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Abstract

We consider the solution of the single commodity strictly convex

network flow problem in a distributed asynchronous computation environment.

The dual of this problem is unconstrained, differentiable, and well suited

for solution via Gauss-Seidel relaxation. We show that the structure of

the dual allows the successful application of a distributed asynchronous

method whereby relaxation iterations are carried out in parallel by several

processors in arbitrary order and with arbitrarily large interprocessor com-

munication delays.
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1. Introduction

Consider a directed graph with set of nodes N and set of arcs A. Each

arc (i,j) has associated with it a cost function gij: R+(--,+-]. We denote

by f.. the flow of the arc (i,j) and consider the problem of minimizing total

cost subject to a conservation of flow constraint at each node

minimize g (fi ) (1)
(i,j)EA 3 13

subject to mi - f. = 0, ViEN.

(m,i)EA (i,j)EA

We assume that problem (1) has at least one feasible solution.

We also make the following standing assumptions on gij:

a) gij is strictly convex, and lower semicontinuous.

b) The conjugate convex function of gij, defined by

gj (tij) = sup {t.f - gj(fi )}, (2)
f3 . 1 ij i j gij ij

1]

is real valued, i.e. -a <gj (tij)< - for all real tij. (Because of the
13 1] 1]

strict convexity assumed in a) above, gj. is also continuously differentiable
1J

and its gradient denoted Vgj (t. .) is the unique f. attaining the supremum
13j 13 13

in (2)--see [7], pp. 218,253).

It is easily seen from (2) that Assumption b) implies that

lim g .(f )=- . Therefore the objective function of the primal problem (1)

Ifiji Z1] 1]

has bounded level sets ([7], Section 8). It follows that there exists an

optimal solution for problem (1) which must be unique in view of the strict

convexity assumed in a).

The problem above is of great practical interest and has been studied for

a long time. Except for strict convexity our assumptions are not overly

restrictive. For example they are satisfied in the following two cases:
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1) The constrained case where gj is of the form

co if f ij i[k ij'cij ]

gi~ (f IT^) = 13(3)
gijfij) gj(f ij) otherwise

where kij and cij are given lower and upper bounds on the arc flow, and gij

is a strictly convex, real valued function defined on the real line R.

2) The unconstrained case where gij is strictly convex, real valued and

its right and left derivatives gij and gij satisfy

lim gij (fij) lim gij(fij) = -". (4)
f .. Xo f.. + -00
13 13

A dual problem for (1) is given by

minimize q(p)

subject to no constraints on the vector p = {piieN}, (5)

where q is the dual functional given by

q(p) = *.(pi-p). (6)
(ij)EA 1 

We refer to p as a price vector and its components Pi as prices. The ith

price is really a Lagrange multiplier associated with the ith conservation

of flow constraint. The duality between problems (1) and (5) is well known

and is explored in great detail in the recent book by Rockafellar [1]. The

earlier book by Rockafellar [7] gives the necessary and sufficient condition

for optimality of a pair (f,p). A feasible flow vector f = {fij.(i,j)eA} is

optimal for (1) and a price vector p = {pili£NI is optimal for (5) if and
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only if for all arcs (i,j) ([7], pp. 337-338)

pi-Pj is a subgradient of gij at fij.

An equivalent condition is

f.gij = Vg(pi-pj), ¥ (i,j)mA. (7)

Any one of these equivalent relations is referred to.as the complementary

slackness condition, and is shown in Figure 1.



slope -1 slope = I

fij -1 1 Pi -Pj

P'1i pj slope = 1

fij

slope= I

Figure 1: Complementary slackness condition diagram for cost function

gij(fij ) = fijl + I (fij)2
ij ij 2j ij
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Since the dual problem is unconstrained and differentiable it is

natural to consider algorithmic solution by a descent iterative method.

