successfully used
in problems such as tracking [51,60], object recognition [4,
52,1], object categorization [15], and shape matching [30,
46]. In this paper, we propose a novel method for point-set
matching via hyper-graphs embedded in space-time coor-
dinates, where the point sets correspond to interest points
of the model and scene videos, respectively. We focus on
applications of object or event recognition [29]; in partic-
ular, in localizing and recognizing human actions in video
sequences.

The action recognition problem is solved via graph
matching, which is conceived as a search problem for the
best correspondence between two point-sets, i.e., the one be-
longing to the model structured into a graph -a model graph-
and the other one belonging to the scene -a scene point set.
In this context, an action is represented by a model graph
consisting of a set of nodes with associated geometric and
appearance features, and of a set of edges that represent rela-
tionships between nodes. Action recognition itself becomes
then a graph matching problem, which can be formalized
as a generic energy-minimization problem [52]. The graph
matching energy is a scalar quantity which is lower for likely
assignments respecting certain invariances and geometric
transformations from model to scene, whereas it results in
higher values for unrealistic and unlikely assignments.

The energy function, more explicitly, is composed of
two terms, i.e., an appearance term and a geometric term.
The appearance term takes into consideration the difference
between intrinsic properties of points between the model
and the scene. Popular examples of appearance informa-
tion are SIFT [35], histograms of gradient and optical flow

2 Oya Çeliktutan et al.

[25], shape contexts [3] etc. The geometric term, on the
other hand, takes into consideration the structural deforma-
tion between model and scene point assignments. The geo-
metric term is conceived to provide certain invariance prop-
erties, such as the rate of action realization. In this work, we
utilize hyper-graphs, which are a generalization of graphs
and allow edges (hyper-edges, strictly speaking) to connect
any number of vertices, typically more than two. Similar to
other formulations in object recognition, our hyper-edges
connect triplets of nodes, which allow verifying geometric
invariances that are invariant to scale-changes, as opposed
to pairwise terms that are restricted to distances [59,14,48].
Unlike [59,14,48], our geometric terms are split into spa-
tial terms and temporal terms, which is better suited to the
spatio-temporal data.

Our graphs are built on space-time interest points, as in
[48], similar to spatial formulations for object recognition as
in [59,14,11] and others. This allows us stay independent of
preceding segmentation steps, as in [10], or on parts models,
where an object or an action is decomposed into a set of parts
[17,5]. Parts based formulations like [5] are able to achieve
good results with graphs which are smaller than our graphs,
but they depend on very strong unary terms constructed from
machine learning.

Inference is the most challenging task in graph match-
ing, as useful formulations are known to be NP-hard prob-
lems [52]. While the graph isomorphism problem is con-
jectured to be solvable in polynomial time, it is known that
subgraph isomorphism - exact subgraph matching - is NP-
complete [19]. Practical solutions for graph matching there-
fore must rely on approximations or heuristics.

We propose an efficient hyper-graph matching method
for spatio-temporal data based on three realistic assump-
tions: (i) causality of human movements; (ii) sequential na-
ture of human movements and limited warping; and (iii)
one-to-one mapping of model-to-scene time instants. We
present a theoretical result stating that, under these assump-
tions, the correspondence problem can be decomposed into a
set of subproblems such that each subproblem can be solved
recursively in terms of the others, and hence derive an ex-
act minimization algorithm. A constructive proof shows that
the minimization problem can be solved efficiently using dy-
namic programming.

The approximated model enables us to achieve perfor-
mance faster than real-time. This work thus falls into the
category of methods calculating the exact solution for an
approximated model, unlike methods calculating an approx-
imate solution, for instance [5,30,59,14,52,58,48] or meth-
ods which perform exact structure preserving matching like
[29]. In this sense, it can be compared to [11], where the
original graph of a 2D object is replaced by a k-tree allowing
exact minimization by the junction tree algorithm. Our solu-
tion is different in that the graphical structure is not created

randomly but is derived from the temporal dimensions of
video data. We propose three different approximated graphi-
cal structures, all characterized by a reduction in the number
of interest points, which allows faster than real-time perfor-
mance on mid-level GPUs.

1.1 Related Work: Graph Matching

There is a plethora of literature on optimization and practi-
cal solutions of graph matching algorithms. This extensive
research on practical solutions to graph matching can be an-
alyzed under different perspectives. One common classifica-
tion is :

1. Exact matching: A strictly structure-preserving corre-
spondence between the two graphs (e.g., graph isomor-
phism) or at least between parts (e.g., subgraph isomor-
phism) is searched.

2. Inexact matching: Compromises in the correspondence
are allowed in principle by admitting structural defor-
mations up to some extent. Matching proceeds by min-
mizing an objective (energy) function.

In the computer vision context, most recent papers on
graph matching are based on inexact matching of valued
graphs, i.e., graphs with additional geometric and/or appear-
ance information associated with nodes and/or edges. Prac-
tical formulations of this problem are known to be NP-hard
[52], which requires approximations of the model or the
matching procedure. Two different strategies are frequently
used:

1. Calculation of an approximate solution of the minimiza-
tion problem;

2. Calculation of the exact solution, most frequently of an
approximated model.

Approximate solution — A well known family of methods
solves a continuous relaxation of the original combinato-
rial problem. Zass and Shashua [59] presented a soft hyper-
graph matching method between sets of features that pro-
ceeds through an iterative successive projection algorithm
in a probabilistic setting. They extended the Sinkhorn al-
gorithm [23], which is used for soft assignment in combi-
natorial problems, to obtain a global optimum in the spe-
cial case when the two graphs have the same number of
vertices and an exact matching is desired. They also pre-
sented a sampling scheme to handle the combinatorial ex-
plosion due to the degree of hyper-graphs. Zaslavskiy et al.
[58] employed a convex-concave programming approach to
solve the least-squares problem over the permutation ma-
trices. More explicitly, they proposed two relaxations to
the quadratic assignment problem over the set of permu-
tation matrices which results in one quadratic convex and
one quadratic concave optimization problem. They obtained

Fast Exact Hyper-Graph Matching with Dynamic Programming for Spatio-Temporal Data 3

an approximate solution of the matching problem through
a path following algorithm that tracks a path of local mini-
mum by linearly interpolating convex and concave formula-
tions.

A specific form of relaxation is done by spectral
methods, which study the similarities between the eigen-
structures of the adjacency or Laplacian matrices of the
graphs or of the assignment matrices corresponding to the
minimization problem formulated in matrix form. In partic-
ular, Duchenne et al. [14] generalized the spectral matching
method from the pairwise graphs presented in [30] to hyper-
graphs by using a tensor-based algorithm to represent affin-
ity between feature tuples, which is then solved as an eigen-
problem on the assignment matrix. More explicitly, they
solved the relaxed problem by using a multi-dimensional
power iteration method, and obtained a sparse output by tak-
ing into account l1-norm constraints instead of the classi-
cal l2-norm. Leordeanu et al. [31] made an improvement on
the solution to the integer quadratic programming problem
in [14] by introducing a semi-supervised learning approach.
Lee et al. [28] solved the relaxed problem by a random walk
algorithm on the association graph of the matching prob-
lem, where each node corresponds to a possible matching
between the two hyper graphs. The algorithm jumps from
one node (matching) to another one with given probabilities.

Another approach is to decompose the original discrete
matching problem into subproblems, which are then solved
with different optimization tools. A case in point, Torresani
et al. [52] solved the subproblems through graph-cuts, Hun-
garian algorithm and local search. Lin et al. [33] first de-
termined a number of subproblems where each one is char-
acterized by local assignment candidates, i.e., by plausible
matches between model and scene local structures. For ex-
ample, in action recognition domain, these local structures
can correspond to human body parts. Then, they built a can-
didacy graph representation by taking into account these
candidates on a layered (hierarchical) structure and formu-
lated the matching problem as a multiple coloring prob-
lem. Finally, Duchenne et al. [15] extended one dimensional
multi-label graph cuts minimization algorithm to images for
optimizing the Markov Random Fields (MRFs).
Approximate graphical structure — Many optimization
problems in vision are NP-hard. The computation of ex-
act solutions is often unaffordable, e.g., in real-time video
processing. A common approach is to approximate the data
model, for instance the graphical structure, as opposed to ap-
plying an approximate matching algorithm to the complete
data model. One way is to simplify the graph by filtering out
the unfruitful portion of the data before matching. For exam-
ple, a method for object recognition has been proposed by
Caetano et al. [11], which approximates the model graph by
building a k-tree randomly from the spatial interest points of
the object. Then, matching was calculated using the classical

junction tree algorithm [27] known for solving the inference
problem in Bayesian Networks.

A special case is the work by Bergthold et al. [5], who
perform object recognition using fully connected graphs of
small size (between 5 and 15 nodes). The graphs can be
small because the nodes correspond to semantically mean-
ingful parts in an object, for instance landmarks in a face
or body parts in human detection. A spanning tree is calcu-
lated on the graph, and from this tree a graph is constructed
describing the complete state space. The A∗ algorithm then
searches the shortest path in this graph using a search heuris-
tic. The method is approximative in principle, as hypothe-
ses are discarded due to memory requirements. However,
for some of the smaller graphs used in certain applications,
the exact solution can be calculated. Matching is typically
done between 1 and 5 seconds per graph, but the worst case
is reported to take several minutes.

