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New characterizations for the eigenvalues of the prolate spheroidal wave

equation

By F. Richard-Jung, J.-P. Ramis, J. Thomann, F. Fauvet

In this paper, we give new characterizations for the eigenvalues of the prolate wave equation as
limits of the zeros of some families of polynomials: the coefficients of the formal power series
appearing in the solutions near 0, 1 or ∞ (in the variables x, x− 1 or 1/x respectively). The
result, which seems to be true for all values of the parameter τ , according to our numerical
experiments, is here proved for small values of the parameter τ .

1. Introduction

This paper is devoted to the study of the spectral problem Dτy = µy where:

Dτ : y 7→ (x2 − 1)y′′ + 2xy′ + τ2x2y,

τ being a real parameter (τ ≥ 0).
It is equivalent to the study of the spectral problem for the prolate spheroidal wave

operators1 but Dτ , being a perturbation of the opposite of the Legendre operator:

D0 = (x2 − 1)

(

d

dx

)2

+ 2x
d

dx
= − d

dx

(

(1− x2)
d

dx

)

,

is more adapted to a perturbative approach.
The differential operator Dτ is interpreted as defined on the Riemann sphere P1(C) :=

C ∪ {∞}. It admits 3 singularities: x = 1, x = −1, x = ∞; 1 and −1 are regular-singular
and ∞ is irregular. The differential equation Dτy − µy = 0 is a confluent Heun equation.

In a preceding paper [1], we made the following observations.
For τ ≥ 0 fixed and µ ∈ R, the following properties are equivalent:

1. µ is not an eigenvalue of Dτ ;
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1Of order m = 0.
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2. a non trivial power series solution of Dτy − µy = 0 at x = 1 admits 2 as convergence
radius;

3. a non trivial power series solution of Dτy − µy = 0 at x = −1 admits 2 as convergence
radius;

4. the non trivial power series solution of Dτy − µy = 0 at x = 0 admits 1 as convergence
radius;

5. the power series solutions appearing in a fundamental system of formal solutions of
Dτy − µy = 0 at x = ∞ are divergent.

For τ ≥ 0 fixed and µ ∈ R, the following properties are equivalent:

1. µ is an eigenvalue of Dτ ;
2. a power series solution of Dτy − µy = 0 at x = 1 admits +∞ as convergence radius;
3. a power series solution of Dτy − µy = 0 at x = −1 admits +∞ as convergence radius;
4. there exists a non trivial even or odd power series solution of Dτy − µy = 0 at x = 0

admitting +∞ as convergence radius;
5. the power series solutions of Dτy − µy = 0 appearing in the formal series solutions at
x = ∞ are convergent.

In the above observations all the power series (respectively in the variables x − 1, x + 1,
x, 1/x) admits as coefficients some polynomials in µ with coefficients in C[τ, τ−1], satisfying
some polynomial linear recurrences. For example there exists a unique even power series
solution at x = 0:

∑

n∈N P2nx
2n, P0 := 1. (The P2n satisfy a three terms recurrence, they

are polynomials of degree n in the variable µ with coefficients in Q[τ ].)
For a fixed value of the parameter τ and µ ∈ R, the problem to decide if µ is an eigenvalue

of Dτ is a priori a global problem but it follows from the above observations that this problem
can be “solved” locally at x = 1, or x = −1, or x = 0, or x = ∞. For example at x = 0 we
have to “see” if the radius of convergence of

∑

n∈N P2n(µ)x
2n is +∞ or finite.

The source of our article is the following experimental observation. (We will explain what
is happening at x = 0 but there are similar phenomena for x = 1, x = −1 or x = ∞.) Trying
to use the above considerations, that is the “jump” in the radius of convergence when µ
crosses an eigenvalue, to get an heuristic “quick and efficient” numerical method to compute
the eigenvalues2, we discovered a surprising phenomenon: experimentally, for all j ∈ N, the
j-th zero of the polynomial P2p (p ≥ j) tends to the 2j-th eigenvalue of Dτ when p tends to
+∞3.

Our article contains a proof of this result and of its variations at x = 1, x = −1 or x = ∞.4

Our proof does not use the classical results on the eigenvalues problem for the prolate
spheroidal equations as the convergent power series expansions in τ of the eigenvalues obtained
by continued fractions methods in [2]5(cf. [2] 3.24 (10), page 240, [3], 3, page 16).

2In the line of a question asked in the conclusion of [1].
3The reader can easily check that if τ := 0, then the eigenvalue 2j(2j + 1) is a zero of all the polynomials P2p for p ≥ j.
4Most of our methods are perturbative, therefore we have complete results only for “small values” of the parameter τ .
5Therefore, as a byproduct, we get new proofs of such results.
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The starting point of our proof was to try to give a rigourous meaning to a method
proposed in [4], that is the “computation of the zeroes” of an infinite dimensional determinant,
a Hill determinant, associated to the expansion of prolate spheroidal functions in series of
Legendre polynomials, as limits of zeroes of finite dimensional determinants obtained by
truncation. Our work was nearly finished when we noticed [5]. This paper contains a proof
of this result for an arbitrary value of τ . Our proof only works for “small values” of τ , however
it is necessary for the proofs of our main results.

2. Solutions in the complex plane

In this section, we precise the formal solutions which build basis of solutions in the neighbor-
hood of the points 0, 1, −1 and ∞. Indeed, a complete description of these formal solutions
can been obtained using the maple package Desir [6, 7, 8].

In the neighborhood of the origin, we find a basis of power series, whose first terms are
the following:

y1 (x) = 1− µ

2
x2 +

(

1

24
µ2 +

1

12
τ2 − 1

4
µ

)

x4 +O
(

x6
)

,

y2 (x) = x

(

2 +
−µ+ 2

3
x2 +

(

1

60
µ2 +

1

10
τ2 − 7

30
µ+

2

5

)

x4 +O
(

x6
)

)

.