The Gauss-Seidel relaxation method is particularly interesting in this respect

since it admits a simple implementation. Given a price vector p, a node i is

selected and its price Pi is changed (relaxed) to a value Pi such that

Vg* (p ) = Vg.j (pi-pj (8)
(m,i)EA mi m i (i,j)EA 1] 1

It is easily seen (compare with the definition (6) of the dual cost q) that

this equation is equivalent to q =0, so the dual cost is minimized at Pi

with respect to the ith price, all other prices being kept constant. The

algorithm proceeds by relaxing the prices of all nodes in cyclic order and

repeating the process. The convergence of this algorithm does not follow

immediately from standard results on relaxation methods [2], [3], [4] since

these results require some assumption that is akin to strict convexity of the

dual objective function which does not hold here (for a counterexample see Powell

[5]). However Cottle and Pang [6] have shown convergence of a network algorithm

based on relaxation. It applies to transportation problems with quadratic cost

function, and involves certain restrictions in the way relaxation is carried out.

Their results is substantially extended in Bertsekas, Hossein, and Tseng [19].

Our main objective in this paper is to explore the convergence

properties of distributed versionsof the relaxation method just described.

Here we assume that each price pi is under the control of a separate

processor who changes Pi to Pi on the basis of (8) and communicates the

new value to the other processors. One can consider a parallel computation

procedure carried out in an orderly manner whereby all processors exchange
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their current prices before carrying out their relaxation iteration. Math-

ematically this would be equivalent to a Jacobi type of relaxation procedure.

We would like to consider, however, a much more general procedure whereby the

communication between processors is not regular, and the information available

at some processors regarding prices of other processors may be arbitrarily out-

of-date. In addition we allow some processors to iterate more frequently than

others. Models of such asynchronous algorithms have been formulated some time

ago and by now there is considerable understanding of their convergence prop-

erties (see [8]-[16]; [17] is a survey). It turns out that the dual problem (5)

has structure that allows us to show that the asynchronous relaxation method has

satisfactory convergence properties. This is particularly true when the dual

problem (5) has an essentially unique optimal solution. Otherwise satisfactory

convergence depends on the starting point. These results are all new and are

shown in Section 3. The next section analyzeSthe structure of the dual solution

set and provides some preliminary analysis.

The results of this paper carry over verbatim to the case where the conserva-

tion of flow constraint has the form

I fmi - f. =b , ViN
(m,i)£A (i,j)EA

where bi are given scalars with I bi=0. The dual cost of (6) must then include

~~iENthe term I b.p., and the relaxation equation (8) must include an additional
iN I I

term bi in its right side. This extension is important from the practical point

of view, but we have restricted attention to the case where b.=O, ViSN in order to
1

simplify notation.

The results of this paper can also be extended in a simple manner to network

problems with positive gains and strictly convex arc costs. This extension was
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mentioned to us by P. Tseng who also showed [20] two additional interesting facts.

First that Proposition 2 holds even if the strict convexity assumption of

a) is removed thereby including the important class of linear minimum cost flow

problems. Second that, within the class of monotropic programming problems,

the largest class for which the monotonicity property of Proposition 1 holds is

the class of network flow problems with positive gains.

Our notational conventions are that a subscript denotes a node or pro-

cessor index, and a superscript denotes a time or iteration index. All vector

inequalities should be interpreted in a coordinatewise sense. In order to

simplify notation we have implicitly assumed that there is at most one arc

associated with any ordered pair of nodes i and j, so that the arc notation

(i,j) has unambiguous meaning. However this assumption is not essential to any

of our results.



2. Structure of the Optimal Dual Solution Set

Our standing assumptions a),b) guarantee that the primal problem (1) has

a unique optimal solution. Existence of an optimal solution of the dual problem

can be guaranteed under an additional (mild) regular feasibility assumption in

which case the existence theorem of [1], p. 360 applies. On the other hand the

optimal solution of the dual problem is never unique since adding the same con-

stant to all coordinates of a price vector p leaves the dual cost unaffected.

We can remove this degree of freedom by constraining the price of one node, say

node N, to be zero. (With slight abuse of notation we number nodes as 1,2,...,N).

Thus we consider the reduced dual optimal solution set P* defined by

P*= {p*jq(p*) = min q(p), PN* = 0} (9)
N

p

where q is the dual objective function

q(p) = E gj (Pi-Pj) . (10)
(i,j)EA

For the most part of the paper, we will operate under the following

assumption:

Assumption 1: The reduced dual optimal solution set P* is nonempty and compact.