1.2 Related Work: Action Recognition

While the methods described in Section 1.1 focus on ob-
ject recognition in still images or in 3D as practical appli-
cations, we here present a brief review on the most relevant
methods that apply graph matching to human action recog-
nition problem in video sequences. Graph-based methods
frequently exploit sparse local features extracted from the
neighborhood of spatio-temporal interest points. A spatio-
temporal interest point (STIP) can be defined as a point ex-
hibiting saliency in the space and time domains, i.e., high
gradient or local maxima of the spatio-temporal filter re-
sponses. The most frequently used detectors are periodic
(1D Gabor filters) [13], 3D Harris corner detector [25], ex-
tension of Scale-invariant Feature Transform (SIFT) to time
domain [45] etc. It is typical to describe the local neighbor-
hood of an interest point by concatenation of gradient values
[13], of optical flow values [13], or of spatial-temporal jets
[44], histogram of gradient and optical flow values (HoG
and HoF) [25] or 3D Scale-invariant Feature Transform
(SIFT) [45].

Ta et al. [48] have built hyper-graphs from proxim-
ity information by thresholding distances between spatio-
temporal interest points [13]. Given a model and a scene
graph, matching is conducted by the algorithm of Duchenne
et al. in [14]. Similarly, Gaur et al. [20] modeled the relation-
ship of spatio-temporal interest points [25] in a local neigh-
borhood, i.e., they have built local feature graphs from small
temporal segments instead of the whole video. These tem-
porally ordered local feature graphs composed the so-called
String of Feature Graphs (SFGs). Dynamic Time Warping
(DTW) was utilized to measure the similarity between a
model and a scene SFG, where matching of two graphs was
implemented using the method proposed in [30]. In partic-
ular, these two methods in [48] and [20] resorted to off-

4 Oya Çeliktutan et al.

the-shelf spectral methods. In a different vein, Brendel and
Todorovic [10] formulated the graph matching problem as a
weighted least squares problem on the set permutation ma-
trices. They built directed graphs from adjacency and hierar-
chical relationships of spatio-temporal regions and learned
the representative nodes and edges in the weighted least
squares sense from a set of training graphs.

Graph embedding has been used in several studies [34,
57]. For example, Liu et al. [34] have used graphs to model
the relationship between different components. While the
nodes can be spatio-temporal descriptors, spin images or
action classes, edges represent the strength of the relation-
ship between these components, i.e., feature-feature, action-
feature or action-action similarities. The graph is then em-
bedded into a k-dimensional Euclidean space; hence corre-
spondence is solved by spectral technique.

Graphs also used to model different types of data: still
images [55,41] and MoCap data [56]. Inspired from picto-
rial structures [17], Raja et al. [41] jointly estimate the pose
and action using a pose-action graph where the nodes corre-
spond to the five body parts, e.g., head, hands, feet, and the
energy function is formulated based on both detected body
parts and possible relative positioning of parts given the ac-
tion class. In [55], Yao and Fei-Fei structure salient points on
the human body, namely skeletal joints, into a graph. Body
joints are detected again by pictorial structures [17]; how-
ever, the main difference is that they use the method in [50]
to recover depth information, and then attribute the 3D posi-
tion information of the joints as well as appearance features
to the nodes and 3D pose features to the edges. Similary, in
[56], graphs model the relationship of skeletal joints from
MoCap Data.

Causality with respect to time has motivated sparse
graphical models [7,36] in which inference can be carried
out by means of dynamic programming. An extension of se-
quential models are trees, which offer an alternative struc-
tured representation to graphs. Mikolajczyk and Uemura
[38] built a vocabulary from appearance-motion features and
exploited randomized kd-trees to match a query feature to
the vocabulary. Jiang et al. [22] used trees for assigning each
frame to a shape-motion prototype, and aligned the two se-
quences of prototypes by DTW.

2 Problem Formulation

In this paper, we formulate the problem as a particular case
of the general correspondence problem between two point
sets. The objective is to assign points from the model set
to points in the scene set, such that some geometrical in-
variance is satisfied. We solve this problem through a global
energy minimization procedure, which operates on a hyper-
graph constructed from the model point set. The M points
of the model are organized as a hyper-graph G = {V ,E },

where V is the set of hyper-nodes (corresponding to the
points) and E is the set of hyper-edges. The edges E in
our hyper-graph connect sets of three nodes, thus triangles.
From now on we will abusively call hyper-graphs “graphs”
and hyper-edges “edges”.

The matching problem under consideration is an opti-
mization problem over maps from the model nodes V to
scene interest points V ′ plus an additional interest point ε

which is interpreted as a missing detection, i.e., z : V →
V ′ ∪ {ε}. The temporal coordinates of each point are ex-
plicitly denoted by the maps t : V → N and t ′ : V ′ → N′
from nodes to frames. Note that edges need not be such that
all their nodes belong to the same frame.

2.1 Objective Function

Each node (point) i in the two sets (model and scene) is as-
signed a space-time position and a feature vector that de-
scribes the appearance in a local space-time neighbourhood
around this point. Discrete variable zi, i = 1 . . .M represents
the mapping from the ith model node to some scene node,
and which can take values from {1 . . .S}, where S is the
number of scene nodes. We use the shorthand notation z to
denote the whole set of map variables {zi}i=1:M . A solution
of the matching problem is given through the values of the
zi, that is, through the optimization of the set z, where zi = j,
i = 1 . . .M, is interpreted as model node i being assigned
to scene node j = 1 . . .S. To handle cases where no reli-
able match can be found, such as occlusions, an additional
dummy value ε is admitted, which semantically means that
no assignment has been found for the given variable (zi = ε).

Each combination of assignments z evaluates to a figure
of merit in terms of an energy function E(z), which will be
given below. In principle, the energy should be lower for as-
signments that correspond to a realistic transformation from
the model image to the scene image, and it should be high
otherwise. We search for the assignments that minimize this
energy.

We illustrate the matching problem in Figure 1. Our pro-
posed energy function is as follows:

E(z) = λ1

M

∑
i=1

U(zi)+λ2 ∑
(i, j,k)∈E

D(zi,z j,zk) (1)

where U(·) is a data-attached term taking into account fea-
ture distances, D(·) is the geometric distortion between two
space-time triangles, and λ1 and λ2 are weighting parame-
ters. More explicitly, while U(·) is simply defined as the Eu-
clidean distance between the appearance features of model
nodes and of their assigned points, D(·) is measured in terms
of time warping and shape deformation based on angles. For
simplicity, in Equation (1), we have omitted all variables
over which we do not optimize. These terms are explained
in detail in Appendix A.

Fast Exact Hyper-Graph Matching with Dynamic Programming for Spatio-Temporal Data 5

1

2

3

4

5

MODEL

2

1

4
3

5 6

SCENE

z1

z2

z3

Fig. 1 Model nodes are structured into a graph, while those of the
scene nodes are not. The numbering of the nodes in the figure is ar-
bitrary.

2.2 Matching Constraints

Since our data structure is defined in the spatio-temporal do-
main, we consider the following constraints related to the
temporal domain:

Assumption 1: Causality – Each point in the two sets
(i.e., model and scene) lies in a spatio-temporal space. In a
feasible matching, the temporal order of the model points
and the temporal order of their possibly assigned scene
points should be retained, which can be formalized as fol-
lows:

∀ (i, j) ∈ V : t(i)< t(j)⇔ t ′(zi)< t ′(z j) (2)

where t(i) stands for the temporal coordinate (a discrete
frame number) of model point i, and t ′(zi) stands for the
temporal coordinate of scene point zi.

Assumption 2: Temporal closeness – Two points
which are close in time must be close in both the model set
and the scene set. In other words, the extent of time warping
between model and scene time axes must be limited to elim-
inate implausible matching candidates and hence to reduce
the search space. This can be handled by thresholding time
distances when constructing the hyper-edges as follows:

∀ (i, j,k) ∈ E : |t ′(zi)− t ′(z j)|< T ∧|t ′(z j)− t ′(zk)|< T
∧|t ′(zi)− t ′(zk)|< T

(3)

where T bounds the node differences in time.

3 Proposed Method

In this section, we introduce two solutions to the exact mini-
mization of the matching problem. First, we reformulate the

problem taking into consideration the inherent nature of the
action data. This results into a feasible form without having
compromised the optimality of the solution, given that the
NP-hard problem becomes of polynomial complexity. Sec-
ond, we introduce approximations to the graphical structure
to substantially reduce the computational complexity and
explore three such alternatives.

Assumption 3: One-to-one mapping of time instants
– We assume that time instants cannot be split or merged. In
other words, all points of a model frame should be matched
to points of one and only one scene frame, and vice versa.

∀(i, j) ∈ V : (t(i) = t(j))⇔ (t ′(zi) = t ′(z j)) (4)

While the assumptions of causality and temporal close-
ness are realistic assumptions deduced from the inherent
properties of the action data, Assumption 3 of one-to-one
mapping of time instants is actually a requirement of the
recursive solution method we opt for. The correspondence
problem can now be decomposed into a set of subprob-
lems such that each subproblem can be solved recursively in
terms of the others. Consequently, we can formulate an ex-
act minimization algorithm, and this minimization problem
can be efficiently solved by using a dynamic programming
technique. We will start with the following definition:

Definition 1 Consider a general hyper-graph G = {V ,E }
with no specific restrictions on the graphical structure. The
temporal span of the graph is defined as the maximum num-
ber of nodes associated with an interval [a,b] of frames,
where the interval [a,b] is covered by one of the hyper-edges
e ∈ E b

a of the graph: a is the lowest temporal coordinate in
e and b is the highest temporal coordinate in e.

Theorem 1 Consider a general hyper-graph G = {V ,E }
with no specific restrictions on the graphical structure. Con-
sider Assumptions 1, 2 and 3. Then, the energy function
given in Equation (1) can be solved by a computational
complexity which is exponential in the temporal span of the
graph.

The temporal span is generally low if the graph is built
from proximity information. A constructive proof of this
theorem, the minimization via dynamic programming and
the computational complexity bounds are all given in Ap-
pendix B. However, although now feasible, the complexity
remains still too high for practical usage. It becomes than
necessary to further reduce the computational complexity by
introducing the notion of sparse graphs. In this case, the re-
duced graphical structures represent an approximation, but
otherwise the graph matching is solved exactly. In the sub-
sequent section, we proposed three different graphical ap-
proximation structures, all characterized by a reduction in
the number of interest points. Each one assumes very few
interest points, i.e., from 1 to 3 points per frame.

