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Permanent Magnet Synchronous Drives Observability Analysis for
Motion-Sensorless Control

Mohamad Koteich1,2, Abdelmalek Maloum1, Gilles Duc2 and Guillaume Sandou2

Abstract— Motion-sensorless control techniques of electrical
drives are attracting more attention in different industries. The
local observability of sensorless permanent magnet synchronous
drives is studied in this paper. A special interest is given to the
standstill operation condition, where sensorless drives suffer
of poor performance. Both, salient and non-salient machines
are considered. The results are illustrated using numerical
simulations.

I. INTRODUCTION

Permanent Magnet (PM) Synchronous Machine (SM) has
been widely used in many potential industrial applications
[1] [2]. It is known for its high efficiency and power density.

High performance control of the PMSM can be achieved
using vector control [3] [4] [5] [6], which relies on the
two-reactance theory developed by Park [7] [8], where an
accurate knowledge of the rotor position is required.

For many reasons, mainly for cost reduction and reliabil-
ity increase [9], mechanical sensorless control of electrical
drives has attracted the attention of researchers as well as
many large manufacturers [10] [11] [12] [13]; mechanical
sensors are to be replaced by algorithms that estimate the
rotor speed and position, based on electrical sensors mea-
surement.

One interesting sensorless technique is the observer-based
one, which consists of sensing the machine currents and
voltages, and using them as inputs to a state observer [14]
that estimates the rotor angular speed and position. There
exists a tremendous variety of observers for PMSM in the
literature [15]. Kalman filter [16] [17] [18] and sliding mode
observers [19] [20] are among the most widely used observer
algorithms in PMSM sensorless drives [21]. Nevertheless,
other nonlinear observers [22] are also developed [23] [24]
[25] [26]. Observer-based techniques rely on the machine
mathematical model. Hence, depending on the modeling
approach, three categories of these techniques can be dis-
tinguished:
• Electromechanical model-based observers [27] [23] [17]

[24] [28] [29].
• Back electromotive force (EMF)-based observers [30]

[31] [32] [33].
• Flux-based observers [25] [34] [35] [36] [37].
Another sensorless technique is the high frequency in-

jection (HFI) based technique [38] [39] [40]. some authors
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propose to combine Observer-based and HFI techniques [41]
[42] [43].

The main problem of the PMSM observer-based sensorless
techniques is the deteriorated performance in low- and zero-
speed operation conditions [44]. This problem is usually
treated from observer’s stability point of view, whereas the
real problem remains hidden: it lies in the so-called observ-
ability conditions of the machine. Over the past few years,
a promising approach, based on the local weak observability
concept [45], has been used in order to better understand the
deteriorated performance of sensorless drives.

Even though several papers have been published about the
PMSM local observability, none of these papers presents well
elaborated results for both salient and non-salient PMSMs,
especially at standstill:

• Surface-mounted PMSM (SPMSM): in [24] and [46] the
SPMSM observability is studied; only the output first
order derivatives are evaluated, and the conclusion is
that the SPMSM local observability cannot be guar-
anteed if the rotor speed is null. In [47] higher order
derivatives of the output are investigated, and it is shown
that the SPMSM can be locally observable at standstill
if the rotor acceleration is nonzero.

• Internal PMSM (IPMSM): concerning the IPMSM, the
conclusions in [47] are unclear, i.e. no explicit practical
observability conditions are given. More interesting
results are presented in [44], where explicit conditions,
expressed in the rotating reference frame, are presented.
However, the analysis of the results in [44] remains
unclear and yet inaccurate. In [43], a unified approach is
adopted for synchronous machines observability study;
the PMSM is treated as a special case of the generalized
synchronous machine without further analysis.

The present paper is intended to investigate the PMSM ob-
servability for the electromechanical model-based observers.
Both salient type (IPMSM) and non-salient type (SPMSM)
machines observability analysis is detailed. A special atten-
tion is drawn to the standstill operation condition.

After this introduction, the paper is organized as follows:
the local weak observability theory is presented in section II.
Section III is dedicated to the PMSM’s mathematical model
in both stator and rotor reference frames. The observability
analysis of the IPMSM is presented in section IV, whereas
the SPMSM observability is analyzed in section V. Illustra-
tive simulations are presented in section VI to validate the
theoretical study. Conclusions are drawn in section VII.