Assumption 1 is not overly restrictive. For example let {f jl(i,j)EA} be
13

the unique primal optimal solution, and consider the set of arcs

A = {(i,j) f*. lies in the interior of the set {fij gijg (fij)<o}} (11)
1] 13 1]7 1J

Then Assumption 1 is satisfied if the subgraph (N,A) is connected. To see

this note that for all arcs (i,j)EA we have a bounded set of subgradients
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of gij at fi. thereby implying a bounded set of price differences Pi-Pj

corresponding to dual optimal solutions [cf. (6)]. Note that in the un-

constrained case mentioned in the previous section every arc belongs to A

so, if the original graph is connected, Assumption 1 is satisfied. The con-

strained case of the previous section can be converted to the unconstrained

case by replacing constraints by nondifferentiable penalty functions (see [18],

Section 5.5). For example, assuming a dual optimal solution exists, a constraint

f.. > 0 can be eliminated by adding to the cost gij a penalty
1] --

c max{0,-f .. } + [max{0O,-f. i}] with c positive and sufficiently large.

Consider now the set

P = I = 0{ppN (12)

and for i=l,...,N-l, the point-to-set mapping Ri which assigns to a price

vector pcP the set of all prices Pi that minimize the dual cost along the

ith price starting from p, i.e. (cf. (8)).

R.(p) = {p.j P.= P' l . (13)
) = pil mi Vg*(Pi) gj (pij)} (13)

m j

It is well known that a real valued convex function having one compact level

set, has all its level sets compact ([7], p.70). Therefore under Assumption 1

the sets Ri(p), pEP are all nonempty, compact intervals. It follows that

under Assumption 1 the (point-to-point) mappings

Ri(p) = ^ max Pi (14)

Pi Ri (P)

Ri (p) = min Pi (15)

PiERi (p)
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are well defined on the set P. We call R. (Ri) the ith maximal (minimal)
1 -1

relaxation mapping. It gives the maximal (minimal) minimizing point of the

dual cost along the ith coordinate starting from its argument. The point-to-

set mapping R. is called the ith relaxation mapping.

Some key facts are given in the following proposition.

Proposition 1: Let Assumption 1 hold. The mappings Ri and R.i are

continuous on P. They are also monotone on P in the sense that for any

p, p'£P, i = 1,...,N-1 we have

R.(p) < R (p') if p < p', (16)
1 - 1

R.(p) < P. (p') if p < p'. (17)

Proof: To show continuity of R. we argue by contradiction. Suppose

there exists a convergent price vector sequence pk + p such that the cor-

responding sequence {Ri (p )} does not converge to Ri(p). By passing to a

subsequence if necessary suppose that for some 6 > 0 we have

Ri (p) > R(p) + 6 y k (18)

(the proof is very similar if 6 < 0 and the inequality is reversed). By

the definition of R. we have
1

Vgmi(Pm-R.(P)) = Vg)j(Ri(P)-Pj), (19)
m j

m g3=p-Rgk(20)
m M ii 1 j



Since p + p it follows using (18) that for sufficiently large k we have

k k
Pm-Ri(pk) > Pm-Ri(p) V (m,i)eA

1 1 m 1R(p )-pj < Ri(p)-p. V (i,j)£A.

Therefore for sufficiently large k we have using the convexity of g*i, g*gmin ij

Vgi(Pm-Ri(P ()) VV (m,i)pA,

- k k
gij (Ri(p )-pj) < Vgij(Ri(p)-pj), V (i,j)cA.1 - 131ij(Ri p-pj)

Using these relations together with (19), (20) we obtain for all sufficiently

large k

A k- k
mi ,Vg .(p -Rj(p)) = Vgi(pm~-Ri(p )), V (m,i)cA (21)

A k k
f.. = Vgi(R i(p)-pj) = Vgj(R(p )-p), (i,j)A. (22)

13ij1i 3 13 p 3

Consider the intervals Imi and Iij given by

Imi = {tl Vgi(t) = mi , V (m,i)eA

I.j = {t| Vg j(t) =f} (i,j)EA.