6 Oya Çeliktutan et al.

(a)

(b) (c)

Fig. 2 (a) A special graphical structure designed for very low computational complexity: a second order chain. This meta-graph describes the
restrictions on the temporal coordinates of model graphs; (b) A sample model graph satisfying the restrictions in (a); (c) A sample model graph
limited to a single point per frame (the single-point/single-chain model).

3.1 Graphical Structure

The graphical structure is approximated in two steps. First,
the graphical structure (the set E of edges) is restricted by
constraints on the combinations of temporal coordinates.
The triplets of temporal coordinates (t(i), t(j), t(k)) allowed
in a hyper-edge are restricted to triplets of consecutive
frames: (t(i), t(j), t(k)) = (t(i), t(i)+1, t(i)+2). Depending
on the visual content of a video, there may be frames which
do not contain any spatio-temporal interest points, and there-
fore no nodes in the model graph. These empty frames are
not taken into account when triplets of consecutive frame
numbers are considered.

This structure can be visualized by a meta graph, which
contains a single node for each (non empty) frame and a
hyper-edge connecting the triplets of consecutive frames, as
seen in Figure 2a. The meta graph1 is planar with triangular
structure. Figure 2b and 2c show model graphs which satisfy
the restrictions described above. Note that each triangle in
the meta graph (Figure 2a) corresponds to a set of triangles
in the model graphs (Figure 2b and 2c).

Given these restrictions, we propose three different
model graphs and three different associated matching algo-
rithms. They differ in the number of model nodes per frame
and the way they are linked.

1 Our use of the meta-graph term here is slightly abusive; meta-
graph describes the minimization algorithm rather than the relationship
between the interest points, which is described by the model graph.

3.1.1 Single-chain-single-point model

In this model, we keep only a single node per model frame
by choosing the most salient one, e.g., the one with the
highest confidence. The scene frames may contain an arbi-
trary number of points, we do not impose any restrictions or
pruning upon them. In this case, the graphical structure of
the meta graph is identical to the graphical structure of the
model graph, and the node indexes (i, j,k) are one-to-one re-
lated to the temporal coordinates t(i), t(j), t(k). An example
of this model graph is given in Figure 2c. In particular, each
model point i is connected to its two immediate frame-wise
predecessors i−1 and i−2 as well as to its two immediate
successors i+1 and i+2.

The neighborhood system of this simplified graph can be
described in a very simple way using the index of the nodes
of the graph, similar to the dependency graph of a second
order Markov chain:

E(z) =
M

∑
i=1

U(zi)+
M

∑
i=3

D(zi,zi−1,zi−2). (5)

For ease of notation we also drop the parameters λ1 and λ2
which can be absorbed into the potentials U and D. A factor
graph for this energy function is given in Figure 3. Round
nodes are variables, square nodes are terms in the energy
function. Shaded nodes are constant (observed) data (loca-
tions and features).

Given this special graphical structure, we can now derive
the following recursive formula to efficiently find the set of
assignments ẑ that minimizes energy in Equation (5):

αi(zi−1,zi−2)=min
zi

[
U(zi)+D(zi,zi−1,zi−2)+ αi+1(zi,zi−1)

]

Fast Exact Hyper-Graph Matching with Dynamic Programming for Spatio-Temporal Data 7

z1

U

z2

U

z3

D

U

zM−1

D

U

zM

D

U

1 2 3 . . . M−1 M

Fig. 3 A factor graph for the single chain model with M nodes and
M−2 hyper-edges as given in Equation (5). Shaded round nodes cor-
respond to data: interest point locations and appearance features, which
have been omitted in the notation.

(6)

with the initialization

αM(zM−1,zM−2) = min
zM

[U(zM)+D(zM,zM−1,zM−2)] . (7)

During the calculation of the trellis, the arguments of the
minima in Equation (6) are stored in a table βi(zi−1,zi−2).
Once the trellis is completed, the optimal assignment can be
calculated through classical backtracking:

ẑi = βi(zi−1,zi−2), (8)

starting from an initial search for z1 and z2:

(ẑ1, ẑ2) = argmin
z1,z2

[U(z1)+U(z2)+α3(z1,z2)]. (9)

The algorithm as given above is of complexity O(M·S3). Re-
call that the total number of model and scene points are de-
noted by M and S, a trellis is calculated in an M× S× S
matrix, where each cell corresponds to a possible value of a
given variable. The calculation of each cell requires to iter-
ate over all S possible combinations of zi.

Exploiting the assumptions on the spatio-temporal data
introduced in Section 3, the complexity can be decreased
further:

– Assumption 1. Taking causality constraints into account,
we can prune many combinations from the trellis of the
optimization algorithm. In particular, if we consider all
possibilities in the trellis given a certain assignment for
a given variable zi, its predecessors zi−1 and zi−2 must
necessarily come before zi, i.e., must have lower values.

– Assumption 2. For any assignment zi, its successors are
expected to be close in time, thus we allow a maxi-
mum number of T frames between the successor pairs
(zi,zi+1) and (zi+1,zi+2).

Thus, the expression in Equation (6) is only calculated
for values (zi−1,zi−2) satisfying the following constraints:

|t ′(zi)− t ′(zi−1)|< T ∧ |t ′(zi−1)− t ′(zi−2)|< T
t ′(zi)> t ′(zi−1) ∧ t ′(zi−1)> t ′(zi−2).

(10)

These pruning measures decrease the complexity to
O(M·S·T 2), where T is a small constant measured in the
number of frames (we set T = 10 in our experiments).

Note that our formulation does not require or assume
any probabilistic modeling. At a first glimpse it could be
suspected that the single-point-per-frame approach could be
too limited to adequately capture the essence of an action
sequence. Experiments have shown, however, that the single
chain performs surprisingly well.

3.1.2 Single-chain-multiple-points model

Keeping multiple points per model frame and solving the ex-
act minimization problem given in Equation (1) is of poly-
nomial complexity (see Appendix B). However, the com-
plexity is still too high even under the restrictions imposed
by the meta-graph structure given in Figure 2a. In this case,
we approximate the matching algorithm by separating the
set of discrete variables into two subsets and by solving for
each subset independently.

We therefore propose the following (partially) greedy
algorithm. Using Assumption 3, we first reformulate the
energy function in Equation (1) by splitting each node as-
signment variable zi into two subsumed variables xi and yi,l ,
which are interpreted as follows: xi, a frame variable, de-
notes the index of the scene frame that is matched to ith

model frame, i = 1 . . .M. Each model frame i also possesses
a number Mi of node variables {yi,1, . . . ,yi,Mi} where yi,l de-
notes the index of scene node that is assigned to lth node at
frame i in the model graph. Note that the number of possible
values for variable yi,l depends on the value of xi, since dif-
ferent model frames may contain different number of nodes.
We can now separate frame assignments and node assign-
ments into two consecutive steps:

– For each possible frame assignment xi, we solve the
node assignment variables yi,l with local geometric and
appearance information extracted from the given frames.

– We calculate the solution for the frame assignment vari-
ables xi by minimizing the energy function. In this step,
the node assignment variables yi,l are considered con-
stant.

The node assignments in the first step can be done
by minimizing appearance information alone, i.e., for each
model node we select a scene node having minimal feature
difference. To make this assignment more robust, we add de-
formation costs on in-frame triangles, which requires taking
the decision jointly for all nodes of each model frame.

8 Oya Çeliktutan et al.

The second step, which optimally aligns the frames
given the pre-calculated node assignments, is equivalent to
the matching algorithm of the single point model described
in Section 3.1.1. However, the graphical structure on which
the algorithm operates is now the meta-graph (given in Fig-
ure 2a) and not the model graph (given in Figure 2b). In the
multiple point case these two graphs are not identical. For
this reason, the terms U(·) and D(·), originally defined on
edges in the model graph, i.e, on triangles in space-time are
now defined on edges in the meta graph, i.e., on sets of trian-
gles in space-time, and the energy function is reformulated
as follows:

E(x) =
M

∑
i=1

U∗(xi)+
M

∑
i=3

D∗(xi,xi−1,xi−2). (11)

U∗(·) and D∗(·) can be set as sums over the respective model
graph nodes/triangles corresponding to a given node/triangle
in the meta graph:

U∗(xi) =
Mi

∑
l=1

U(xi,yi,l)

D∗(xi,xi−1,xi−2) = ∑
c∈(i,i−1,i−2)

D(xc,yc).
(12)

Here the expressions U(·) and D(·) are defined in Section 2
and in Appendix A. The notation xc and yc is a slight abuse
of notation and denotes the variables corresponding to the
triangles linked to meta/frame triangle (xi,xi−1,xi−2).

The computational complexity of the global frame align-
ment step is identical to the single point model, apart from
the sums over the nodes and triangles in Equation (12). If the
triangles of meta-triangle are defined as all possible combi-
nations of the nodes of the three respective frames, complex-
ity is increased by an additional factor of R3 (see Table 3).

3.1.3 Multiple-chains model

An alternative way to approximate the model is by separat-
ing the full graph into a set of independent model graphs,
each one featuring a single point per frame, i.e., similar to
the type shown in Figure 2c. As in Section 3.1.1, the exact
global solution of each individual chain is computed.

In this case, the definitions for U(zi) and D(zi,zi−1,zi−2)

are identical to the single-point model. The energy function
to be minimized is a sum over the energy functions corre-
sponding to the individual graphs (chains) as follows:

E∗(z) =
1
N

N

∑
k=1

Ek(z) (13)

where N is the number of single chain models and Ek(·)
is the kth single-chain-single-point energy function which
is formulated in Equation (5). In other words, we match
each single-chain-single-point model to a scene sequence

and average the resulting N energies to reach a final deci-
sion. Notice that the computational complexity increases lin-
early with N as compared to the single-chain model where
N is typically a small number (we set N = 2 in our experi-
ments).