In the neighborhood of each of the points ±1, we have a basis of solutions constituted of
a regular (holomorphic at the singularity) function f and a solution of the form f(x) log(x±
1) + g(x), where g is also regular.
For example, in the neighborhood of the point 1, we obtain:

f1 (x) = 1+
−τ2 + µ

2
(x− 1)+

(

1

16
τ4 − 1

8
µ τ2 +

1

16
µ2 − 1

8
τ2 − 1

8
µ

)

(x− 1)2+O
(

(x− 1)3
)

f2 (x) = ln (x− 1) f1(x) +

(

−1

2
+ τ2 − µ

)

(x− 1)

+

(

1

8
τ2 +

1

8
µ+

1

8
− 3

16
τ4 +

3

8
µ τ2 − 3

16
µ2
)

(x− 1)2 +O
(

(x− 1)3
)

.

In general, in the neighborhood of a point x0, the solutions are computed using the
rational Newton algorithm [9], this means that we obtain “generalized formal solutions”:
they are parametrized by a new variable t and have the form (x(t) − x0 = Λtr, y(t) =
exp(Q(1/t))tλΦ(t)). In this expression, Λ is a complex number (usefull in order to reduce the
algebraic extension needed), r is a positive integer, called the ramification, Q is a polynomial
without constant term, λ is a complex number, called the exponent, and tλΦ(t) is the regular
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part of the formal solution. Φ(t) is a polynomial in log(t) with power series coefficients.
In our example, as 1 is a regular singularity, the parametrization is only a translation x(t)−1 =
t, and Q = 0.

In the neighborhood of ∞, we obtain a basis of formal solutions constituted of:
[[

x(u) =
1

u
, y(u) = e−

RootOf(τ2+ Z
2)

u u (1− RootOf(τ2 + Z 2)(µ− τ2)u

2 τ2
+O(u2))

]]

Remark that we have above a condensed shape representing two solutions, corresponding
to the two possible values of the RootOf: ±iτ . This gives raise to a basis of formal solutions
constituted of:

ŷ1(x) =
e−iτ x

x

(

1− i (µ− τ2)

2τ

1

x
+

−µ2 + 2µ+ 2τ2µ+ 2τ2 − τ4

8τ2
1

x2
+O(

1

x4
)

)

ŷ2(x) =
eiτ x

x

(

1 +
i (µ− τ2)

2τ

1

x
+

−µ2 + 2µ+ 2τ2µ+ 2τ2 − τ4

8τ2
1

x2
+O(

1

x4
)

)

The parametrization is now given by the change of variable x = 1/u, the ramification
is trivial, and the two series which appear in these solutions are a priori divergent, but
1-summable in each direction but ±iτR+.

Of course, we give here only the first terms of the series, but the following ones can be
generated using a recurrence formula, so (theoretically) we can obtain as much terms as
wanted in all the series appearing in the solutions.

3. The eigenvalues as roots of an infinite determinant

Following [[4], chapter 7, paragraph 7.5] (cf. also [5]), we try to expand a solution of the
equation

Dτ (y) = µy (1)

as an infinite linear combination of eigenfunctions of the unperturbated problem, i.e. the
Legendre polynomials,

y(x) =

∞
∑

n=0

anLn(x).

We consider also x2Ln(x) as expanded in terms of the Legendre polynomials:

x2Ln(x) =

∞
∑

m=0

An
mLm(x).
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Applying the differential equation (1) to y(x) and equating coefficients of Ln for each n gives
an infinite matrix equation satisfied by the coefficients an:

Ma =



















−µ+ τ2A0
0 τ2A1

0 τ2A2
0 τ2A3

0 . . .

τ2A0
1 2− µ+ τ2A1

1 τ2A2
1 τ2A3

1 . . .

τ2A0
2 τ2A1

2 6− µ− τ2A2
2 τ2A3

2 . . .

...
...

...
...

. . .





































a0

a1

a2
...



















= 0.

In our case, it is possible to obtain explicit formulas for the coefficients An
m.

Indeed, An
m = 1

m+1/2

∫ 1
−1 x

2Ln(x)Lm(x)dx. Using the recurrence relation

(2n+ 1)xLn = (n+ 1)Ln+1 + nLn−1

and the fact that
∫ 1
−1 Ln(x)Lm(x)dx =

2δnm
2n+ 1

, we obtain:

An
n =

2n2 + 2n− 1

(2n+ 3)(2n− 1)
, An+2

n =
(n+ 1)(n+ 2)

(2n+ 1)(2n+ 3)
, An

n+2 =
(n+ 1)(n+ 2)

(2n+ 3)(2n+ 5)
.

Then the matrix M is tridiagonal:

M =





























−µ+ τ2/3 0 2τ2/3 0 0 . . .

0 2− µ+ 3τ2/5 0 2τ2/5 0 . . .

2τ2/15 0 6− µ+ 11τ2/21 0 12τ2/35 . . .

0 6τ2/35 0 12− µ+ 23τ2/45 0 . . .

0 0 4τ2/21 0 20− µ+ 39τ2/77 . . .

...
...

...
...

...
. . .





























.

Moreover, we can split the odd and even coefficients an, by extracting from the matrix M
the corresponding columns and rows.
For example, the even coefficients satisfy the following system:



















−µ+ τ2/3 2τ2/3 0 . . .

2τ2/15 6− µ+ 11τ2/21 12τ2/35 . . .

0 4τ2/21 20− µ+ 39τ2/77 . . .

...
...

...
. . .





































a0

a2

a4
...



















= 0. (2)

Next we truncate the previous infinite matrix, and defineM (n) the n×n matrix whose entries
are the same as the first n rows and columns of the infinite matrix.