II. LOCAL OBSERVABILITY THEORY

The local weak observability concept [45], based on the
rank criterion, is presented in this section. The systems of
the following form (denoted Σ) are considered:

Σ :

{
ẋ = f (x(t), u(t))

y = h (x(t))
(1)

where x ∈ X ⊂ Rn is the state vector, u ∈ U ⊂ Rm is the
control vector (input), y ∈ Rp is the output vector, f and
h are C∞ functions. The observation problem can be then
formulated as follows [48]: Given a system described by a
representation (1), find an accurate estimate x̂(t) for x(t)
from the knowledge of u(τ), y(τ) for 0 ≤ τ ≤ t.

A. Observability rank condition

The system Σ is said to satisfy the observability rank
condition at x0 if the observability matrix, denoted byOy(x),
is full rank at x0. Oy(x) is given by:

Oy(x) =
∂

∂x


L0

fh(x)
Lfh(x)
L2

fh(x)
. . .

Ln−1
f h(x)


T

x=x0

(2)

where Lkfh(x) is the kth-order Lie derivative of the
function h with respect to the vector field f . It is given by:

Lfh(x) =
∂h(x)

∂x
f(x) (3)

Lk
fh(x) = LfLk−1

f h(x) (4)

L0
fh(x) = h(x) (5)

B. Observability theorem

A system Σ (1) satisfying the observability rank condition
at x0 is locally weakly observable at x0. More generally, a
system Σ (1) satisfying the observability rank condition for
any x0, is locally weakly observable. Rank criterion gives
only a sufficient condition for local weak observability.

III. PMSM MATHEMATICAL MODEL

Permanent magnet synchronous machines are electrome-
chanical systems that can be mathematically represented
using generalized Ohm’s, Faraday’s, and Newton’s second
Law. This section presents the PMSM model in two reference
frames: the stator reference frame αβ, and the rotor reference
frame dq [7] [8].

The assumption of linear lossless magnetic circuit is
adopted, with sinusoidal distribution of the stator magneto-
motive force (MMF). The machine parameters are considered
to be known and constant. Nevertheless, the parameters
variation does not call the observability study results into
question; it impacts the observer performance, which is
beyond the scope of this study.
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Fig. 1. Schematic representation of IPMSM and SPMSM

A. PMSM model in the stator reference frame

The mathematical model of the PMSM in the stator
reference frame can be written as:

dI
dt

= L−1 (V −ReqI − ψrC′(θ)ω)

dω

dt
=
p

J
(Tm − Tl)

dθ

dt
= ω

(6)

where I =
[
iα iβ

]T
and V =

[
vα vβ

]T
stand for currents

and voltages vectors in the αβ reference frame, ω is the
electrical speed of the rotor, θ is its electrical position, ψr is
the rotor permanent magnet flux. L is the inductance matrix,
Req is the equivalent resistance matrix:

Req = R + ωL′ =

[
R 0
0 R

]
+ ω

∂L

∂θ
(7)

R is the resistance of one stator winding. p is the number of
pole pairs, J is the inertia of the rotor with the load, Tl is the
resistant torque, and Tm is the motor torque. C′(θ) denotes
the partial derivative of C(θ) with respect to θ:

C(θ) =

[
cos θ
sin θ

]
; C′(θ) =

∂C(θ)
∂θ

=

[
− sin θ
cos θ

]
(8)

The model (6) can be fitted to the structure Σ (1) by taking:

x =
[
IT ω θ

]T
; y = I ; u = V (9)

f(x, u) =
[
dIT
dt

dω
dt

dθ
dt

]T
; h(x) = I (10)

1) IPMSM: The IPMSM is a salient rotor machine, then
its inductance matrix L is a position-dependent matrix:

L =

[
L0 + L2 cos 2θ L2 sin 2θ
L2 sin 2θ L0 − L2 cos 2θ

]
(11)

where L0 and L2 are the average and differential spatial
inductances. The IPMSM produced torque is:

Tm =
3p

2
[ψr(iβ cos θ − iα sin θ) (12)

−L2

(
(i2α − i2β) sin 2θ − 2iαiβ cos 2θ

)]



2) SPMSM: The SPMSM is a non-salient rotor machine,
its model can be derived from the IPMSM one by assuming
L2 to be null:

L2 = 0 (13)

B. PMSM model in the rotor reference frame

Stator currents and voltages in the dq rotating reference
frame (Fig. 1) are calculated from those in the αβ reference
frame using the Park transform:

Xdq = P−1(θ)Xαβ (14)

where

P(θ) =

[
cos θ − sin θ
sin θ cos θ

]
(15)

The vector X stands for currents or voltages vector. The
mathematical model of the PMSM in the rotor reference
frame can be then written under the general form (6):

dIdq
dt

= L−1
dq

(
Vdq −Req

dqIdq − ψrC
′(0)ω

)

dω

dt
=
p

J
(Tm − Tl)

dθ

dt
= ω

(16)

where Idq =
[
id iq

]T
and Vdq =

[
vd vq

]T
stand for

currents and voltages vectors in the dq reference frame.
Inductance and equivalent resistance matrices can be written
as:

Ldq =

[
Ld 0
0 Lq

]
; Req

dq = R + ωJ2Ldq (17)

where

J2 = P
(π

2

)
=

[
0 −1
1 0

]
(18)

Ld denotes the (direct) d−axis inductance, and Lq denotes
the (quadrature) q−axis inductance:

Ld = L0 + L2 (19)
Lq = L0 − L2 (20)

The motor torque can be written as:

Tm =
3

2
p (Lδid + ψr) iq (21)

with

Lδ = Ld − Lq = 2L2 (22)

The above dq model is valid for the IPMSM (Ld 6= Lq).
The SPMSM model can be derived using the following
equations:

Ld = Lq = L0 =⇒ Lδ = 0 (23)

IV. IPMSM OBSERVABILITY

Observability of the system (6) is studied in the sequel.
The system (6) is a 4th order system. Its observability
matrix should contain the gradient of the output and its
derivatives up to the 3rd order. In this section, only the
first order derivatives are calculated, higher order derivatives
are very difficult to evaluate and to deal with. The “partial”
observability matrix is:

Oy1 =
∂(y, ẏ)

∂x
=

[
I2 O2×1 O2×1

∂
∂I
(
dI
dt

)
∂
∂ω

(
dI
dt

)
∂
∂θ

(
dI
dt

)
]

(24)

where In is the n×n identity matrix, and On×m is an n×m
zero matrix, and:

∂

∂I

(
dI
dt

)
= −L−1Req

∂

∂ω

(
dI
dt

)
= −L−1 (L′I + ψrC′(θ)) (25)

∂

∂θ

(
dI
dt

)
= (L−1)′L

dI
dt
− L−1 (L′′I − ψrC(θ))ω

L′ and L′′ denote, respectively, the first and second partial
derivatives of L with respect to θ:

L′ =
∂

∂θ
L ; L′′ =

∂

∂θ
L′ (26)

The determinant ∆y1 of the sub-matrix (24) is calculated
using symbolic math software. In order to make the inter-
pretation easier, the determinant is expressed in the rotating
dq reference frame using the equation (14).

The determinant ∆y1 is given by:

∆y1 =
1

LdLq

[
(Lδid + ψr)

2
+ L2

δi
2
q

]
ω

+
Lδ
LdLq

[
Lδ
did
dt
iq − (Lδid + ψr)

diq
dt

]
(27)

The observability condition ∆y1 6= 0 can be written as:

ω 6=
(Lδid + ψr)Lδ

diq
dt − Lδ

did
dt Lδiq

(Lδid + ψr)
2

+ L2
δi

2
q

(28)

which gives:

ω 6= d

dt
arctan

(
Lδiq

Lδid + ψr

)
(29)

The equation (29) defines a fictitious observability vector,
denoted by ΨO, that has the following components in the dq
reference frame:

ΨOd = Lδid + ψr (30)
ΨOq = Lδiq (31)

Then, the condition (29) can be formulated as:

ω 6= d

dt
θO (32)

where θO is the phase of the vector ΨO in the rotating
reference frame (Fig. 2). The following sufficient condition
for the PMSM local observability can be stated: the rotational
speed of the fictitious vector ΨO in the dq reference frame
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Fig. 2. Vector diagram of the fictitious observability vector (dashed)

should be different from the rotor electrical angular speed in
the stator reference frame. At standstill, the above condition
becomes: the vector ΨO should keep changing its orientation
in order to ensure the local observability.