3.2 Model Prototype Selection

In action recognition, intra-class variability can be large
enough to impede good discrimination among different
classes. For this reason, we decided to learn a reduced set of
representative model graphs, called prototypes, for each ac-
tion type, using Sequential Floating Forward Search (SFFS)
method [40]. Thus irrelevant or outlier model graphs are re-
moved from the training set. Briefly, we start with a full
dictionary (all models) and proceed to remove condition-
ally the least significant models from the set, one at a time,
while checking the performance variations on a validation
set. Deletions that improve the performance are first ac-
cepted in this greedy search. After a number of removal
steps, however, we reintroduce one or more of the removed
models provided they improve the performance at that stage.
We report the performance results of this scheme in Section
4.1.3.

4 Experimental Results

In this section, we demonstrate the viability of the proposed
algorithm in two specific tasks: action recognition from
video sequences and action recognition from sequences of
articulated poses.

4.1 Action Recognition from Video Sequences

Given the training set of model action graphs, for a scene se-
quence to be tested, our strategy is to calculate the matching
energy of each one of the model graphs with the set of inter-
est points in the scene sequence, and infer the action class
by the nearest neighbour classification rule.

4.1.1 Experimental Setup

We used two different methods to extract spatio-temporal
interest points: 3D Harris detector [26] and 2D Gabor filters
[9]. The detected interest points constitute the nodes of the
graphs.

The well-known Harris interest point detector [21] was
extended into the spatio-temporal domain by Laptev et al.
[26]. The detector is based on the spatio-temporal second
moment matrix of the Gaussian smoothed video volume
[26]. To detect interest points, we search for the locations

Fast Exact Hyper-Graph Matching with Dynamic Programming for Spatio-Temporal Data 9

where second moment matrix contains three large eigenval-
ues, namely, strong intensity variation along three orthogo-
nal spatio-temporal directions. In our experiments, we used
the off-the-shelf code in [26].

As a second method, we use 2D Gabor filters as pro-
posed by Bregonzio et al. in [9]. To detect interest points,
we take the difference between the consecutive frames and
convolve the resulting image with a bank of 2D Gabor fil-
ters having different orientation and scale parameters pairs.
The responses are calculated for different parameter pairs
and then summed up. Spatio-temporal interest points are lo-
cated at local maxima of the resulting function. In our ex-
periments, we used the publicly available code from [9].

For appearance features, we used the well known his-
togram of gradient and optical flows (HoG+HoF) extracted
with the publicly available code from [26]. The local neigh-
borhood of a detected point is divided into a grid with
M×M×N (i.e., 3×3×2) spatio-temporal blocks. For each
block, 4-bin gradient and 5-bin optical flow histograms are
computed and concatenated into a 162-length feature vector.

The proposed matching algorithms have been evaluated
on the widely used public KTH database [44]. This database
contains 25 subjects performing 6 actions (walking, jogging,
running, handwaving, handclapping and boxing) recorded
in four different scenarios including indoor/outdoor scenes
and different camera viewpoints, totally 599 video se-
quences. Each video sequence is also composed of three or
four action subsequences, resulting in 2391 subsequences in
total. The subdivision of the sequences we used is the same
as the one provided on the official dataset website [24]. In
our experiments, we have used these subsequences to con-
struct the model graphs. Each subsequence consists of 20
to 30 frames, and we made sure that each frame contains at
least one or more salient interest points.

All experiments use the leave-one-subject-out (LOSO)
strategy. Action classes on the unseen subjects are recog-
nized with a nearest neighbor classifier. The distance be-
tween scene and model prototypes is based on the matching
energy given in Equation (1). However, experiments have
shown that the best performance is obtained if only the ap-
pearance terms U(·) are used for distance calculation instead
of the full energy in Equation (1). This results in the follow-
ing two step procedure:

1. Node correspondences: The correspondence problem is
solved using the total energy in Equation (1), that is the
sum of U(·) and D(·) terms. This step provides a solu-
tion for the hidden variables z, that is, frame and node
assignments.

2. Decision for action class: The distance between model
and scene graphs is calculated using only the U(·) term
evaluated on the assignments calculated in the first step,
i.e., on solutions for variables z.

Results have been analyzed in terms of three criteria: (i)
performance of the various graphical structures with differ-
ent number of interest points per frame; (ii) impact of proto-
type selection; and (iii) computational efficiency. These will
be detailed in the following sections.

4.1.2 Choice of Graphical Structure

The three graphical structures introduced in Section 3.1 have
been evaluated on the dataset:

– Single-chain-single-point model: The interest points are
detected by the 3D Harris detector [26]. Each frame of a
model sequence is represented by its single most salient
point. There are no such restrictions on the scene se-
quences.

– Single-chain-multiple-points model: The 3D Harris de-
tector results in very few interest points, i.e., the number
of points varies between 1 and 4 per frame on average. It
constitutes a good choice, if our only goal is to select a
single point per frame. However, in the case of multiple-
points model, it is not appropriate. We therefore used
2D Gabor filters [9] and extracted at least 20 points per
frame. To eliminate irrelevant points, we fitted a bound-
ing box on the human body and applied Canny edge de-
tector to choose the points that are on or closer to the hu-
man silhouette. Finally, out of all available scene points,
N = 3 points per frame are selected to be used in the
model sequence. To better capture the global property of
the human body, these three points are selected so as to
constitute the biggest possible triangle. There are no re-
strictions on the scene sequences, only the points outside
the bounding box are eliminated.

– Multiple-chains model: We again used 2D Gabor filters
[9] to extract interest points. N single-chain-single-point
models are matched, separately, against the set of scene
nodes, and a final decision is obtained by averaging the
matching energies over the chains. We have chosen N =

2.

In Table 1, the results for different graphical structures
are given without the prototype selection method. The best
recognition performance of the proposed scheme is found
to be 89.2% under the single-chain model. Looking at the
confusion matrices in Table 1, it can be observed that major
part of the errors is due to confusion between the jogging
and running classes, which are indeed quite similar.

At first sight, it might come as a surprise that the single-
point model performs slightly better than the two alterna-
tive models using multiple points per frame. One explana-
tion why the two multiple point models do not perform any
better than the single point method lies in the choice of in-
terest points, that is, the Gabor set in lieu of the Harris set.
In fact, when the single-point-single-chain method is tested

10 Oya Çeliktutan et al.

with the Gabor features, the performance stalls at 85.6%,
while it achieves 89.2% with Harris features. Furthermore,
the single-chain-multiple-point model does not fully exploit
the rich space-time geometry of the problem. In fact, we
force this model to choose the triple of interest points per
frame (that will constitute one of the nodes of its hyper-
graph) all from the same model frame and the same scene
frame. Even though the subsequent hyper-graph matching
uses the space-time geometry, it cannot make-up for the lost
flexibility in the in-frame triple point correspondence stage.

The multiple-chain model, on the other hand, is similar
in nature to the single-chain model as it consists of chains
successively established with mutually exclusive model
nodes (scene nodes can be re-used). Individual performance
of chains are 85.6% and 84.6%, respectively. The additional
information content gathered by the second chain seems to
translate into slightly better performance, which increases
to 86.6% when we do score fusion (average the energies).
A plausible explanation is that two models, single-chain and
multiple-chain, basically differ in their interest point detec-
tion methods used, 3D Harris detector [26] and 2D Gabor
filters [9], respectively, which is noisy for multiple-chains
model. However, this gap is compensated by the prototype
selection algorithm as shown in the following section.

Table 1 Confusion matrices before prototype selection (a) single-
chain-single-point model, (b) single chain-multiple-points model and
(c) multiple-chains model. Respective average accuracies are 89.2%,
87.6% and 86.6%. (B: Box, HC: Handclap, HW: Handwave, J: Jog, R:
Run, W: Walk).

(a) B HC HW J R W
B 86 13 0 0 1 0
HC 1 99 0 0 0 0
HW 1 10 89 0 0 0
J 0 0 0 74 26 0
R 0 0 0 10 90 0
W 0 0 0 3 0 97

(b) B HC HW J R W
B 96 2 0 0 2 0
HC 1 99 0 0 0 0
HW 2 7 91 0 0 0
J 0 0 0 69 31 0
R 0 0 0 14 84 2
W 0 0 0 8 5 87

(c) B HC HW J R W
B 94 6 0 0 0 0
HC 3 97 0 0 0 0
HW 3 12 85 0 0 0
J 0 0 0 93 6 1
R 0 0 0 40 59 1
W 0 0 0 8 0 92

4.1.3 Prototype Selection

We conjectured that the discrimination power can be im-
proved by judicious selection of prototypes, in effect remov-
ing the noisy prototypes. We learned a set of discrimina-
tive models by the protoype selection method. We used the
same data partition protocol (8/8/9) given in [44]: Model
graph prototypes are created from the training subjects and
the prototype selection is optimized over the validation set.
We have determined the optimal set of prototypes by a grid
search where the increments were in groups of 5 graphs. In
Table 2, we have presented our results after prototype se-
lection. For example, for single-chain-single-point model,
SFFS yielded 50 models out of the initial 750 ones as the
best subset of model graph prototypes. Learning prototypes
increased the test performance by 2 percentage points, up to
91%. As expected, handwaving-handclapping and jogging-
running sequences benefit the most from dictionary learning
(see Table 2). Similar observations can be made for single-
chain-multiple-points and multiple-chains model, where the
number of model graph prototypes are reduced to 250 and
50 from 750, respectively.