6 F. Richard-Jung, J.-P. Ramis, J. Thomann, F. Fauvet

We define Dn as the determinant of M (n). Dn is a polynomial in the variables µ and τ2, of
nth-order in the variable µ. Considering the special shape of the matrix M (n), it is easy to
derive the recurrence formula:

Dn+1 =
(

2n(2n+ 1)− µ+A2n
2nτ

2
)

Dn −A2n−2
2n A2n

2n−2τ
4Dn−1.

So we obtain a family of polynomials, defined by the initial values

D0 = 1, D1 = −µ+
1

3
τ2,

and a recurrence equation, whose roots are good candidates to approach the exact eigenvalues
of even index of the differential equation (1).

Proposition 1. The polynomial Dn is a polynomial of degree n in the variable µ. For
all n ≥ 1,

Dn mod τ2 = (−1)n
n−1
∏

j=0

(µ− 2j(2j + 1))

Then Dn mod τ2 admits n (integer) roots: 0, 6, . . . , 2j(2j + 1), . . . , (2n− 2)(2n− 1), all are
simple.

The polynomial Dn admits n Puiseux series solutions, we note µ
(n)
2j the series, which is equal

to 2j(2j + 1) mod τ2.

Proof: Perform the reduction of Dn modulo τ2 :

(Dj+1 mod τ2) = (2j(2j + 1)− µ) (Dj mod τ2).

�

Proposition 2. Convergence radii of the series µ
(n)
2j .

The series µ
(n)
2j , j ≥ 0 converge for |τ | < 1.

Proof: The following result can be found in [[10], p. 95]:
Let X be a unitary space, let T (x) = T + xT (1) a linear operator on X and let T be
normal. Then the power series for the eigenvalues λ(x) are convergent if “the magnitude of
the perturbation” ||xT (1)|| is smaller than half the isolation distance of the eigenvalue λ of
T .
More precisely, if λ(x) =

∑

p≥0 λpx
p, the coefficients λp satisfy the majorations:

|λ1| ≤ a, |λp| ≤ ap
(

2

d

)p−1

, p ≥ 2,

where a = ||T (1)|| and d is the isolation distance of the eigenvalues of T .
We apply this result here by searching the eigenvalues of:

F (n) + τ2G(n)
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where

F (n) =

























0

6

20

. . .

2(n− 1)(2n− 1)

























,

and

G(n) =

























1/3 2/3

2/15 11/21 12/35

4/21 39/77 10/33

. . .
. . .

. . .

A2n−4
2n−2 A2n−2

2n−2

























The matrices F (n) and G(n) are n × n square matrices, G(n) is a tridiagonal matrix, whose
elements are explicitely known.
It is easy to majorate the 2-norm of G(n), using the inequality ||G(n)||2 ≤
√

||G(n)||1||G(n)||∞ ≤ 3.
We obtain the announced result by noting that d = 6 (for all n). �

In the following paragraph, we will study the link between the series µ
(n)
2j , when j is fixed

and n is growing.

4. The eigenvalues as sums of a series

First we compute the beginning of the Puiseux series of the polynomials Dn, for small
n.

> algcurves[puiseux](D(1),tau=0,mu,9);
{

1

3
τ2
}

> algcurves[puiseux](D(2),tau=0,mu,9);
{

1

3
τ2

−

2

135
τ4 +

4

8505
τ6 +

58

2679075
τ8, 6 +

11

21
τ2 +

2

135
τ4

−

4

8505
τ6

−

58

2679075
τ8

}

> algcurves[puiseux](D(3),tau=0,mu,9);
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{

1

3
τ2

−

2

135
τ4 +

4

8505
τ6 +

26

1913625
τ8, 6 +

11

21
τ2 +

94

9261
τ4

−

21388

44925111
τ6

−

2946550

217931713461
τ8,

20 +
39

77
τ2 +

8

1715
τ4 +

16

2773155
τ6

−

2476

37368263625
τ8

}

> algcurves[puiseux](D(4),tau=0,mu,9);
{

1

3
τ2

−

2

135
τ4 +

4

8505
τ6 +

26

1913625
τ8, 6 +

11

21
τ2 +

94

9261
τ4

−

21388

44925111
τ6

−

3633830

257555661363
τ8,

20 +
39

77
τ2 +

52674

29674645
τ4 +

935076

175940970205
τ6 +

37764832611642

74924536936711587125
τ8,

42 +
83

165
τ2 +

60134

76366125
τ4 +

101060636

276516011165625
τ6 +

504082644490258

6322139029665881296875
τ8

}

We notice that the first terms of the series stabilize little by little.
More precisely, consider the “first” series solution of all polynomials, the series whose constant
term is null. The term of degree 2 is the same for all poynomials, the terms of degree 4 and
6 are the same for all polynomials of index greater than 1, the terms of degrre 6 and 8 are
the same for all polynomial of index greater than 2.
This phenomenon is repeated for the “second” series solution, the series whose constant term
is 6. The term of degree 2 is the same for all polynomials of index greater than 1, the terms
of degree 4 and 6 are the same for all polynomials of index greater than 2, etc...
We can express that in the following way:
if we put µ0 = 0, D1(µ0) = 0 mod τ2, µ1 = τ2

3 , D1(µ1) = 0 mod τ4;µ2 = µ1 − 2
135τ

4 +
4

8505 τ
6, D2(µ2) = 0 mod τ8.

Also, if µ0 = 6, D2(µ0) = 0 mod τ2, µ1 = 6+ 11
21 τ

2, D2(µ1) = 0 mod τ4;µ2 = µ1+
94

9261 τ
4−

21388
44925111 τ

6, D3(µ2) = 0 mod τ8.

And also, if µ0 = 20, D3(µ0) = 0 mod τ2, µ1 = 20 + 39
77 τ

2, D3(µ1) = 0 mod τ4.
So we can prove the

Proposition 3. Let j ≥ 0. We put µ0 = 2j(2j + 1). Then Dj+1(µ0) = 0 mod τ2.

