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DISTRIBUTED ASYNCHRONOUS RELAXATION METHODS FOR CONVEX NETWORK FLOW PROBLEMS by

We consider the solution of the single commodity strictly convex network flow problem in a distributed asynchronous computation environment.

The dual of this problem is unconstrained, differentiable, and well suited for solution via Gauss-Seidel relaxation. We show that the structure of the dual allows the successful application of a distributed asynchronous method whereby relaxation iterations are carried out in parallel by several processors in arbitrary order and with arbitrarily large interprocessor communication delays.

Introduction

Consider a directed graph with set of nodes N and set of arcs A. Each arc (i,j) has associated with it a cost function gij: R+(--,+-]. We denote by f.. the flow of the arc (i,j) and consider the problem of minimizing total cost subject to a conservation of flow constraint at each node minimize g (fi )

(1) (i,j)EA 3 13 subject to mi - f. = 0, ViEN. (m,i)EA (i,j)EA

We assume that problem (1) has at least one feasible solution.

We also make the following standing assumptions on gij: a) gij is strictly convex, and lower semicontinuous.

b)

The conjugate convex function of gij, defined by gj (tij) = sup {t.f gj(fi )}, (2) f3 .

1 ij i j gij ij 1]
is real valued, i.e.

-a <gj (tij)<for all real tij. (Because of the strict convexity assumed in a) above, gj. is also continuously differentiable
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and its gradient denoted Vgj (t. .) is the unique f. attaining the supremum 13j 13 13 in (2)--see [START_REF] Rockafellar | Convex Analysis[END_REF], pp. 218,253).

It is easily seen from ( 2) that Assumption b) implies that lim g .(f )=-. Therefore the objective function of the primal problem (1)
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has bounded level sets ( [START_REF] Rockafellar | Convex Analysis[END_REF], Section 8). It follows that there exists an optimal solution for problem [START_REF] Rockafellar | Network Flows and Monotropic Optimization[END_REF] which must be unique in view of the strict convexity assumed in a).

The problem above is of great practical interest and has been studied for a long time.

Except for strict convexity our assumptions are not overly restrictive.

For example they are satisfied in the following two cases:

1) The constrained case where gj is of the form

co if f ij i[k ij'cij ] gi~ (f IT^) = 13(3) gijfij) gj(f ij) otherwise
where kij and cij are given lower and upper bounds on the arc flow, and gij is a strictly convex, real valued function defined on the real line R.

2) The unconstrained case where gij is strictly convex, real valued and its right and left derivatives gij and gij satisfy

lim gij (fij) lim gij(fij) = -". (4 
) f .. Xo f.. + -00
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A dual problem for (1) is given by minimize q(p) subject to no constraints on the vector p = {piieN}, [START_REF] Powell | On Search Directions for Minimization Algorithms[END_REF] where q is the dual functional given by

q(p) = *.(pi-p). ( 6 
) (ij)EA 1
We refer to p as a price vector and its components Pi as prices. The ith price is really a Lagrange multiplier associated with the ith conservation of flow constraint. The duality between problems (1) and ( 5) is well known and is explored in great detail in the recent book by Rockafellar [START_REF] Rockafellar | Network Flows and Monotropic Optimization[END_REF]. The earlier book by Rockafellar [START_REF] Rockafellar | Convex Analysis[END_REF] gives the necessary and sufficient condition for optimality of a pair (f,p). A feasible flow vector f = {fij.(i,j)eA} is optimal for (1) and a price vector p = {pili£NI is optimal for (5) if and only if for all arcs (i,j) ( [START_REF] Rockafellar | Convex Analysis[END_REF], pp. 337-338) pi-Pj is a subgradient of gij at fij.

An equivalent condition is f.gij = Vg(pi-pj), ¥ (i,j)mA. ( 7 
)
Any one of these equivalent relations is referred to.as the complementary slackness condition, and is shown in Figure 1. 

gij(fij ) = fijl + I (fij)2 ij ij 2j ij
Since the dual problem is unconstrained and differentiable it is natural to consider algorithmic solution by a descent iterative method.