Table 2 Confusion matrices after prototype selection: (a) single-chain-
single-point model, (b) single chain-multiple-points model and (c)
multiple-chains model. Respective average accuracies are 91%, 90.2%
and 90.8%. (B: Box, HC: Handclap, HW: Handwave, J: Jog, R: Run,
W: Walk).

(a) B HC HW J R W
B 92 3 3 2 0 0
HC 0 97 3 0 0 0
HW 0 3 97 0 0 0
J 0 0 0 88 9 3
R 0 0 0 19 75 6
W 0 0 0 0 3 97

(b) B HC HW J R W
B 94 0 6 0 0 0
HC 0 97 3 0 0 0
HW 3 5 92 0 0 0
J 0 0 0 92 3 5
R 0 0 0 8 89 3
W 0 0 0 17 5 78

(c) B HC HW J R W
B 94 6 0 0 0 0
HC 0 100 0 0 0 0
HW 0 6 94 0 0 0
J 0 0 0 91 3 6
R 0 0 0 23 77 0
W 0 0 0 11 0 89

Sample matched model and scene sequences are illus-
trated in Figure 4 where in each sub-figure the left image
is from the model sequence and the corresponding matched
scene frame is given on its right. One can observe that the

Fast Exact Hyper-Graph Matching with Dynamic Programming for Spatio-Temporal Data 11

Table 3 Summary of the experimental results. Run time (ms/frame) is computed for matching one model graph on a CPU with 2.8GHz and 8GB
RAM (M: number of model nodes, S: number of scene nodes, M: number of model frames, S: number of scene frames, R: maximum number of
interest points per frame in the scene sequence, N: number of matched single-chain-single-point model.)

Before prototype After prototype
selection selection Run time (ms/fr)

Single-chain-single-point O(M·S·T 2) 89.2% 91% 4.1ms
model
Single-chain-multiple-points O(M·S·T 2·R3) 87.6% 90.2% 15.6ms
model
Multiple-chains O(N·M·S·T 2) 86.6% 90.8% 12.6ms
model

proposed method is also successful at localizing a model ac-
tion sequence in a much longer scene sequence.We illustrate
in Figure 4a-c successfully recognized actions handwaving,
handclapping, walking, and in Figure 4d a misclassification
case, where running was recognized as jogging.

4.1.4 Discussions and Comparison with State-of-the-art

Table 3 summarizes our experimental results and compares
run times of each graphical structures. Each model allows
performing exact minimization with complexity that grows
only linearly in the number of model frames and the num-
ber of scene frames, and grows exponentially in the tempo-
ral search range and the number of interest-points per scene
frame. Note that the complexity of the proposed approaches
is very much lower than the complexity of the brute force
approach (given by O(M·SM·|E |)). The run times given in
Table 3 do not include interest point detection and feature
extraction, but these are negligible compared to the match-
ing requirements.

We would like to point out that although many research
results have been published on the KTH database, most of
these results cannot be directly compared due to their dif-
fering evaluation protocols, as has been indicated in the de-
tailed report on the KTH database [18]. Nevertheless, for
completeness we give our performance results along with
those of some of the state-of-the-art methods as reported
in the respective original papers. Details of these methods
were discussed in Section 1.2. In Table 4, we report aver-
age action recognition performance and computation time
of the compared methods. Although methods to calculate
run times and protocols employed differ between the papers,
this table is intended to give an overall idea. We claim that
our method has significantly lower complexity compared to
the state of the art, the difference being several orders of
magnitude, with performances which are almost compara-
ble. In particular, we can process a single frame in 3.5 ms
(0.0035 s). For example, the method proposed by Ta et al.
[48] is the closest approach to our method. They also used
graph matching but based on spectral methods, so that they
do approximate matching of the exact problem. Recall that

ours was the exact minimization of the approximated graph
problem. As can be seen, our approach shows a competitive
performance but with the advantage of much lower compu-
tational time.

4.1.5 A Real-time GPU Implementation

A GPU implementation enables real-time performance
on standard medium end GPUs, e.g., a Nvidia GeForce
GTS450. Table 5 compares single-chain-single-point model
run times of the CPU implementation in Matlab/C and the
GPU implementation running on different GPUs with dif-
ferent characteristics, especially the number of calculation
units. The run times are given for matching a single model
graph with 30 nodes against blocks of scene video of dif-
ferent lengths. If the scene video is segmented into smaller
blocks of 60 frames, which is necessary for continuous
video processing, real time performance can be achieved
even on the low end GPU model. With these smaller chunks
of scene data, matching all 50 graph models to a block of
60 frames (roughly 2 seconds of video) takes about 3 ms per
frame regardless of the GPU model.

Considering scene video in smaller groups of frames is
necessary for continuous video processing. Thus, for exam-
ple, if we take chunks of 60 scene frames (roughly 2 seconds
of video), matching all 50 graph models to them takes about
3 ms per frame. Thus real-time performance can be achieved
even on the low-end GPU model. The processing time of 3
ms per frame is much lower than the requirement for real
time processing, which is 40 ms for video acquired at 25
frames per second. With the additional processing required
to treat overlapping blocks, the runtime actually increases to
6 ms per frame. Note that some of the best methods for KTH
require order of seconds of processing per frame.

4.2 Action Recognition from Articulated Pose

In this section, we present results from a different problem,
that is, action recognition from articulated poses. We use

12 Oya Çeliktutan et al.

Work Average perf. Run-time Evaluation Remarks on run-time

Ta et al. [48] 91.2% 1.86s LOOCV s/frame, matching with 98 model graphs
Borzeshi et al. [7] 70.2% N/A Split 8/8/9
Brendel & Todorovic [10] N/A 10s N/A Matching 1000 nodes graph with 2000+ nodes graph
Lv & Nevatia [36] N/A 5.1s N/A s/frame
Savarese et al. [43] 86.8% N/A LOOCV
Ryoo & Aggarwal [42] 93.8% N/A LOOCV
Mikolajczyk & Uemura [38] 95.3% 5.5s to 8s LOOCV s/frame (-5s if SVM are not used)
Baccouche et al. [2] 95.8 N/A LOOCV N/A
Jiang et al. [22] 93.4% N/A LOOCV
Our method 91.0% 0.0035s Split 8/8/9 s/frame, matching with 50 model graphs

Table 4 Comparison with the state-of-the-art methods on the KTH database (LOOCV = Leave-one-out-cross validation).

Implementation # Scene # Scene Time (ms) Time/fr (ms) Time/fr (ms)
nodes frames — — A single model — — — All 50 models —

CPU: Intel Core 2 Duo, 754 723 2900 4.01 200.5
E8600 @ 3.33Ghz,
Matlab/C(mex)

Nvidia GeForce GTS450, 754 723 748 1.03 51.5
192 cuda cores, 60 55 4 0.07 3.5 real time (<40ms)
128 bit memory interface

Nvidia GeForce GTX580, 754 723 405 0.56 28 real time (<40ms)
336 cuda cores, 60 55 4 0.07 3.5 real time (<40ms)
256 bit memory interface

Table 5 Run-times in milliseconds for two different GPUs and for two different scene block sizes. The last column on the right gives times per
frame for matching the whole set of 50 model graphs.

depth sequences recorded with a Kinect camera [37], which
yields the coordinates of the tracked skeleton joints [47].

4.2.1 Experimental Setup

We adapt the single-chain-multiple-points-model in Section
3.1.2 for aligning the tracked skeleton sequences [12]. In
this context, each action sequence is structured into a single
chain graph where the frame variables xi coincide with the
frames (skeletons) and each xi assumes a number of node
variables yi,l , namely skeleton joints. As illustrated in Fig-
ure 5, in this case, the graphical structure models the tem-
poral relationship of three consecutive skeleton joints, all
of the same type. Since the Kinect system provides the po-
sitions of the skeleton joints, the problem of assigning the
node variables has already been solved. However, the prob-
lem of which model frame to match with which scene frame
remains still very challenging in nature due to noisy, miss-
ing or occluded joints. Graph matching offers a robust and
flexible solution to the sequence alignment problem in the
presence of these disturbances.

In our experiments, we consider 15 joints and ignore the
joints related to hand and foot, since these are more prone to
errors and occlusions. Prior to any feature extraction, we ap-
plied a preprocessing stage to render each skeleton indepen-
dent from position and body size, and also to mitigate pos-

−0.5
0

0.5
1

1

2

3

4

5

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

time

Fig. 5 Each triangle models the spatial relationship between three con-
secutive skeletons in the triangular structure graph.

sible coordinate outliers. Following the preprocessing stage,
we extract two types of pose descriptors. The first descriptor
considers the angle subtended by that joint and the orien-
tation angle of the plane formed by the three joints. To that
effect, for each joint, we consider its two adjacent joints, and
calculate azimuth and elevation angles. The second descrip-

Fast Exact Hyper-Graph Matching with Dynamic Programming for Spatio-Temporal Data 13

(a) (b)

(c) (d)

Fig. 4 Examples for matched sequences. (a) Model: Handclap (first column), Scene: Handclap (second column); (b) Model: Handwave, Scene:
Handwave; (c) Model: Walk, Scene: Walk; (d) Model: Jog, Scene: Run. Here, (a), (b) and (c) show a case of correct recognition, while (b) is a case
of misclassification.

tor consists of the Euclidean distance between joint position
pairs, that is 15× (15−1)/2 = 95 measurements. The body
pose descriptor, in the ith frame, is the concatenation of the
angle-based and distance-based pose descriptor vectors.