We build µ1 = µ0 −
Dj+1(µ0)

D′
j+1(µ0)

mod τ4 and we prove that Dj+1(µ1) = 0 mod τ4.

More generally, for all i ≥ 1, if µi = µi−1 −
Dj+i(µi−1)

D′
j+i(µi−1)

mod τ4i, then

Dj+i(µi) = 0 mod τ4i.

Proof: From above, it is clear that Dj+1(µ0) = 0 mod τ2 and that (Dj+1 mod τ)′(µ0) 6=
0. So D′

j+1(µ0) is a polynomial in τ with a non nul constant term, which means that it is

invertible in the ring of formal series, then µ1 is well defined. Moreover µ1 = µ0 mod τ2.
We recall the following Taylor formula [[11], p. 51]: let a be a univariate polynomial over an
arbitrary integral domain A. In the polynomial domain A[x, y], a(x + y) = a(x) + a′(x)y +
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b(x, y)y2 for some polynomial b ∈ A[x, y]. We apply this result with a = Dj+1 and A = Q[τ ] :

Dj+1(µ1) = Dj+1(µ0) + (µ1 − µ0)D
′
j+1(µ0) + (µ1 − µ0)

2b(µ0, µ1)

= Dj+1(µ0) + (µ1 − µ0)D
′
j+1(µ0) mod τ4 = 0 mod τ4.

We assume now that we have built the first terms until the index i− 1 (for some i ≥ 2).
By construction: µi−1 = µ0 mod τ2, then D′

j+i(µi−1) mod τ = (Dj+i mod τ)′(µi−1

mod τ) = (Dj+i mod τ)′(µ0) is not null. Then µi is well defined. Moreover, by using the

recurrence equation and the fact that Dj+i−1(µi−1) = 0 mod τ4(i−1) and that Dj+i−2(µi−1)

mod τ4(i−2) = Dj+i−2(µi−2) mod τ4(i−2) = 0, we obtain that Dj+i(µi−1) = 0 mod τ4(i−1),

thus µi = µi−1 mod τ4(i−1).
The same Taylor formula enables us to prove that Dj+i(µi) = 0 mod τ4i.
In fact, µi is built by adding to µi−1 two monomials, of degree 4i− 4 and 4i− 2, and from a

computing point of view µi = µi−1 −
Dj+i(µi−1)

D′
j+i(µ1)

mod τ4i. �

Proposition 4. For all j ≥ 0, we have built a formal series in the variable τ , µ̂2j, such
that

µ̂2j = 2j(2j + 1) mod τ2 et ∀n > j,Dn(µ̂2j) = 0 mod τ4(n−j).

To fix the ideas, we give the first terms of the series µ̂0, µ̂2, µ̂4.

µ̂0 =
1
3 τ

2 − 2
135 τ

4 + 4
8505 τ

6 + 26
1913625 τ

8 − 92
37889775 τ

10 + 513988
9050920003125 τ

12

µ̂2 = 6 + 11
21 τ

2 + 94
9261 τ

4 − 21388
44925111 τ

6 − 3633830
257555661363 τ

8 + 39611204
16226006665869 τ

10

− 277773545116
4906403669618802351 τ

12

µ̂4 = 20 + 39
77 τ

2 + 52674
29674645 τ

4 + 935076
175940970205 τ

6 + 37764832611642
74924536936711587125 τ

8

− 3187867616210148
241152114584499914320525 τ

10 − 16139900980217820949844
90612997487168811993405138946875 τ

12

In the following paragraphs, we will apply the following lemma:

Lemma 1. Let P be a polynomial, P ∈ C[τ ][y], µ∗ a series (∈ C[[τ ]]) satisfying P (µ∗) = 0,
P ′(µ∗) 6= 0 and µ̂ an other series such that P (µ̂) = 0 mod τk and µ̂ = µ∗ mod τ . Then
µ̂ = µ∗ mod τk.

Proof: We use the above Taylor formula [[11], p. 51]. �

Proposition 5. Link between the series µ
(n)
2j and the series µ̂2j

∀j ≥ 0, ∀n > j, µ
(n)
2j = µ̂2j mod τ4(n−j).
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Proof: By construction of the series µ̂2j or by applying the lemma. �

Theorem 1. For all j ≥ 0, the series µ̂2j is convergent in the open unit disk, and for

all |τ | < 1, the sequence µ
(n)
2j (τ) converges, when n tends to infinity, to µ̂2j(τ), which is an

eigenvalue Dτ .

Proof: Let α
(n)
p be the coefficients of the series µ

(n)
2j and αp those of µ̂2j . The majoration

given by Kato is independent of n, because d is independent of n and ||G(n)||2 is bounded

independently of n : |α(n)
p | ≤ 3 (for all n and for all p). So we have also |αp| ≤ 3 (for all p).

Let |τ | < 1.

µ
(n)
0 (τ)− µ̂0(τ) =

∑

p>4n

(α(n)
p − αp)τ

2p,

and

|µ(n)0 (τ)− µ̂0(τ)| ≤ 6
∑

p>4n

|τ2p|,

what we can make arbitrarily small when n tends to infinity.
The last part of the theorem, the fact that µ̂2j(τ) is an eigenvalue of Dτ , will be proved in the
paragraph 9. It is also possible to prove this result using [5] but we propose a self-contained
proof for all our results.

�

5. The eigenvalues and the coordinates of the eigenfunctions in Legendre basis

Consider an eigenfunction of even index of the equation Dτ (y) = µy as an infinite linear
combination of the Legendre polynomials,

y(x) =

∞
∑

n=0

a2nL2n(x), a0 = 1.

We will now see that there exists a simple relation between a2n and Dn.