For k sufficiently large so that (21), (22) hold we have

R.i(p) = max{pilpi c Pm-Imi, (m,i) £A, PiFiij-pj, (i,j)cA}

-- ̂ .£ k A k
R.i(p ) = max^p ji Pp k , (m,i)EA, Pi Iij-P (i,j)cA}
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Since p - p, it is evident from these relations that Ri(pk) - R.(p) thereby

contradicting (18).

To show monotonicity of Ri we again argue by contradiction. Suppose

there exist p and p' such that pj > pj, V j=l,...,N-l but

Ki(P) > Ri(p' ) . It follows then that

PRi (P') > Pm i (P) V (m,i)£A

R.i(p')-p' < R.(p)-p, V (i,j)eA.

Therefore

Vgm(P'-R (P')) > Vg* i(m-Rp (p)), V (m,i)EA (23)
miPm i 1

Vgj (Ri(P')-p!) < Vg'j(Ri(p)-pj) V (i,j)cA (24)

Since by definition we have

Vg* (PM (P')) = g(R(Pt )-') (25)
mi m 1 ij(Ri -P

m 1

C Vgmi(Pm-R.(p)) Vgj (R (P) Pj) (26)
m 3

it follows that equality holds in (23), (24), i.e.

A
f = Vg* (Pm-Ri(PI)) Vg*(p R(p))

f i =Vmi m i (Pmi m 

fij = Vgij(R i (p')- j) = Vgij (Ri(P)-p j)13 13 1 31 
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Consider the intervals

Imi = {t Vg* (t) = fi }
m g mi

I.. = {t Vge (t) fi
13 i 13

and let

6 = R.(p) - R.(p').1 1

We have for all (m,i)eA

Pm i ( p ) £ Imi' Pm - Ri (p) Imi

and since p < 'p we obtain
in- m

P R. (p) < ' - R.(p') - 6 < Pm - (p')

Therefore

p' - R.(p') I 6 V (m,i)£A-m 1 'Imi'

and similarly

R.i(P') + 6 - pj £ V (i,j)sA.

It follows that

Ri(P') + 6£ Ri(P')

thereby contradicting the maximal nature of Ri [cf. (14)].

The proof of continuity and monotonicity of R. is analogous with the
--1.
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one just given for Ri and is omitted Q.E.D.

The monotonicity and continuity of the mappings Ri and R.i imply a thus

far unreported and somewhat surprising property of the optimal dual solution set.

Proposition 2: Let Assumption 1 hold. Thereexist a maximal and a minimal

optimal solution of the dual problem, i.e. there exist peP* and peP* such

that

p < p < p, VpeP* . (27)

Proof: Since P* is nonempty and compact it contains a noninferior element

p for which there is no vector pEP* such that p 7 p and pi > Pi for all

i. From the definition of Ri and the optimality of p we have Pi < Ri(p) for

all i. Furthermore for all i the vector (pl,-...Pi l,Ri(p),Pi+l -,,pN

belongs to P* so from noninferiority of p it follows that Ri (p)< p..

Therefore we have Pi = Ri (p) for all i. Let now p be a price vector obtained

from p according to

Pi + 6{Pi ± 6 , i=l,... ,N-1

~PiN=
0O i=N,

where 6> 0 is sufficiently large so that

p > p, VpCP* (28)
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It is easily seen that we have Ri(p) < Pi, for all i so, using the

monotonicity of Ri shown in Proposition 1, we obtain

k+l -1
p< R (p) < R (p) V k (29)

where R: RN- 1 + RN- 1 is the mapping

R(p) = [R1 (p),..,R N_1(p)] (30)

and R is the composition of R with itself k times. From (29) we see that

the sequence R (p) converges to some p and by continuity of R we must have
A A A A A A

p = R(p) as well as p > p. Since p = R(p) implies that pep* it follows

from the choice of p that p - p. Also from (28), (29) and the fact

p < R(p) for all peP* we obtain p = p > p for all peP* which shows that

p is a maximal element of P*. The proof for existence of a minimal

element p is entirely similar. Q.E.D.
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3. Convergence Analysis of Asynchronous Relaxation