The proposed framework was tested on MSR Action
3D dataset [32] and WorkoutSu-10 Gesture dataset [39].
In MSR Action 3D dataset [32], there are 20 actions per-
formed by 10 subjects. Each subject performs each action
2 or 3 times, resulting in 567 recordings in total. However,

we have used 557 recordings in our experiments as in [54].
Each recording contains a depth map sequence with a res-
olution of 640× 480 and the corresponding coordinates of
the 20 skeleton joints. Actions are selected in the context
of interacting with game consoles, for example, arm wave,
forward kick, tennis serve etc. The second dataset, that is
Workout SU-10 Gesture dataset [39] has the same record-
ing format as the MSR Action 3D dataset. However, the
context is physical exercises performed for therapeutic pur-

14 Oya Çeliktutan et al.

poses. Lateral stepping, hip adductor stretch, freestanding
squats, oblique stretch etc. can be given as examples of ex-
ercises (actions). There are 15 subjects and 10 different ex-
ercises. Each subject repeats an exercise 10 times, resulting
in 1500 action sequences in total. In our experiments, we
used 600 sequences for training and tested our algorithm on
the unseen part of the dataset (we ignored one subject, and
tested on 800 sequences).

4.2.2 Experimental Results

We used nearest neighbour classifier where the distance
measure was the matching energy and the prototype selec-
tion approach in [12]. We obtained 72.9% performance on
the more challenging and noisier MSR Action 3D dataset
and 99.5% performance on Workout on the SU-10 Gesture
datasets. These results are given in Table 6.

Table 6 Recognition performances (%) on MSR: MSR Action 3D
Dataset and WSU: WorkoutSU Gesture datasets. L is the number of
model graphs used in the experiments.

Dataset Number of Before After
action classes Prototype Prototype

Selection Selection
MSR 20 71.8 (L = 291) 72.9 (L = 271)
WSU 10 94.9 (L = 600) 99.5 (L = 507)

4.2.3 Comparison with State-of-the-art Methods

For the sake of completeness, we compared our algorithm
with the state-of-the-art methods [53], [32], [39]. While Li
et al. [32] proposed a method in the spirit of Bag of 3D
points to characterize the salient poses, Negin et al. [39]
and Venkataraman et al. [53] proposed a correlation-based
method. However, the main drawback of the correlation ap-
proach is that it does not incorporate time warping.

In Table 7, we tabulated our results on MSR Action 3D
Dataset [32]. The performance is computed using a cross-
subject test setting where half of the subjects were used for
training, and testing was conducted on the unseen portion of
the subjects. Li et al. [32] proposed to divide the dataset into
three subsets in order to reduce the computational complex-
ity during training. Each action set (AS) consists of eight
action classes similar in context. We repeated the same ex-
perimental setup 100 times where, each time, we randomly
selected five subjects for training and used the rest for test-
ing. Finally, we reported the average recognition rate over
all repetitions in Table 7. As seen in Table 7, the proposed
method performs better in AS1 and AS2, and has a com-
petitive performance in AS3. Our proposed method is more

successful in overall performance, especially in discriminat-
ing actions with similar movements.

Table 7 Recognition performances (%) for MSR Action 3D Dataset
[32] in cross-subject test setting. The respective standard deviations
are 5, 7.5, and 13.2 for the last column. No prototype selection was
performed.

Action Set Venkataraman Li et al. [32] Our Method
et al. [53]

AS1 77.5 72.9 84.5
AS2 63.1 71.9 85.0
AS3 87.0 79.2 72.2
Overall 75.9 74.7 80.5

We also compared our results on Workout SU-10 Ges-
ture dataset with the method proposed in [39]. For a fair
comparison, we used the same experimental setup, namely,
cross-subject test setting where we used the same six sub-
jects for training and the same remaining six subjects for
testing as in [39]. Our recognition performance is found to
be 96.1% and 99.6% before and after prototype selection,
respectively. Our method with graph mining scheme per-
forms better than Negin et al. [39], who obtained 98% per-
formance.

5 Discussions and Conclusions

We have first addressed the graph matching problem, which
is known to be NP-complete, and showed that, if one takes
into consideration the characteristics of spatio-temporal data
generated from action sequences, the point set matching
problem with hyper-graphs can be solved exactly with
bounded complexity. However, the complexity is still expo-
nential in nature, albeit with a small exponent, nevertheless
it is still not practical. Second, we have considered an ap-
proximation to the graph search by limiting model nodes
and/or scene node correspondences, and this special graphi-
cal structure allows performing exact matching with com-
plexity that grows only linearly in the number of model
nodes and the number of scene nodes.

There is a relationship of the proposed energy func-
tion to the energy functions of graphical models, in particu-
lar Markov Random Fields (MRFs) or Conditional Random
Fields (CRFs). The junction tree algorithm [27] can in prin-
ciple calculate the exact solution for any Maximum a Pos-
teriori (MAP) problem on MRFs through message passing,
with a computational complexity which is exponential on
the number of nodes in the largest clique of the graph af-
ter triangulation. It can, in principle, also be applied to the
situation described in this paper. However, our proposed so-
lution has two important advantages. First, the junction tree

Fast Exact Hyper-Graph Matching with Dynamic Programming for Spatio-Temporal Data 15

algorithm takes into account the conditional independence
relationships between the random variables of the problem
(which are coded in the topology of the graph) to derive
an efficient inference algorithm. Exploiting Assumption 3,
however, allows us to impose restrictions on the domains
of random variables by restricting the specific admissible
combinations of random variables. The junction tree algo-
rithm does not prune these combinations and is therefore
of sub-optimal complexity. Secondly, the junction tree algo-
rithm requires a preceding triangulation of the graph, which
takes as input the hyper-graph converted into a graph, each
hyper-edge being converted into a clique of size 3. The tri-
angulation step will create a chordal graph from the original
graph, which can add edges to the graph. This can increase
the number of nodes in the maximal clique, and therefore
the complexity of the algorithm. Recall that optimal graph
triangulation is an open problem for which no exact solu-
tion exists.

As a proof of concept of our graph matching algorithm,
we applied it to human action recognition problem in two
different settings. The proposed algorithm has shown com-
petitive performance vis-à-vis the state-of-the-art in the liter-
ature; more importantly, it has the advantage of very low ex-
ecution time, several orders of magnitude less than its near-
est competitor (see Table 4).

We should remark that, for cluttered motion scenes, the
graph-based action recognition strategy is more dependent
upon scene segmentation as compared to methods like Bag
of Visual Words (BoW). It will be of interest to explore the
coupling of the object segmentation with graph building for
robustness of the method.

In this work, we have used spatio-temporal interest
points for matching two action sequences. However, our
graphical structure enables to replace the interest points
by high-level features such as the joints of the human
skeleton [47]. Hence, a potential research direction will be
to investigate the use of pairwise spatio-temporal features
as in [49,6] or human body parts [8,16].

Appendices

A OBJECTIVE FUNCTION
The graph energy function

E(z) = λ1

M

∑
i=1

U(zi)+λ2 ∑
(i, j,k)∈E

D(zi,z j,zk)

as defined in Equation (1) consists of two terms. The U(·)
term is defined as the Euclidean distance between the ap-
pearance features of assigned points in the case of a candi-
date match, and it takes a penalty value W d for dummy as-
signments in order to handle situations where a model point

cannot be found in the scene:

U(zi) =

{
W d if zi = ε,

|| fi− f ′zi
|| else,

(14)

fi and f ′zi
being respectively the feature vector of model

point i and the feature vector of scene point zi.
The D term penalizes geometric shape discrepancy be-

tween triangles of node triples, and hence it is based on an-
gles. Since our data is embedded in space-time, angles in-
clude a temporal component not related to scale changes in-
duced by zooming. We therefore split the geometry term D
into a temporal distortion term Dt and a spatial geometric
distortion term Dg:

D(zi,z j,zk) = Dt(zi,z j,zk)+λ3Dg(zi,z j,zk) (15)

where the temporal distortion Dt is defined as truncated time
differences over two pairs of nodes of the triangle:

Dt(zi,z j,zk) =

W t if ∆(i, j)> T ∨

∆(j,k)> T,
∆(i, j)+∆(j,k) else

(16)

∆(i, j) = |(t(i)− t(j))− (t ′(zi)− t ′(z j))|. (17)

Here, ∆(i, j) is the time distortion due to the assignment
of model node pair (i, j) to scene node pair (zi,z j), and
T bounds the node pair differences in time, e.g., in frame
number. The search interval of extent T enables inherently
dynamic time warping during graph matching. The model
node pairs should not be too close while scene nodes are far
apart, and vice versa, they should not be too far apart while
scene nodes are close by. Finally, Dg is defined over differ-
ences of angles:

Dg(zi,z j,zk) =

∣∣∣∣∣∣∣∣a(i, j,k)−a′(zi,z j,zk)

a(j, i,k)−a′(z j,zi,zk)

∣∣∣∣∣∣∣∣ . (18)

Here, a(i, j,k) and a′(i, j,k) denote the angles subtended at
point j for, respectively, model and scene triangles indexed
by (i, j,k). Note that, for an exact notation, one has to de-
note U(·) and D(·) as Ui(·) and Di jk(·) since these terms
also depend on the appearance features and angles. How-
ever, for ease of notation, we absorbed these variables into z
variables.

In our experiments, parameters have been fixed or
estimated as follows. The penalty parameter W d should
theoretically be higher than the average energy of correctly
matched triangles and lower than the average energy of
incompatible triangles. We define W d as the mean value of
all, compatible or incompatible, triangle matching energies.
The weighting parameters are set so that each distortion
measure has the same range of values: λ1 = 0.6, λ2 = 0.2,
λ3 = 5, T = 10, and W t = 20.