Proposition 6.

∀n ≥ 1, Dn = (−1)n

(

n
∏

i=1

A2i
2i−2

)

τ2na2n.

Proof: By recurrence.
For n = 1: a2 is defined by the equation D1a0 +A2

0τ
2a2 = 0.

Suppose that the relation is satisfied for a fixed integer n ≥ 1. We perform the Gaussian
elimination algorithm, in order to put the matrix M (n+2) in an echelon form.
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We assume that the first steps give the intermediate result:












































































D1 A2
0τ2

D2 A4
2τ2D1

.
.
.

.
.
.

Dj A
2j
2j−2

τ2Dj−1

A
2j−2
2j

τ2 2j(2j + 1) − µ + A
2j
2j

τ2 A
2j+2
2j

τ2

.
.
.

.
.
.

.
.
.

A
2n−2
2n τ2 2n(2n + 1) − µ + A2n

2nτ2 A
2n+2
2n τ2

A2n
2n+2τ2 (2n + 2)(2n + 3) − µ + A

2n+2
2n+2

τ2













































































.

The next step is: replace rowj+1 by Djrowj+1−A2j−2
2j τ2rowj ; using the recurrence relation

giving Dj+1 in terms of Dj and Dj−1, we obtain:
























































D1 A2
0τ

2

D2 A4
2τ

2D1

. . .
. . .

Dj A
2j
2j−2τ

2Dj−1

Dj+1 A
2j+2
2j τ2Dj

. . .
. . .

. . .

A2n−2
2n τ2 2n(2n + 1) − µ + A2n

2nτ
2 A2n+2

2n τ2

A2n
2n+2τ

2 (2n + 2)(2n + 3) − µ + A2n+2
2n+2τ

2

























































.

Then, at the final step, we will have:
























































D1 A2
0τ

2

D2 A4
2τ

2D1

. . .
. . .

. . .

Dj A
2j
2j−2τ

2Dj−1

Dj+1 A
2j+2
2j τ2Dj

. . .
. . .

Dn+1 A
2n+2
2n τ2Dn

A2n
2n+2τ

2 (2n + 2)(2n + 3) − µ + A2n+2
2n+2τ

2

























































.

The penultimate row gives:

Dn+1a2n +A2n+2
2n τ2Dna2n+2 = 0,

which is the expected relation for n+ 1. �
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Corollary 1: for all n ≥ 1, the coefficient a2n has the same zeros as the polynomial Dn.
Thus, for all |τ | < 1, the zero of index j of the coefficient a2n converges to µ̂2j(τ), when n
tends to infinity.

Proposition 7. For all j ≥ 0, the series µ̂2j satisfies :

∀n > 2j, a2n(µ̂2j) = 0 mod τ2(n−2j).

6. The eigenvalues and the formal solutions at the origin

We recall that, in the neighborhood of the origin, we know a basis of convergent series
solutions, y1(x) et y2(x).
In particular:

y1 (x) = 1− µ

2
x2 +

(

1

24
µ2 +

1

12
τ2 − 1

4
µ

)

x4 +O
(

x6
)

.

Let Pn be the coordinates of this function in the monomial basis:

P0 = 1, P1 = 0, P2 = −µ
2
, P3 = 0, P4 =

1

24
µ2 +

1

12
τ2 − 1

4
µ,

the following polynomials satisfying a three terms recurrence:

−n(n− 1)Pn + (n2 − µ− 3n+ 2)Pn−2 + τ2Pn−4 = 0.

Proposition 8. The odd coordinates are null. The even coordinates, P2n are polynomials

of degree n in the variable µ and for all n ≥ 1, P2n mod τ2 = (−1)n

(2n)!

∏n−1
j=0 µ − 2j(2j + 1).

The polynomial P2n admits n Puiseux series solutions, we will denote δ
(n)
j , j = 0 . . . n − 1,

the series which has 2j(2j + 1) as constant term.

Proof: Reduce the recurrence equation modulo τ2 :

2n(2n− 1)(P2n mod τ2) = ((2n− 1)(2n− 2)− µ)(P2n−2 mod τ2).

�

Proposition 9. For all j ≥ 0, the series µ̂2j satisfies:

∀n > j, P2n(µ̂2j) = 0 mod τ2(n−j).

Proof: Taking into account the parity of the functions, the eigenfunction of even index
that we consider:

y(x) =

∞
∑

n=0

a2nL2n(x), a0 = 1,
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is proportional to y1, that is y(x) = cy1(x).
We obtain by change of basis:



















c

cP2

cP4

...



















= A



















1

a2

a4
...



















,

where we only need to note that A is an infinite upper triangular matrix, whose elements
will be noted αij .

A =



















1 −1/2 3/8 . . .

3/2 −15/4 . . .

35/8 . . .

. . .



















.

Then: c =
∑∞

j=0 α1ja2j and, using the proposition 7, c(µ̂0) = 1 mod τ2.
We deduce:

c(µ̂0)P2n(µ̂0) = αnna2n(µ̂0) mod τ2n+2 = 0 mod τ2n, ∀n ≥ 1.