The model of distributed asynchronous computation we adopt is described

in [11], [12]. With each node i = 1,...,N-l we associate a processor that

computes from time to time some element of Ri(p) (here p is the latest

price vector available to processor i),and sets the price Pi to this

element. This price is then communicated at some later time to all other

processors. Computation and communication at the various

processors need not be synchronized. The precise model is as follows:

At each time instant, node i can be in one of three possible states

compute, transmit, or idle. In the compute state node i computes a new

price Pi. In the transmit state node i communicates the price Pi obtained

from its own latest computation to one or more nodes m(mfi). In the idle

state node i does nothing related to the solution of the problem.

We assume that computation and transmission for each node takes place

in time intervals [tl,t 2] with t1 < t2, but do not exclude the

possibility that a node may be simultaneously transmitting to more than one

node nor do we assume that the transmission intervals to these nodes have

the same origin and/or termination. We also make no assumptions on the

length, timing and sequencing of computation and transmission intervals

other than the following:

Assumption 2: For every node i and time t > 0 there exists a time t' > t

such that [t,t'] contains at least one computation interval for i and

at least one transmission interval from i to each node m such that (m,i)cA

or (i,m)eA.

Assumption 2 is very natural. It states in essence that no node

"drops out of the algorithm" permanently--perhaps due to a hardware failure.

Without this assumption there is hardly anything we can hope to prove.



-17-

Each node i has a buffer Bim for each mii where it stores the

latest transmission from m, as well as a buffer B.. where it stores its

own price estimate Pi. The contents for each buffer Bim at time t are

t t
denoted pt(i). Thus pm(i) is, for every t, i and m an estimate of the

price Pm available at node i at time t. It is important to realize in

t t
what follows that the buffer contents pm(i), and pt(i') at two different

nodes i and i' need not coincide at all times. If ism and i', m the

buffer contents pt(i), and pt(i') need not coincide at any time t. The

vector of all buffer contents of node i is denoted pt(i), i.e.,

tpt(i) t m

The rules according to which the buffer contents pm(i) are updated are

as follows:

(1) If [tl,t 2] is a transmission interval from node m to node i, the

contents of the buffer Bmm at time tl are transmitted and entered in the

buffer B. at time t2, i.e.

t2 t
2 1

P(i) = Pm ( m). (31)

(2) If [tl,t 2] is a computation interval for node i, the content of

the buffer Bii is replaced at time t2 with an element of Ri (p (i)), i.e.

t 2 t 1

Pi (i) £ Ri( p (i)) (32)

(3) The contents of a buffer Bii can change only at the end of a

computation interval for node i. The contents of a buffer Bim, iim can

change only at the end of a transmission interval from m to i.



The algorithm based on (32) will be called Asynchronous Relaxation

Method (ARM).

Our objective is to derive conditions under which limit points of

the sequences {pt(i)} are optimal solutions of the dual problem (5). The

following proposition is our main result. The proof is based on a gen-

eral convergence theorem given in [12] (see also [17]) and applicable to

asynchronous iterative algorithms such as the one just described. The key

property that makes asynchronous convergence possible is the monotonicity

of the mappings Ri and Ri shown in Proposition 1. This property is also

present in dynamic programming models and has been similarly exploited

to show the validity of asynchronous versions of the successive approximation

method [11].

Proposition 3: Let Assumptions 1 and 2 hold. For any initial buffer

contents p (i) P, i = 1,...,N-1, each limit point of the sequences

fpt(i)} generated by the ARM belongs to the set

= p p < p < (33)

where p and p are the maximal and minimal dual optimal solutions. In

particular, if the reduced dual optimal solution set P* consists of a

unique vector p* we have

lim pt(i) = p* , i = 1,...,N-l. (34)
t-oM

Proof: Let p, p e P be price vectors such that

p < p (i) < p i = ,...,N-l

and such that
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p < R(p) < p < p < R(p) < p,

lim R (p) = p , im R (p) = p.
k- co k4o

(The existence of such vectors was established in the proof of Proposition

2). Consider the sets

-k k
P = p R (p) < p < R (p)} , k = 1,2,... (35)

Note that the sequence P -} is nested and that the common intersection of

the sequence is the set P of (33).