It turns out that the d−axis component of the vector ΨO is
nothing but the so-called “active flux” introduced by Boldea
et al. in [35] (also called “fictitious flux” by Koonlaboon et
al. [34]), which is, by definition, the torque producing flux
aligned to the rotor d−axis. The q−axis component of the
vector ΨO is related to the saliency (Lδ) of the machine.

Some authors [44] present conclusions that stator current
space vector should change not only its magnitude, but also
direction, in the rotating reference frame in order to ensure
motor observability at standstill. However, Fig. 2 shows that
the stator current space vector can change both its magnitude
and direction without fulfilling the condition (32).

For the SPMSM (Lδ = 0), the fictitious observability
vector is equal to the rotor PM flux vector, which is fixed in
the dq reference frame. This means that the observability
problem arises only at standstill, as shown in the next
section.

V. SPMSM OBSERVABILITY

Fortunately, the SPMSM model is less complex than the
IPMSM one, which makes the investigation of higher output
derivatives possible. In this section, the electromechanical
model observability is studied. Furthermore, thanks to the
simplicity of the SPMSM equations, the observabiltiy of
two other models, namely the back-emf and flux models,
is studied.

A. Electromechanical model observability

In the case of SPMSM, the observability matrix Oy can
be evaluated up to the 3rd order output derivatives. Oy is an
8× 4 matrix. There are 70 possible 4× 4 sub-matrices. For
convenience, the first two lines are always taken, together
with lines that correspond to the same derivation order. This
reduces the choices to the following 3 possible sub-matrices:

• Oy1, which includes the first 4 lines of Oy:

Oy1 =




1 0 0 0
0 1 0 0

− R
L0

0 ψr
L0

sin θ ω ψrL0
cos θ

0 − R
L0

−ψrL0
cos θ ω ψrL0

sin θ


 (33)

its determinant is

∆y1 = ω

(
ψr
L0

)2

(34)

Thus, the local observability is guaranteed if the rotor
speed is nonzero, but not in the case of zero speed.

• Oy2, which includes the 1st, 2nd, 5th and 6th lines of
Oy , its determinant is :

∆y2 =
ψ2
r

L2
0

[(
2ω2 +

R2

L2
0

+
3p2

J
ψrid

)
ω − R

L0

dω

dt

]
(35)

Thus, in the case of zero speed operation, the SPMSM
is observable if the acceleration is different than zero
(ω̇ 6= 0); this corresponds to the case where the motor
changes its rotation direction.

• Oy3, which includes the 1st, 2nd, 7th and 8th lines of
Oy . Its determinant ∆y3 cannot be written because it is
lengthy. Nevertheless, substituting the rank deficiency
conditions of the sub-matrix Oy2 (ω = 0 and ω̇ = 0) in
∆y3, under the assumption of very slow resistant torque
variation (Ṫl = 0), gives:

∆y3|∆y2=0 =
ψ2
r

L2
0

[
R2

L2
0

− 3p2

2J
(L0id + ψr)

ψr
L0

]
d2ω

dt2
(36)

where

d2ω

dt2
=

3p2

2J
ψr
diq
dt

(37)

If the speed is identically zero (ω ≡ 0), the SPMSM model
reduces to:

dI
dt

=
1

L0
(V −RI)

dω

dt
= 0 (38)

dθ

dt
= 0

and the output derivatives are:

dI
dt

=
1

L0
(V −RI) (39)

d2I
dt2

=
1

L0

(
dV
dt
−RdI

dt

)
(40)

...
dn+1I
dtn+1

=
1

L0

(
dnV
dtn
−Rd

nI
dtn

)
(41)
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In this case, the observability matrix is:

Oy|ω≡0 =




1 0 0 0
0 1 0 0

− R
L0

0 ψr
L0

sin θ 0

0 − R
L0

−ψrL0
cos θ 0

(− R
L0

)2 0 − R
L0

ψr
L0

sin θ 0

0 (− R
L0

)2 R
L0

ψr
L0

cos θ 0

(− R
L0

)3 0 (− R
L0

)2 ψr
L0

sin θ 0

0 (− R
L0

)3 −(− R
L0

)2 ψr
L0

cos θ 0




(42)

The following recurrence can be obtained from (39)-(42) for
higher dimension observability matrices:

∂

∂x
Lkfh = − R

L0

∂

∂x
Lk−1
f h|ω≡0 (43)

Therefore, even if higher order derivatives are evaluated,
no additional information about the rotor position can be
extracted. Hence, the standstill operation condition presents
a singularity from observability viewpoint.