Also τ2c(µ̂2) = τ2 − 1
2τ

2a2(µ̂2) +
3
8τ

2a4(µ̂2) mod τ4 = 1
2A2

0
D1(µ̂2) mod τ2 6= 0 mod τ .

We deduce: τ2c(µ̂2)P4(µ̂2) = −35
8 τ

2a4(µ̂2) mod τ4 = − 35
8A2

0A
4
2τ

2D2(µ̂2) mod τ4 = 0

mod τ2, hence P4(µ̂2) = 0 mod τ2.
And ∀n ≥ 2,

τ2c(µ̂2)P2n(µ̂2) = αnnτ
2a2n(µ̂2) mod τ2n =

cste

τ2(n−1)
Dn(µ̂2) mod τ2n = 0 mod τ2(n−1),

then P2n(µ̂2) = 0 mod τ2(n−1), ∀n ≥ 2.
In a general way:

τ2jc(µ̂2j) =
∑

i=0

α1iτ
2ja2i(µ̂2j) =

2j
∑

i=0

α1iτ
2ja2i(µ̂2j) mod τ2j+2

= α1j
(−1)j

∏j
k=1A

2k
2k−2

Dj(µ̂2j) mod τ2 6= 0 mod τ.
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We deduce:

∀n > j, τ2jc(µ̂2j)P2n(µ̂2j) = αnnτ
2ja2n(µ̂2j) mod τ2(n+1−j)

=
cste

τ2(n−j)
Dn(µ̂2j) mod τ2(n+1−j) = 0 mod τ2(n−j),

then P2n(µ̂2j) = 0 mod τ2(n−j), ∀n > j. �

Proposition 10. Link between the series δ
(n)
j and µ̂2j.

∀j ≥ 0, ∀n > j, δ
(n)
j = µ̂2j mod τ2(n−j).

Proof: Apply lemma 1. �

Theorem 2. For τ small enough, the sequence δ
(n)
j (τ) converges to µ̂2j(τ), when n tends

to infinity.

Proof: To obtain this result, we will first prove that the radius of convergence of the series

δ
(n)
j is bounded from below by a constant independent of n.
The recurrence equation satisfied by the polynomials Pn can be written, noting Pn = P2n :

τ2Pn−1 + (2n(2n+ 1)− µ)Pn − (2n+ 1)(2n+ 2)Pn+1 = 0. (3)

Thus Pn+1(µ) = 0 if and only if




























−µ −2

τ2 6 − µ −12

. . .
. . .

. . .

τ2 2k(2k + 1) − µ −2k(2k − 1)

. . .
. . .

. . .

τ2 2(n − 1)(2n − 1) − µ −2(n − 1)(2n − 3)

τ2 2n(2n + 1) − µ

























































P0

P1

.

.

.

Pk

.

.

.

Pn−1

Pn





























= 0.

So we are again concerned with the eigenvalues of a perturbated matrix:

F (n) + τ2G(n),

where

F (n) =

























0 −2

6 −12

. . .
. . .

2(n− 1)(2n− 1) −2(n− 1)(2n− 3)

2n(2n+ 1)

























, G(n) =



















0

1 0

. . .
. . .

1 0



















.
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The result used in the proof of propositon 2 can not be applied here, because the new matrix
F (n) is not normal.
Neverthless, we can follow the developments of Kato, [[10], p. 88-90, example 3.3] to evaluate

the radii of convergence of the series δ
(n)
j in the following manner: we compute the resolvant

of the matrix F (n) and its expansion in the neighborhood of its eigenvalue µ = 2j(2j + 1)
(j ≤ n). This expansion can be written:

R(n)(ζ) = (F (n) − ζIn)
−1 =

−1

ζ − µ
T (n) +

∞
∑

k=0

(ζ − µ)k(S(n))k+1.

Then we denote pn = ||G(n)T (n)||1, qn = ||G(n)S(n)||1, sn = ||S(n) − αT (n)||1 (for any α).

Using methods of majorant series, Kato proves that ((pnsn)
1/2+ q

1/2
n )−2 is a lower bound for

the radius of convergence of the series δ
(n)
j .

Our problem is thus to prove that pn, qn and sn can be bounded from above independently
of n.
Now the resolvant R(n)(ζ) is an upper triangular matrix, whose elements can be computed
explicitely; these elements don’t depend from the index n and we will omit the upper index
(n) to simplify the notations:

Ril(ζ) = (−1)l−i+1 (2(l − 1))!

(2(i− 1))!

l−1
∏

k=i−1

1

ζ − 2k(2k + 1)
.

This enables us to compute explicitely the matrix T (n): it means computing the polar part
of the rational fractions Ril at the pole µ. This one is null if i > j + 1 or l ≤ j. Thus the
first j columns of the matrix T (n) are null, and we can find non null elements only on the
first j + 1 rows.
For i ≤ j + 1 and l > j, Til = −Ril(ζ)× (ζ − µ) evaluated in µ. Therefore

Til = (−1)l−i (2(l − 1))!

(2(i− 1))!

l−1
∏

k≥i−1,k 6=j

1

µ− 2k(2k + 1)
.

Thus Til+1 =
2l(2l − 1)

2l(2l + 1)− µ
Til. For all j, there exists an index l0 from which the ratio

2l(2l − 1)

2l(2l + 1)− µ
is lower than 1; from this index, the 1-norm of the columns of T (n) is decreasing.

Finally, considering the structure of G(n), (G(n)T (n))il = Ti−1l. We conclude that there exists
an upper bound for pn, independent of n.
It follows from above that the coefficients Til are bounded, we will denote ||T ||∞ a bound for
|Til|.
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For the matrix S, we compute the constant term in the expansion of the rational fractions
Ril in the neighborhood of µ. The matrix S has the following structure:



































coefficients of type (5)

coefficients

of type (4)



































For i > j + 1, µ is not a pole, thus Sil = Ril(µ), that means:

Sil = (−1)l−i+1 (2(l − 1))!

(2(i− 1))!

l−1
∏

k=i−1

1

µ− 2k(2k + 1)
, (4)

if l ≥ i and else 0.

As before, Sil+1 =
2l(2l − 1)

2l(2l + 1)− µ
Sil if l ≥ i, Sl+1l+1 =

1

2l(2l + 1)− µ
.

Let l0 the index from which
2l(2l − 1)

2l(2l + 1)− µ
≤ 1.