16 Oya Çeliktutan et al.

B MATCHING IN SPACE-TIME WITH GENERAL
GRAPHS
Assumption 3 implies that a correct sequence match is an
injective map, that is, it consists of a collection of single
model-frame-to-scene-frame matches. We therefore first re-
formulate the energy function in Equation 1 by splitting each
variable zi into two subsumed variables xi and yi,l , which are
interpreted as follows: xi, a frame variable, denotes the in-
dex of the scene frame that is matched to ith model frame.
The number of model frames and scene frames are denoted
as M and S, respectively. Each model frame i also possesses
a number Mi of node variables yi,1, . . . ,yi,Mi , where yi,l de-
notes the index of scene node that is assigned to lth node at
frame i in the model graph. Note that the number of possi-
ble values for variable yi,l depends on the value of xi, since
different frames may contain different number of nodes.

The objective remains to calculate the globally optimal
assignment of all nodes of the graph, i.e., the optimal values
for all variables xi and yi,l ,∀i ∀l. In other terms, a node of
a given frame i is not necessarily matched to the (locally
only) best fitting node in the frame-to-frame sense. This will
be detailed in the rest of this section.

For convenience, we will also simplify the notation by
representing a hyper-edge (the corresponding frame indices
and node indices) as c and the corresponding variables as
(zc,yc). In other words, (zc) implies a triple assignment of
model frames (say, i, j,k), to scene frames, and (yc) implies
the connection of the three model nodes to the three frames
(zc). For ease of notation, we also drop the parameters λ1
and λ2 which can be absorbed into the potentials U and D.

The reformulated energy function is now given as:

E(x,y) = ∑
(i,l)∈M×Mi

U(xi,yi,l)+ ∑
c∈E

D(xc,yc). (19)

We now introduce a decomposition of the set of hyper-
edges E into disjoint subsets E i, where E i is the set of all
hyper-edges which contain at least one node with temporal
coordinate equal to i and no node has a higher (later) tem-
poral coordinate. It is clear that the set of all possible sets E i

forms a complete partition of E , i.e. E =
⋃M

i=1 E i. We can
now exchange sums and minima according to this partition-
ing:

min
x,y

E(x,y) =

min
x1;y1,1,...,y1,M1

[
M1

∑
l=1

U(x1,y1,l)+ ∑
c∈E 1

D(xc,yc)+

min
x2;x2,1,...,y2,M2

[
M2

∑
l=1

U(x2,y2,l)+ ∑
c∈E 2

D(xc,yc)+

...

min
xM ;yM,1,...,yM,MM

[
MM

∑
l=1

U(zM,yM,l)+ ∑
c∈E M

D(zc,yc)

]
. . .

]
.

(20)

Hyper-edges have variable temporal spans, which makes
it impossible to define a recursion scheme with regular struc-
ture. We therefore define the concept of the reach R i of
frame i, which consists of the set of edges which reach into
the past of frame i and which are also part of i or of its future:

R i =
{

c ∈ E : [min〈t〉(c)< i]∧ [max〈t〉(c)≥ i]
}

(21)

where min〈t〉(c) and max〈t〉(c) are, respectively, the mini-
mum and the maximum temporal coordinate of the nodes of
edge c. Note that, by definition E i ⊆R i.

We also introduce the expression X i for the set of all
variables xk or yk,l involved in the reach R i:

X i =
{
(xk,yk,l) : [∃q,r : (k,q,r) ∈ c]∧ [c ∈R i]

}
. (22)

Finally, the set of variables X i that belongs to the frames
before i is denoted as X i

−

X i
− = {(zk,yk,l) ∈X i : k < i}. (23)

Now, a general recursive calculation scheme for Equa-
tion (20) can be devised by defining a recursive variable αi
which minimizes the variables of a given frame as a function
of the reach variables before it as follows:

αi(X i
−) = min

xi;yi,1,...,yi,Mi

[
Mi

∑
l=1

U(xi,yi,l) + ∑
c∈E i

D(xc,yc)

+ αi+1(X
(i+1)
−)

]
.

(24)

It is easy to see that Equation (24) is valid, if the follow-
ing lemma holds:

Lemma 1 Consider a general hyper-graph G = {V ,E }
with no specific restrictions on the graphical structure. Con-
sider the sets of discrete variables X i

−, each set being asso-
ciated to a frame i. Then, the following relation holds:

X i+1
− ⊆

(
X i
−∪{xi;yi,1, . . . ,yi,Mi}

)
(25)

Proof — The left hand side and the right hand side of Equa-
tion (25) involve edges from the two sets R i+1 and R i. From
Equation (21), we can see that the only triangles which are
part of R i+1 and which are not part of R i are the ones whose
lowest temporal coordinate is i. The question is whether
any variables of these triangles may be in X

(i+1)
− but not

in (X i
−∪{xi;yi,1, . . . ,yi,Mi}). From Equation (23), since we

get that no variables from frames later than i are part of X i
−,

this concerns only variables from frame i itself, which are
explicitly included in the right hand side of Equation (25).
�

Fast Exact Hyper-Graph Matching with Dynamic Programming for Spatio-Temporal Data 17

Illustrative example of the recursion scheme. Figure 6
is a simple example illustrating how the recursion scheme
works. The vertical blue bars correspond to the frame in-
stances. Our model graph assumes five frame variables xi,
each associated with one or more node variables yi,l . The re-
cursion starts from the last frame i = 5 where we define the
respective reach variable and the assignment variable sets as
R5 = {(x3,x4,x5)}, X 5 = {(x3,y3,1),(x4,y4,1),(x5,y5,1)}
and X 5

− = {(x3,y3,1),(x4,y4,1)}. Thus, we obtain

α5(X
5
−) = min

x5,y5,1

[
U(x5,y5,1)+D(x3,y3,1,x4,y4,1,x5,y5,1)

]
.

And the recursion continues as follows: For
i = 4, we can set R4 = {(x2,x3,x4),(x3,x4,x5)},
X 4 = {(x2,y2,1),(x3,y3,1),(x4,y4,1),(x5,y5,1)} and
X 4
− = {(x2,y2,1),(x3,y3,1)}, the recursion iterates by

calculating α4 from α5 as below

α4(X
4
−) = min

x4,y4,1

[
U(x4,y4,1)

+ D(x2,y2,1,x3,y3,1,x4,y4,1)+α5(X
5
−)

]
.

Finally, for i = 3, we obtain

α3(X
3
−) = min

x3,y3,1

[
U(x3,y3,1)+D(x1,y1,1,x2,y2,1,x3,y3,1)

+ D(x2,y2,2,x2,y2,3,x3,y3,1)+α4(X
4
−)

]
,

where R3 = {(x1,x2,x3),(x2,x3,x4),(x3,x4,x5)},
X 3 = {(x1,y1,1),(x2,y2,1:3), ..,(x5,y5,1)} and X 3

− =

{(x1,y1,1),(x2,y2,1:3)}. Note that we can write these rela-
tions because Equation (25) is always satisfied.

B.1 Computational Complexity
The recursion starts at the last frame i = M and iterates by
calculating αi from αi+1. At each step, a minimum is cal-
culated over all variables of frame i for all possible values
of the variables in X i

−. The computational complexity can
thus be bounded by the maximum number of variables x
and y in (X i

− ∪{xi;yi,1, . . . ,yi,Mi}), which are denoted by
|X i∗

x |,|X i∗
y | in the following expression:

O
(

M·S|X
i∗

x |·R|X i∗
y |
)

(26)

where M and S are the number of model and scene frames,
R is the maximum number of nodes per frame in the scene
sequence. The complexity is thus very much lower than the
complexity of the brute force approach, which is given by
O(MSM|E |). Let us recall that S is the total number of nodes
in the scene and M is the total number of nodes in the

model, i.e. S� S and S� R. Furthermore, both |X i
x | and

|X i
y | are bounded and in fact quite small when the graph is

constructed from proximity constraints. This concludes the
proof of Theorem 1. However, for general graphs, it is still
too high for practical usage. In Section 3.1, we therefore in-
troduce an approximation to the graphical structure which
further decreases complexity.

References

1. A. Albarelli, F. Bergamasco, L. Rossi, S. Vascon, and A. Torsello.
A stable graph-based representation for object recognition through
high-order matching. In International Conference on Pattern
Recognition, pages 3341–3344, 2012.

2. M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt.
Spatio-Temporal Convolutional Sparse Auto-Encoder for Se-
quence Classification. In British Machine Vision Conference
(BMVC), pages 124.1–124.1, Sept. 2012.

3. S. Belongie, J. Malik, and J. Puzicha. Matching shapes. In Pro-
ceedings of the Eighth IEEE International Conference on Com-
puter Vision, pages 454–461, 2001.

4. A. C. Berg, T. L. Berg, and J. Malik. Shape matching and ob-
ject recognition using low distortion correspondences. In IEEE
Conference on Computer Vision and Pattern Recognition, pages
26–33, 2005.

5. M. Bergtholdt, J. Kappes, S. Schmidt, and C. Schnörr. A Study
of Parts-Based Object Class Detection Using Complete Graphs.
International Journal of Computer Vision, 87(1-2):93–117, 2010.

6. P. Bilinski and F. Bremond. Statistics of pairwise co-occurring
local spatio-temporal features for human action recognition. In
Proceedings of the 4th International Workshop on Video Event
Categorization, Tagging and Retrieval, in conjunction with 12th
European Conference on Computer Vision, volume 7583, pages
311–320, 2012.

7. E. Z. Borzeshi, M. Piccardi, and R. Y. D. Xu. A discriminative
prototype selection approach for graph embedding in human ac-
tion recognition. In IEEE International Conference on, Computer
Vision Workshops, pages 1295–1301, 2011.

8. L. Bourdev and J. Malik. Poselets: Body part detectors trained
using 3d human pose annotations. In IEEE 12th International
Conference on Computer Vision, pages 1365–1372, 2009.

9. M. Bregonzio, S. Gong, and T. Xiang. Recognising action as
clouds of space-time interest points. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1948–1955, 2009.

10. W. Brendel and S. Todorovic. Learning spatiotemporal graphs of
human activities. In IEEE International Conference on Computer
Vision, 2011.