Physically speaking, if the non-salient (cylindrical) rotor
is fixed with respect to the stator windings, it will have no
effect on the electromagnetic behaviour of these windings,
and its position cannot be identified with the model (38).

One solution of this problem is proposed in [41]. It
combines HFI technique with a state observer algorithm; a
sinusoidal voltage is injected on the direct (d̂−) axis in the
estimated rotating reference frame (Fig. 3), which results in
a vibration of the rotor (nonzero speed) only if the position
is not correctly estimated. It is proved in [41] that if the
following HF voltage

vd̂ = Vhf cos(ωhf t) (44)

is injected in the estimated d̂q̂ rotating reference frame
(obtained by the Park transformation using the estimated
position θ̂), the determinant ∆y1 (34) becomes:

∆y1 = −ψ
2
r

L2
0

ω +
ψr
L2

0

Vhf cos(ωhf t) sin θ̃ (45)

where θ̃ stands for the position estimation error. If the posi-
tion is not correctly estimated (θ̃ 6= 0), the local observability
is guaranteed at standstill.

Another solution is proposed in [49] [50]. It consists of
adding a position-dependent source, g(θ), to the available
measurements. The origin of g(θ) is found in the stator iron
local B-H hysteresis loops. It is shown that this signal is
highly position-dependent, and it can be approximated by a
linear function:

g(θ) = aθ + b (46)

where a and b are two constants. The new output vector
becomes:

y =
[
iα iβ aθ + b

]T
(47)

Therefore, even at standstill, the position is observable.

B. Back-EMF model observability

The state-space model for the back-EMF based observer
can be written as:

dI
dt

=
1

L0
(V −RI − E) (48)

dE
dt

=

(
ω̇

ω
I2 + ωJ2

)
E (49)

where E = [eα eβ ]
T stands for the back-EMF vector in the

stator αβ reference frame:

eα = −ωψr sin θ (50)
eβ = ωψr cos θ (51)

Then the rotor speed and position can be calculated from the
back-EMF components using the following relationships:

θ = arctan

(
−eα
eβ

)
(52)

ω =
1

ψr

√
e2
α + e2

β (53)

The observability analysis is done for the following state,
input and output vectors:

x =
[
IT ET

]T
; u = V ; y = I (54)

The sub-matrix made of the first 4 lines of the observabil-
ity matrix is studied:

Oy1 =




1 0 0 0
0 1 0 0
− R
L0

0 − 1
L0

0

0 − R
L0

0 − 1
L0


 (55)

its determinant is.

∆y1 =
1

L2
0

(56)

This implies that the system is observable even at zero
speed (no need to calculate higher order derivatives). How-
ever, at standstill, the back-EMF components are both null
(see equations (50) (51)), and the position (52) is indeter-
minate. The problem remains the same: the rotor position is
not observable at standstill.



C. Flux-based model observability

The state-space model for the flux-based observer can be
written as:

dI
dt

=
1

L0
(V −RI − ωJ2Ψr) (57)

dΨr

dt
= ωJ2Ψr (58)

where Ψr =
[
ψrα ψrβ

]T
stands for the rotor magnetic flux

vector in the stator αβ reference frame:

ψrα = ψr cos θ (59)
ψrβ = ψr sin θ (60)

The rotor position is given by:

θ = arctan

(
ψrβ
ψrα

)
(61)

The observability analysis is done for the following state,
input and output vectors:

x =
[
IT ΨT

r

]T
; u = V ; y = I (62)

The following determinants correspond respectively to the
1st, 2nd and 3rd order output derivatives:

∆y1 =
ω2

L2
0

(63)

∆y2 =
ω2

L4
0

(
R2 + L2

0ω
2
)

(64)

∆y3 =
ω2

L6
0

(
R4 + L4

0ω
4 −R2L2

0ω
2
)

(65)

It is obvious that the system is not observable at standstill.
The authors in [42] propose an HF injection-based solution
combined with a state observer.