Let ul =

n
∑

i=j+2

|Sil| =
l
∑

i=j+2

|Sil|. For l ≥ l0 :

ul+1 ≤ ul +
1

2l(2l + 1)− µ
≤ ul0 +

l
∑

k=l0

1

2(k − j)(2(k + j) + 1)
= ul0 +

l−j
∑

q=l0−j

1

2q(2q + 4j + 1)

≤ ul0 +

∞
∑

k=1

1

2k(2k + 1)
≤ ul0 + 1− ln 2.

For i ≤ j + 1,

Sil = Til

l−1
∑

k=i−1,k 6=j

1

2k(2k + 1)− µ
, (5)
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if l ≥ i and else 0.
We deduce that

Sil+1 = Til
2l(2l − 1)

2l(2l + 1)− µ

(

l−1
∑

k=i−1,k 6=j

1

2k(2k + 1)− µ
+

1

2l(2l + 1)− µ

)

=
2l(2l − 1)

2l(2l + 1)− µ
Sil +

2l(2l − 1)

(2l(2l + 1)− µ)2
Til.

For l ≥ l0 :

|Sil+1| ≤ |Sil|+ ||T ||∞ 1

2l(2l + 1)− µ
≤ |Sil0 |+ ||T ||∞

l
∑

k=l0

1

2k(2k + 1)− µ

≤ |Sil0 |+ ||T ||∞(1− ln 2).

To evaluate the 1-norm of the column-vector of index l of S, (l ≥ l0), we add:

||Sl||1 =
j+1
∑

i=1

|Sil|+ ul ≤
j+1
∑

i=1

|Sil0 |+ ul0 + ((j + 1)||T ||∞ + 1)(1− ln(2))

= ||Sl0 ||1 + ((j + 1)||T ||∞ + 1)(1− ln(2)).

This proves that there exists an upper bound for qn and sn, independent of n.

To conclude, we give an upper bound for the coefficients α
(n)
p of the series δ

(n)
2j (τ), independent

of n. To do this, we put ρn =
√

pn

sn
1√

pnsn+
√
qn

and rn = (
√
pnsn +

√
qn)

−2. It is proved in

[[10], p. 91] that ρn ≤ d, the isolation distance of the eigenvalues of F (n) (d = 6 for all n),
and we have seen above that there exists a lower bound for rn, say r.
Choose for Γ the circle |ζ − 2j(2j + 1)| = ρn. For |τ |2 < rn, the series expansion of the
resolvant of the perturbated matrix F (n) + τ2G(n), R(ζ, τ2), is uniformely convergent for

ζ ∈ Γ, and the function δ
(n)
2j (τ)− 2j(2j +1) is holomorphic and bounded by ρn for |τ |2 < rn.

It follows from Cauchy’s inequality for the Taylor coefficients that |α(n)
p | ≤ ρnr

−p
n ≤ dr−p.

The end of the proof is the same as for theorem 1. �

Considering the odd solution y2 in the neigborhood of 0, we introduce an other family of
polynomials, defined by:

Q0 = 0, Q1 = 2, Q2 = 0, Q3 =
2− µ

3
, Q4 = 0, Q5 =

µ2

60
+
τ2

10
− 7µ

30
+

2

5
,

and the recurrence equation:

−n(n+ 1)Qn + (n2 − µ− n)Qn−2 + τ2Qn−4 = 0.

The odd coefficients Q2n+1, (n ≥ 0) are polynomials of degree n in the variable µ, and we
obtain a similar result about the convergence of their roots to the eigenvalues of odd indices
of Dτ .
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7. The eigenvalues and the formal solutions at the point 1

In the neighborhood of 1, we know a basis of solutions f1(x) and f2(x), where f1 is a conver-
gent series, whose first terms can be computed:

f1 (x) = 1+
µ− τ2

2
(x− 1) +

(

1

16
τ4 − 1

8
µ τ2 +

1

16
µ2 − 1

8
τ2 − 1

8
µ

)

(x− 1)2+O
(

(x− 1)3
)

Let Un the coordinates of this series in the basis (x− 1)n:

U0 = 1, U1 =
µ− τ2

2
, U2 =

1

16
τ4 − 1

8
µ τ2 +

1

16
µ2 − 1

8
τ2 − 1

8
µ,

the following polynomials satisfying the recurrence relation:

2n2Un + (n2 + τ2 − µ− n)Un−1 + 2τ2Un−2 + τ2Un−3 = 0.

Proposition 11. The polynomials Un are polynomials of degree n in the variable µ and for

all n ≥ 1, Un mod τ2 =
1

2n(2n)!2

n−1
∏

j=0

(µ− j(j + 1)). The polynomial Un admits n Puiseux

series solutions, we will note γ
(n)
j , j = 0 . . . n− 1, the series whose constant term is j(j +1).

Proof: Just reduce the recurrence relation modulo τ2 :

2n2(Un mod τ2) = (µ− n(n− 1)) (Un−1 mod τ2).

�

Proposition 12. For all j ≥ 0, the series µ̂2j satisfies:

∀n > j, U2n−1(µ̂2j) = 0 mod τ2(n−j) and U2n(µ̂2j) = 0 mod τ2(n−j).

For the proof of this proposition, we will need the

Lemma 2. For all j ≥ 0,

∞
∑

i=0

P2i(2j(2j + 1)) mod τ2 =

2j
∑

i=0

P2i(2j(2j + 1) mod τ2 =
(−1)j4j(j!)2

(2j)!
mod τ2.