The Gauss-Seidel relaxation method is particularly interesting in this respect since it admits a simple implementation. Given a price vector p, a node i is selected and its price Pi is changed (relaxed) to a value Pi such that Vg* (p

) = Vg.j (pi-pj (8) (m,i)EA mi m i (i,j)EA 1] 1
It is easily seen (compare with the definition (6) of the dual cost q) that this equation is equivalent to q =0, so the dual cost is minimized at Pi with respect to the ith price, all other prices being kept constant. The algorithm proceeds by relaxing the prices of all nodes in cyclic order and repeating the process. The convergence of this algorithm does not follow immediately from standard results on relaxation methods [START_REF] Zangwill | Nonlinear Programming[END_REF], [START_REF] Sargent | On the Convergence of Sequential Minimization Algorithms[END_REF], [START_REF] Polak | Computational Methods in Optimization: A Unified Approach[END_REF] since these results require some assumption that is akin to strict convexity of the dual objective function which does not hold here (for a counterexample see Powell [START_REF] Powell | On Search Directions for Minimization Algorithms[END_REF]). However Cottle and Pang [START_REF] Cottle | On the Convergence of a Block Successive Overrelaxation Method for a Class of Linear Complementarity Problems[END_REF] have shown convergence of a network algorithm based on relaxation. It applies to transportation problems with quadratic cost function, and involves certain restrictions in the way relaxation is carried out.

Their results is substantially extended in Bertsekas, Hossein, and Tseng [START_REF] Bertsekas | Relaxation Methods for Network Flow Problems with Convex Arc Costs[END_REF].

Our main objective in this paper is to explore the convergence properties of distributed versionsof the relaxation method just described.

Here we assume that each price pi is under the control of a separate processor who changes Pi to Pi on the basis of (8) and communicates the new value to the other processors. One can consider a parallel computation procedure carried out in an orderly manner whereby all processors exchange their current prices before carrying out their relaxation iteration. Mathematically this would be equivalent to a Jacobi type of relaxation procedure.

We would like to consider, however, a much more general procedure whereby the communication between processors is not regular, and the information available at some processors regarding prices of other processors may be arbitrarily outof-date.

In addition we allow some processors to iterate more frequently than others. Models of such asynchronous algorithms have been formulated some time ago and by now there is considerable understanding of their convergence properties (see [START_REF] Chazan | Chaotic Relaxation[END_REF]- [START_REF] Authie | Distributed Asynchronous Iterative Control Algorithms, Optimal Routing Application[END_REF]; [START_REF] Bertsekas | Convergence Theories of Distributed Iterative Processes: A Survey[END_REF] is a survey). It turns out that the dual problem [START_REF] Powell | On Search Directions for Minimization Algorithms[END_REF] has structure that allows us to show that the asynchronous relaxation method has satisfactory convergence properties. This is particularly true when the dual problem ( 5) has an essentially unique optimal solution. Otherwise satisfactory convergence depends on the starting point.

These results are all new and are shown in Section 3. The next section analyzeSthe structure of the dual solution set and provides some preliminary analysis.

The results of this paper carry over verbatim to the case where the conservation of flow constraint has the form

I fmi - f. =b , ViN (m,i)£A (i,j)EA
where bi are given scalars with I bi=0.

The dual cost of ( 6 The results of this paper can also be extended in a simple manner to network problems with positive gains and strictly convex arc costs. This extension was mentioned to us by P. Tseng who also showed [START_REF] Tseng | Relaxation Methods for Monotropic Programming Problems[END_REF] two additional interesting facts.

First that Proposition 2 holds even if the strict convexity assumption of a) is removed thereby including the important class of linear minimum cost flow problems.

Second that, within the class of monotropic programming problems, the largest class for which the monotonicity property of Proposition 1 holds is the class of network flow problems with positive gains.

Our notational conventions are that a subscript denotes a node or processor index, and a superscript denotes a time or iteration index. All vector inequalities should be interpreted in a coordinatewise sense.

In order to simplify notation we have implicitly assumed that there is at most one arc associated with any ordered pair of nodes i and j, so that the arc notation (i,j) has unambiguous meaning. However this assumption is not essential to any of our results.

Structure of the Optimal Dual Solution Set

Our standing assumptions a),b) guarantee that the primal problem (1) has a unique optimal solution. Existence of an optimal solution of the dual problem can be guaranteed under an additional (mild) regular feasibility assumption in which case the existence theorem of [START_REF] Rockafellar | Network Flows and Monotropic Optimization[END_REF], p. 360 applies.

On the other hand the optimal solution of the dual problem is never unique since adding the same constant to all coordinates of a price vector p leaves the dual cost unaffected.

We can remove this degree of freedom by constraining the price of one node, say node N, to be zero.

(With slight abuse of notation we number nodes as 1,2,...,N).