VI. ILLUSTRATIVE SIMULATIONS

The present section is aimed at illustrating the previous
observability analysis using numerical simulations. For this
purpose, an extended Kalman filter (EKF) is designed. In
order to make the study of some critical situations easier,
the following operation mode is installed: the rotor position
is considered to be driven by an external mechanical system,
which imposes the speed profile shown in Fig. 4. The
currents are regulated, using standard proportional-integral
(PI) controllers, to fit with the following set-points:

i∗d = 0 A ; i∗q = 15 A (66)

Both IPMSM and SPMSM are studied in the same simu-
lation environment. The same machine parameters are used
for both machines; the only difference is in the inductance
L2, which is null in the case of SPMSM (no saliency). The
following HF current is added to the current iq during the
time interval [0.2 s., 0.5 s.]:

iqHF = 0.5 sin 1000πt A (67)

The purpose is to compare the observer behaviour for
both machines at standstill, with and without signal injection.

TABLE I
IPMSM PARAMETERS

Parameters Value [Unit]

Number of pole pairs (p) 2
Stator resistance Rs 0.01 [Ω]
Direct inductance Ld 0.5 [mH]
Quadratic inductance Lq 0.8 [mH]
Rotor magnetic flux ψr 0.0225 [V.s/rad]
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Fig. 4. Rotor speed profile

The observer is operating in open-loop, the real position is
fed to the controller in order to avoid stability issues in the
observability analysis. Table I shows the machine parameters.

A. Extended Kalman Filter

The EKF algorithm is described below:
a) Model linearization:

Ak =
∂f(x, u)

∂x

∣∣∣∣
xk,uk

; Ck =
∂h(x)

∂x

∣∣∣∣
xk

(68)

b) Prediction:

x̂k+1/k = x̂k/k + Tsf(x̂k/k, uk) (69)

Pk+1/k = Pk + Ts(AkPk + PkA
T
k ) +Qk (70)

c) Gain:

Kk = Pk+1/kC
T
k (CkPk+1/kC

T
k +Rk)−1 (71)

d) Innovation:

x̂k+1/k+1 = x̂k+1/k +Kk(y − h(x̂k+1/k)) (72)
Pk+1/k+1 = Pk+1/k −KkCkPk+1/k (73)

where Ts is the sampling period.
e) Tuning: EKF tuning is done by the choice of co-

variance matrices Qk and Rk. In this work the following
matrices are used:

Qk =




1 0 0 0
0 1 0 0
0 0 103 0
0 0 0 0.1


 ; Rk =

[
1 0
0 1

]
(74)

The Kalman filter tuning has an impact on the estimation
dynamics, which is beyond the scope of this paper. The same
EKF is applied to both salient and non-salient machines, in
order to compare the position estimation at standstill under
the same conditions.
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Fig. 5. Rotor real and estimated position of the IPMSM
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Fig. 6. Rotor real and estimated position of the SPMSM

B. Position and Speed estimation

The EKF is initialized with a position error of −π/4.
Fig. 5 and Fig. 6 show respectively the position estimation
for the IPMSM and SPMSM. At standstill, the following
observations can be made:
• Before injecting the HF current, the position estimation

of the IPMSM is more accurate than the SPMSM one.
• After injecting the HF current, the IPMSM estimated

position converges to the real position, whereas the
SPMSM one slightly varies.

• The SPMSM estimated position converges to the real
position value as soon as the rotor accelerates.

These results are consistent with the observability study
results; the IPMSM can be observable at standstill, whereas
observability of the SPMSM cannot be guaranteed unless the
rotor moves.

The speed estimation error is shown in Fig. 7, it is almost
the same for both machines.

VII. CONCLUSIONS

The local observability study of the PMSM resulted in the
definition of a fictitious observability vector; the rotational
speed of this observability vector in the rotor reference frame
should be different from the rotor electrical speed in the
stator reference frame to ensure the machine observability.

The results presented in this paper are valid for a wide
range of brushless synchronous machines under the assump-
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Fig. 7. Rotor speed estimation error

tion of sinusoidal stator MMF distribution: PM synchronous,
Brushless DC, PM stepper and PM assisted reluctance ma-
chines. Furthermore, if the rotor PM flux is considered to be
zero, the results can be extended to synchonous reluctance
machines.
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