We will apply now a convergence theorem given in Section 3 of [12]

(orProp. 3.1 of [17]). According to this theorem the desired result

will be proved if the following three conditions are satisfied. (Rather

than consulting the references just cited, the reader may wish to think

through the proof of this since it is rather simple).

a) If peP then for every i the vector p' with coordinates

t p. if j i

Ri(p) if j = i

(cf. the equation (32) associated with computation at node i), also belongs

to P

--k -k
b) If pEP and paP then, for every i and m, the vector p' with coordinates

=j ifj m

Pj
P mif j = m

Pm
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(cf. equation (31) associated with transmission from node m to node i),

also belongs to P

c)
c) If p(l),...,p(N-l) belong to P then the vector p' with coordinates

p = R.(p(j)) , j = 1,...,N-1

pI = 0

(cf. a computation (32) at each node followed by a transmission to every

other node), belongs to Pk+l

It is easily seen that all the conditions stated above are satisfied

in our case so the desired conclusion follows. Q.E.D.

Proposition 3 shows that the ARM has satisfactory convergence when

P* has a unique element. One way to guarantee this is to consider the

optimal solution f* of the primal problem (1) and the set of arcs

A = {(i,j)eA i gij is differentiable at f*j}.

Then,if the graph (N,A) is connected,P* consists of a unique point in

view of the complementary slackness condition (7). In order to improve

the convergence properties when P* has more than one point it is necessary

to modify the ARM so that a computation at node i replaces Pi with R.(p)
1

(not just any element of Ri(p)). We call this the maximal ARM. If in

place of R. (p) we use R. (p) the resulting method is called the minimal ARM.
1 -- 1

Proposition 4: Let Assumptions 1 and 2 hold. Assume that the starting

buffer contents satisfy
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0
p(i) > p , i = 1,...,N- (36)

Then if {p (i)} is generated by the maximal ARM we have

t
lim p (i) = p , i = 1,...,N-l. (37)
t-co

Proof: The proof is identical to the one of Proposition 3 except that the

set P of (35) should be replaced by

P = {Pl P < P )}. Q.E.D.

There is a similar result for the minimal ARM whereby pis replaced

by p and condition (36) is replaced by p (i) < p for all i. The follow-

ing example demonstrates that the results of Proposition 3 and 4 cannot

be improved.

Example: Consider the 3-node network shown in Figure 2.

Figure 2

The arc costs are

g12 (f12 g23(f23)= (f1 2 3) g31(f31 ) 31 (f31

and the optimal primal solution is

f2 f: * f* 012 23 31
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The reduced dual optimal solution set is derived from condition (7) and is

given by

P* = P3 = 0, 1 -1 P2 < 1

The results of Proposition 3 and 4 are illustrated in Figure 3. To see that

the ARM as well as the maximal and minimal ARM may not converge to a dual

optimal solution, let the buffer contents of processors 1 and 2 be both

equal to (-1,1) and let both processors update the respective price co-

ordinates and then exchange the results of the computation. Then the buffer

contents will be (1,-1), and by repeating this process one more time the

buffer contents will become again (-1,1) thereby completing a cycle. There-

fore in general we cannot expect convergence of the ARM to the optimal

solution set if the latter contains more than one element. Similarly

the maximal and minimal ARM need not converge to p and p respectively

if the initial buffer contents do not belong to the appropriate regions

[cf. (36)]. Note that this counterexample applies also to a synchronous

Jacobi method.



P2 ' ,X Set of initial
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converges to P

1k<A~ '~" .Maximal
C/X~~~~ v/~ Solution 

i~/

Set to which the/ Reduced Dual
AR converges Optimal Solution
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Set of initial
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for which the Solution p
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Figure 3: Structure of the optimal solution set, and convergence
regions of the ARM, the maximal ARM, and the minimal ARM.
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