Thus we consider the reduced dual optimal solution set P* defined by

P*= {p*jq(p*) = min q(p), PN* = 0} (9) N p
where q is the dual objective function

q(p) = E gj (Pi-Pj) . ( 10 
) (i,j)EA
For the most part of the paper, we will operate under the following assumption: Assumption 1:

The reduced dual optimal solution set P* is nonempty and compact.

Assumption 1 is not overly restrictive. For example let {f jl(i,j)EA} be 13 the unique primal optimal solution, and consider the set of arcs A = {(i,j) f*. lies in the interior of the set {fij gijg (fij)<o}} ( 11)
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Then Assumption 1 is satisfied if the subgraph (N,A) is connected.

To see this note that for all arcs (i,j)EA we have a bounded set of subgradients of gij at fi. thereby implying a bounded set of price differences Pi-Pj corresponding to dual optimal solutions [cf. [START_REF] Cottle | On the Convergence of a Block Successive Overrelaxation Method for a Class of Linear Complementarity Problems[END_REF]].

Note that in the unconstrained case mentioned in the previous section every arc belongs to A so, if the original graph is connected, Assumption 1 is satisfied. The constrained case of the previous section can be converted to the unconstrained case by replacing constraints by nondifferentiable penalty functions (see [START_REF] Bertsekas | Constrained Optimization and Lagrange Multiplier Methods[END_REF],

Section 5.5).

For example, assuming a dual optimal solution exists, a constraint f.. > 0 can be eliminated by adding to the cost gij a penalty 1] -c max{0,-f .. } + [max{0O,-f. i}] with c positive and sufficiently large.

Consider now the set

P = I = 0{ppN (12) 
and for i=l,...,N-l, the point-to-set mapping Ri which assigns to a price 

- 1 R.(p) < P. (p') if p < p'. (16) 1 
Proof:

To show continuity of R. we argue by contradiction. Suppose there exists a convergent price vector sequence pk + p such that the corresponding sequence {R i ( p )} does not converge to R i (p). By passing to a subsequence if necessary suppose that for some 6 > 0 we have

R i (p) > R(p) + 6 y k (18) 
(the proof is very similar if 6 < 0 and the inequality is reversed). By the definition of R. we have 

m M ii 1 j

Since p + p it follows using (18) that for sufficiently large k we have

k k Pm-R i( pk) > Pm-Ri(p) V (m,i)eA 1 1 m 1 R(p )-pj < Ri(p)-p.
V (i,j)£A.

Therefore for sufficiently large k we have using the convexity of g*i, g* gmin ij

Vgi(Pm-Ri(P ())

VV (m,i)pA, - k k gij (Ri(p )-pj) < Vgij(Ri(p)-pj), V (i,j)cA. 1 - 131ij(Ri p-pj)
Using these relations together with [START_REF] Bertsekas | Relaxation Methods for Network Flow Problems with Convex Arc Costs[END_REF], [START_REF] Tseng | Relaxation Methods for Monotropic Programming Problems[END_REF] we obtain for all sufficiently

large k A k- k mi ,Vg .(p -Rj(p)) = Vgi(pm~-Ri(p )), V (m,i)cA (21) 
A k k f.. For k sufficiently large so that (21), ( 22) hold we have

R.i(p) = max{pilpi c Pm-Imi, (m,i) £A, PiFiij-pj, (i,j)cA} --^ .£ k A k R.i(p ) = max^p ji Pp k
, (m,i)EA, Pi Iij-P (i,j)cA} Since pp, it is evident from these relations that R i (pk) -R.(p) thereby contradicting [START_REF] Bertsekas | Constrained Optimization and Lagrange Multiplier Methods[END_REF].

To show monotonicity of Ri we again argue by contradiction. Suppose there exist p and p' such that pj > pj, V j=l,...,N-l but Ki(P) > Ri(p' ) . It follows then that

PRi (P') > Pm i (P) V (m,i)£A R.i(p')-p' < R.(p)-p, V (i,j)eA.
Therefore

Vgm(P'-R (P')) > Vg* i(m-Rp (p)), V (m,i)EA ( 23 
) miPm i 1 Vgj (Ri(P')-p!) < Vg'j(Ri(p)-pj) V (i,j)cA (24) 
Since by definition we have

Vg* (PM (P')) = g(R(P t )-') (25) mi m 1 ij(Ri -P m 1 C Vgmi(Pm-R.(p)) Vgj (R (P) Pj) (26) m 3
it follows that equality holds in ( 23), (24), i.e.