11. T. S. Caetano, T. Caelli, D. Schuurmans, and D. A. C. Barone.
Graphical models and point pattern matching. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 28(10):1646–1663,
2006.

12. O. Çeliktutan, C. B. Akgül, C. Wolf, and B. Sankur. Graph-
Based Analysis of Physical Exercise Actions. In ACM Multimedia
Workshop on Multimedia Indexing and Information Retrieval for
Healthcare, pages 23–32, 2013.

13. P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recog-
nition via sparse spatio-temporal features. In VS-PETS Workshop
at the IEEE International Conference on Computer Vision, 2005.

14. O. Duchenne, F. R. Bach, I.-S. Kweon, and J. Ponce. A tensor-
based algorithm for high-order graph matching. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 1980–
1987, 2009.

15. O. Duchenne, A. Joulin, and J. Ponce. A graph-matching kernel
for object categorization. In IEEE International Conference on
Computer Vision, 2011.

18 Oya Çeliktutan et al.

1 2 3 4 5

α5(x3,x4) = min
x5

[U(x5)+D(x3,x4,x5)]

1 2 3 4 5

α4(x2,x3) = min
x4

[U(x4)+D(x2,x3,x4)+α5(x3,x4)]

1 2 3 4 5

α3(x1,x2) = min
x3

[U(z3)+D(x1,x2,x3)+D(x2,x2,x3)+α4(x2,x3)]

α2(x1) = min
x2

[U(x2)+α3(x1,x2)]

E(x) = min
x1

[U(x1)+α2(x1)]

Fig. 6 An example hyper-graph. Vertical blue bars correspond to the frames. The recursion starts from the last frame i = 5 and iterates by
calculating αi from αi+1 where the evolution of the iteration is illustrated with solid lines. For simplicity, node variables yi,l are absorbed into the
frame variables xi. At each step, a minimum is calculated over all variables of frame i for all possible values of the variables in X i

−.

16. P. F. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan.
Object detection with discriminatively trained part-based models.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
32(9):1627–1645, 2010.

17. P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures
for object recognition. International Journal of Computer Vision,
61(1):55–79, 2005.

18. Z. Gao, M. Y. Chen, A. Hauptmann, and A. Cai. Comparing eval-
uation protocols on the kth dataset. In Human Behavior Under-
standing, volume LNCS 6219, pages 88–100, 2010.

19. M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

20. U. Gaur, Y. Zhu, B. Song, and A. Roy-Chowdhury. A string of fea-
ture graphs model for recognition of complex activities in natural
videos. In IEEE International Conference on Computer Vision,
pages 2595–2602, 2011.

21. C. Harris and M. Stephens. A combined corner and edge detector.
In Alvey Vision Conference, 1988.

22. Z. Jiang, Z. Lin, and L. Davis. Recognizing human actions by
learning and matching shape-motion prototype trees. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 34(3):533–
547, 2012.

23. P. A. Knight. The sinkhorn-knopp algorithm: Convergence and
applications. SIAM Journal on Matrix Analysis and Applications,
30(1):261–275, 2008.

24. KTH. Recognition of human actions. http://www.nada.
kth.se/cvap/actions/. accessed at July 2013.

25. I. Laptev. On space-time interest points. International Journal of
Computer Vision, 64(2-3):107–123, 2005.

26. I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learn-
ing realistic human actions from movies. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–8, 2008.

Fast Exact Hyper-Graph Matching with Dynamic Programming for Spatio-Temporal Data 19

27. S. L. Lauritzen and D. J. Spiegelhalter. Local computations with
probabilities on graphical structures and their application to ex-
pert systems. Journal of the Royal Statistical Society. Series B
(Methodological), 50(2):157–224, 1988.

28. J. Lee, M. Cho, and K. M. Lee. Hyper-graph matching via
reweighted random walks. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2011.

29. J. K. Lee, J. Oh, and S. Hwang. Clustering of video objects by
graph matching. In IEEE International Conference on Multimedia
and Expo, pages 394–397, 2005.

30. M. Leordeanu and M. Hebert. A spectral technique for correspon-
dence problems using pairwise constraints. In IEEE International
Conference on Computer Vision, pages 1482–1489, 2005.

31. M. Leordeanu, A. Zanfir, and C. Sminchisescu. Semi-supervised
learning and optimization for hypergraph matching. In IEEE In-
ternational Conference on Computer Vision, 2011.

32. W. Q. Li, Z. Y. Zhang, and Z. C. Liu. Action recognition based
on a bag of 3d points. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops, pages 9–14,
2010.

33. L. Lin, K. Zeng, X. Liu, and S. C. Zhu. Layered graph matching
by composite cluster sampling with collaborative and competitive
interactions. IEEE Conference on Computer Vision and Pattern
Recognition, pages 1351–1358, 2009.

34. J. Liu, S. Ali, and M. Shah. Recognizing human actions using
multiple features. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–8, 2008.

35. D. Lowe. Distinctive image features from scale-invariant features.
International Journal of Computer Vision, 60(2):91–110, 2004.

36. F. Lv and R. Nevatia. Single view human action recognition using
key pose matching and viterbi path searching. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 1–8, 2007.

37. Microsoft. Introducing kinect for xbox 360. http://www.
xbox.com/en-US/kinect. accessed at July 2013.

38. K. Mikolajczyk and H. Uemura. Action Recognition with Appear-
ance Motion Features and Fast Search Trees. Computer Vision and
Image Understanding, 115(3):426–438, 2011.

39. F. Negin, F. Özdemir, C. B. Akgül, K. A. Yüksel, and A. Erçil. A
decision forest based feature selection framework for action recog-
nition from rgb-depth cameras. In Image Analysis and Recogni-
tion, volume 7950 of Lecture Notes in Computer Science, pages
648–657. 2013.

40. P. Pudil, F. J. Ferri, J. Novovicov, and J. Kittler. Floating search
methods for feature selection with nonmonotonic criterion func-
tions. In International Conference on Pattern Recognition, vol-
ume 2, pages 279–283, 1994.

41. K. Raja, I. Laptev, P. Perez, and L. Oisel. Joint pose estimation
and action recognition in image graphs. In IEEE International
Conference on Image Processing, pages 25–28, 2011.

42. M. S. Ryoo and J. K. Aggarwal. Spatio-temporal relationship
match: Video structure comparison for recognition of complex hu-
man activities. In IEEE 12th International Conference on Com-
puter Vision, pages 1593–1600, 2009.

43. S. Savarese, A. Delpozo, J. Niebles, and L. Fei-Fei. Spatial-
temporal correlatons for unsupervised action classification. In In
IEEE Workshop on Motion and Video Computing, 2008.

44. C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions:
A local svm approach. In International Conference on Pattern
Recognition, pages 32–36, 2004.

45. P. Scovanner, S. Ali, and M. Shah. A 3d sift descriptor and its
application to action recognition. In International Conference on
ACM Multimedia, pages 357–360, 2007.

46. J. C. A. Sharma, R. Horaud, and E. Boyer. Topologically robust
3d shape matching based on diffusion geometry and seed growing.
In IEEE Conference on Computer Vision and Pattern Recognition,
pages 2481–2488, 2011.

47. J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, and A. Blake. Real-time human pose recognition in
parts from single depth images. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 1297–1304, 2011.

48. A. P. Ta, C. Wolf, G. Lavoue, and A. Başkurt. Recognizing and
localizing individual activities through graph matching. In Sev-
enth IEEE International Conference on Advanced Video and Sig-
nal Based Surveillance, pages 196–203, 2010.

49. A. P. Ta, C. Wolf, G. Lavoue, A. Başkurt, and J. M. Jolion. Pair-
wise features for human action recognition. In International Con-
ference on Pattern Recognition, pages 3224–3227, 2010.

50. C. J. Taylor. Reconstruction of articulated objects from point cor-
respondences in a single uncalibrated image. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 677–
684, 2000.

51. N. Thome, D. Merad, and S. Miguet. Human body labeling and
tracking using graph matching theory. In IEEE International Con-
ference on Video and Signal Based Surveillance, 2006.

52. L. Torresani, V. Kolmogorov, and C. Rother. Feature correspon-
dence via graph matching: Models and global optimization. In
Proceedings of the European Conference of Computer Vision,
pages 596–609, 2008.

53. V. Venkataraman, P. Turaga, N. Lehrer, M. Baran, T. Rikakis, and
S. L. Wolf. Attractor-shape for dynamical analysis of human
movement: Applications in stroke rehabilitation and action recog-
nition. In International Workshop on Human Activity Understand-
ing from 3D data, 2013.

54. J. Wang, Z. Liu, Y. Wu, and J. Yuan. Mining actionlet ensemble
for action recognition with depth cameras. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 1290–1297,
2012.

55. B. Yao and L. Fei-Fei. Action recognition with exemplar based
2.5d graph matching. In Proceedings of the European Conference
on Computer Vision, 2012.

56. S. Yi and V. Pavlovic. Sparse granger causality graphs for hu-
man action classification. In International Conference on Pattern
Recognition, pages 3374–3377, 2012.

57. Y. Yuan, H. Zheng, Z. Li, and D. Zhang. Video action recognition
with spatio-temporal graph embedding and spline modeling. In
IEEE International Conference on Acoustics Speech and Signal
Processing, pages 2422–2425, 2010.

58. M. Zaslavskiy, F. Bach, and J. P. Vert. A path following algorithm
for the graph matching problem. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 31(12):2227–2242, 2009.

59. R. Zass and A. Shashua. Probabilistic graph and hypergraph
matching. In IEEE Conference on Computer Vision and Pattern
Recognition, 2008.

60. D. Zheng, H. Xiong, and Y. F. Zheng. A structured learning-based
graph matching for dynamic multiple object tracking. In IEEE
International Conference on Image Processing, pages 2333–2336,
2011.