A f We have for all (m,i)eA

= Vg* (Pm-Ri(PI)) Vg*(p R(p)) f i =Vmi m i (Pmi m fij = Vgij(R i (p')-j ) = Vgij (R i ( P)-p j)
Pm i ( p ) £ Imi' Pm -R i (p) Imi
and since p < 'p we obtain

in-m P R. (p) < ' -R.(p') -6 < Pm - (p') Therefore p' -R.(p') I 6 V (m,i)£A -m 1 'Imi'
and similarly R.i(P') + 6 -pj £ V (i,j)sA.

It follows that

Ri(P') + 6£ Ri(P')

thereby contradicting the maximal nature of Ri [cf. [START_REF] Tsitsiklis | Problems in Decentralized Decision Making and Computation[END_REF]].

The proof of continuity and monotonicity of R. is analogous with the
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one just given for Ri and is omitted Q.E.D.

The monotonicity and continuity of the mappings Ri and R.i imply a thus far unreported and somewhat surprising property of the optimal dual solution set. It is easily seen that we have Ri(p) < Pi, for all i so, using the monotonicity of Ri shown in Proposition 1, we obtain

k+l -1 p< R (p) < R (p) V k (29) 
where R: R N-1 + R N-1 is the mapping

R(p) = [R 1 (p),..,R N_ 1 (p)] ( 30 
)
and R is the composition of R with itself k times. From (29) we see that the sequence R (p) converges to some p and by continuity of R we must have

A A A A A A p = R(p)
as well as p > p. Since p = R(p) implies that pep* it follows from the choice of p that p -p. Also from (28), (29) and the fact p < R(p) for all peP* we obtain p = p > p for all peP* which shows that p is a maximal element of P*. The proof for existence of a minimal element p is entirely similar. Q.E.D.

Convergence Analysis of Asynchronous Relaxation

The model of distributed asynchronous computation we adopt is described in [START_REF] Bertsekas | Distributed Dynamic Programming[END_REF], [START_REF] Bertsekas | Distributed Asynchronous Computation of Fixed Points[END_REF].

With each node i = 1,...,N-l we associate a processor that computes from time to time some element of Ri(p) (here p is the latest price vector available to processor i),and sets the price Pi to this element. This price is then communicated at some later time to all other processors. Computation and communication at the various processors need not be synchronized. The precise model is as follows:

At each time instant, node i can be in one of three possible states compute, transmit, or idle. In the compute state node i computes a new price Pi. In the transmit state node i communicates the price Pi obtained from its own latest computation to one or more nodes m(mfi). In the idle state node i does nothing related to the solution of the problem.

We assume that computation and transmission for each node takes place in time intervals [tl,t 2 ] with t 1 < t 2 , but do not exclude the possibility that a node may be simultaneously transmitting to more than one node nor do we assume that the transmission intervals to these nodes have the same origin and/or termination. We also make no assumptions on the length, timing and sequencing of computation and transmission intervals other than the following:

Assumption 2: For every node i and time t > 0 there exists a time t' > t such that [t,t'] contains at least one computation interval for i and at least one transmission interval from i to each node m such that (m,i)cA or (i,m)eA.

Assumption 2 is very natural. It states in essence that no node "drops out of the algorithm" permanently--perhaps due to a hardware failure.

Without this assumption there is hardly anything we can hope to prove. 

k P = p R (p) < p < R (p)} , k = 1,2,... ( 35 
)
Note that the sequence P -} is nested and that the common intersection of the sequence is the set P of (33).

We will apply now a convergence theorem given in Section 3 of [START_REF] Bertsekas | Distributed Asynchronous Computation of Fixed Points[END_REF] (orProp. 3.1 of [START_REF] Bertsekas | Convergence Theories of Distributed Iterative Processes: A Survey[END_REF]).

According to this theorem the desired result will be proved if the following three conditions are satisfied. (Rather than consulting the references just cited, the reader may wish to think through the proof of this since it is rather simple). It is easily seen that all the conditions stated above are satisfied in our case so the desired conclusion follows.

Q.E.D.

Proposition 3 shows that the ARM has satisfactory convergence when P* has a unique element. One way to guarantee this is to consider the optimal solution f* of the primal problem (1) and the set of arcs A = {(i,j)eA i gij is differentiable at f*j}.

Then,if the graph (N,A) is connected,P* consists of a unique point in view of the complementary slackness condition [START_REF] Rockafellar | Convex Analysis[END_REF].

In order to improve the convergence properties when P* has more than one point it is necessary to modify the ARM so that a computation at node i replaces Pi with R. 

Q.E.D.

There is a similar result for the minimal ARM whereby pis replaced by p and condition (36) is replaced by p (i) < p for all i. The following example demonstrates that the results of Proposition 3 and 4 cannot be improved.

Example: Consider the 3-node network shown in Figure 2. The reduced dual optimal solution set is derived from condition [START_REF] Rockafellar | Convex Analysis[END_REF] and is given by

P* = P 3 = 0, 1 -1 P2 < 1
The results of Proposition 3 and 4 are illustrated in Figure 3. To see that the ARM as well as the maximal and minimal ARM may not converge to a dual optimal solution, let the buffer contents of processors 1 and 2 be both equal to (-1,1) and let both processors update the respective price coordinates and then exchange the results of the computation. Then the buffer contents will be (1,-1), and by repeating this process one more time the buffer contents will become again (-1,1) thereby completing a cycle. Therefore in general we cannot expect convergence of the ARM to the optimal solution set if the latter contains more than one element. Similarly the maximal and minimal ARM need not converge to p and p respectively if the initial buffer contents do not belong to the appropriate regions [cf. (36)].

Note that this counterexample applies also to a synchronous Jacobi method.
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 1 Figure 1: Complementary slackness condition diagram for cost function
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 11 vector pcP the set of all prices Pi that minimize the dual cost along the ith price starting from p, i.e. (cf. (8)). R.(p) = {p.j P.= P' l is well known that a real valued convex function having one compact level set, has all its level sets compact ([7], p.70). Therefore under Assumption 1 the sets Ri(p), pEP are all nonempty, compact intervals. It follows that under Assumption 1 the (point-to-point) mappings R i (p) = ^ max Pi are well defined on the set P. We call R. (Ri) the ith maximal (minimal) relaxation mapping. It gives the maximal (minimal) minimizing point of the dual cost along the ith coordinate starting from its argument. The point-toset mapping R. is called the ith relaxation mapping. Some key facts are given in the following proposition. Proposition 1: Let Assumption 1 hold. The mappings Ri and R.i are continuous on P. They are also monotone on P in the sense that for any p, p'£P, i = 1,...,N-1 we have R.(p) < R (p') if p < p',
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Each node i has a buffer Bim for each mii where it stores the latest transmission from m, as well as a buffer B.. where it stores its own price estimate Pi. The contents for each buffer Bim at time t are t t denoted pt(i). Thus pm(i) is, for every t, i and m an estimate of the price Pm available at node i at time t. It is important to realize in t t what follows that the buffer contents pm(i), and pt(i') at two different nodes i and i' need not coincide at all times.

If ism and i', m the buffer contents pt(i), and pt(i') need not coincide at any time t. The vector of all buffer contents of node i is denoted pt(i), i.e.,

The rules according to which the buffer contents pm(i) are updated are as follows:

(1) If [tl,t 2 ] is a transmission interval from node m to node i, the contents of the buffer Bmm at time tl are transmitted and entered in the buffer B. at time t2, i.e. t2 t 2 1

] is a computation interval for node i, the content of the buffer Bii is replaced at time t 2 with an element of Ri (p (i)), i.e.

(3) The contents of a buffer Bii can change only at the end of a computation interval for node i. The contents of a buffer Bim, iim can change only at the end of a transmission interval from m to i.

The algorithm based on (32) will be called Asynchronous Relaxation Method (ARM).

Our objective is to derive conditions under which limit points of the sequences {pt(i)} are optimal solutions of the dual problem [START_REF] Powell | On Search Directions for Minimization Algorithms[END_REF]. The following proposition is our main result. The proof is based on a general convergence theorem given in [START_REF] Bertsekas | Distributed Asynchronous Computation of Fixed Points[END_REF] (see also [START_REF] Bertsekas | Convergence Theories of Distributed Iterative Processes: A Survey[END_REF]) and applicable to asynchronous iterative algorithms such as the one just described. The key property that makes asynchronous convergence possible is the monotonicity of the mappings Ri and Ri shown in Proposition 1. This property is also present in dynamic programming models and has been similarly exploited to show the validity of asynchronous versions of the successive approximation method [START_REF] Bertsekas | Distributed Dynamic Programming[END_REF].

Proposition 3: Let Assumptions 1 and 2 hold. For any initial buffer contents p (i) P, i = 1,...,N-1, each limit point of the sequences fpt(i)} generated by the ARM belongs to the set

where p and p are the maximal and minimal dual optimal solutions. In particular, if the reduced dual optimal solution set P* consists of a unique vector p* we have