Proof: For j = 0, we verify P0(0) = 1 and P2i(0) = 0 mod τ2.
For j ≥ 1, the first equality comes from the fact that P2i(2j(2j + 1) = 0 mod τ2, for all
i > j.
The second equality can be established by applying the divided differences, in order to com-
pute the coordinates in the Newton basis (1, µ − x0, (µ − x0)(µ − x1), . . . ,

∏j
i=0(µ − xi)) of

the polynomial of degree less or equal j interpolating the points (x0, z0), (x1, z1), . . . , (xj , zj).
From the values zi, we build a lower triangular array in the following way: for i = 0 . . . j,

C[i, 0] = zi (the first column), then for i = 1 . . . j, C[i, 1] = C[i,0]−C[i−1,0]
xi−xi−1

(the second col-

umn), for i = k . . . j, C[i, k] = C[i,k−1]−C[i−1,k−1]
xi−xi−k

, at last C[j, j] = C[j,j−1]−C[j−1,j−1]
xj−x0

. It is
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well known that the coordinates in the Newton basis of the interpolation polynomial are the
diagonal elements C[i, i].
In our case, we are knowing the coordinates in the Newton basis, and we want the value of

the polynomial at the points xi. Indeed xi = 2i(2i + 1) and C[i, i] = (−1)i

(2i)! . We deduce an

exact formula for all the elements of the array:

∀k ≥ i, C[i, k] = (−1)i4i−k i!(i− k)!

k!(2i)!
.

We prove this formula by recurrence on the index i. For i = 0, C[0, 0] = 1.
Assume that the formula has been proved for the row i. We prove it for the row i+1, starting

from the known coefficient C[i + 1, i + 1] = (−1)i+1

(2i+2)! . Assuming that C[i + 1, k] and C[i, k]

are known, we compute C[i+ 1, k − 1] = (xi+1 − xi+1−k)C[i+ 1, k] + C[i, k − 1] and we find

C[i+ 1, k − 1] = (−1)i+14i+2−k (i+ 1)!(i+ 2− k)!

(k − 1)!(2i+ 2)!
.

Conclusion: C[j, 0] = (−1)j4j j!j!
(2j)! .

�

Proof: Consider again the eigenfunction y1(x), corresponding to an eigenvalue of even
index. It is proportional to f1(x), which means y1(x) = cf1(x).
Then we obtain by change of basis:

































c

cU1

cU2

cU3

cU4

...

































= B

































1

0

P2

0

P4

...

































,

where we just know that B is an infinite upper triangular matrix, whose elements will be
noted βij .

B =

























1 1 1 1 . . .

1 2 3 . . .

1 3 . . .

1 . . .

. . .

























.
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Then: c =
∑

i=0 P2i and, applying the proposition 9, c(µ̂0) = 1 mod τ2.
We deduce:

∀i ≥ 1, c(µ̂0)U2i−1(µ̂0) = β2i−1,2iP2i(µ̂0) mod τ2i+2 = 0 mod τ2i,

c(µ̂0)U2i(µ̂0) = β2i,2iP2i(µ̂0) mod τ2i+2 = 0 mod τ2i.

Also c(µ̂2) = 1 + P2(µ̂2) mod τ2 6= 0 mod τ .
We deduce: c(µ̂2)U3(µ̂2) = 4P4(µ̂2) mod τ4 = 0 mod τ2, thus U3(µ̂2) = 0 mod τ2.
And c(µ̂2)U4(µ̂2) = P4(µ̂2) mod τ4 = 0 mod τ2, thus U4(µ̂2) = 0 mod τ2.
In a general way

c(µ̂2j) =

∞
∑

i=0

β1,2jP2i(µ̂2j) =

2j
∑

i=0

P2i(µ̂2j) mod τ2 6= 0 mod τ.

The last inequality is a consequence of lemma 2.
We deduce:

∀n > j, c(µ̂j)U2n−1(µ̂2j) = β2n−1,nP2n(µ̂j) mod τ2(n+1−j) = 0 mod τ2(n−j),

thus U2n−1(µ̂2j) = 0 mod τ2(n−j), ∀n > j.
And

c(µ̂j)U2n(µ̂2j) = β2n,nP2n(µ̂j) mod τ2(n+1−j) = 0 mod τ2(n−j),

thus U2n(µ̂2j) = 0 mod τ2(n−j), ∀n > j.
�

Proposition 13. Link between the series γ
(n)
2j and the series µ̂2j

∀j ≥ 0, ∀n > j, γ
(2n−1)
2j = γ

(2n)
2j = µ̂2j mod τ2(n−j).

Theorem 3. For τ small enough, the sequence γ
(n)
2j (τ) converges to µ̂2j(τ), when n tends

to infinity.

Proof: If we try to make exactly the same work on the recurrence relation satisfied by Un,
it is easy to compute new matrices F (n), G(n), T (n), S(n), but the 1-norm of G(n)T (n) is not
bounded.
We put Un = 2nUn. Of course Un has the same roots as Un and satisfies the recurrence
relation:

n2Un + (n2 + τ2 − µ− n)Un−1 + 4τ2Un−2 + 4τ2Un−3 = 0.
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Thus Un+1(µ) = 0 if and only if

































τ2
− µ 1

4τ2 τ2
− µ + 2 4

4τ2 4τ2 τ2
− µ + 6 9

. . .
. . .

. . .
. . .

4τ2 4τ2 τ2
− µ + k(k + 1) (k + 1)2

. . .
. . .

. . .
. . .

4τ2 4τ2 τ2
− µ + n(n − 1) n2
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− µ + n(n + 1)





























































U0

U1

.

.

.
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.
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.

Un−1
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= 0.

We are led to search the eigenvalues of the perturbated matrix:

F (n) + τ2G(n),

where

F (n) =

























0 1

2 4

. . .
. . .

(n− 1)n n2

n(n+ 1)

























, G(n) =

























1

4 1

4 4 1

. . .
. . .

. . .

4 4 1

























.

Here again the resolvant R(n)(ζ) is an upper triangular matrix whose elements can be com-
puted explicitely (by omitting the upper index (n)):

Rii(ζ) = −1, and Ril(ζ) = −
∏l−2

k=i−1(k + 1)2
∏l−1

k=i−1 (ζ − k(k + 1))
, if l > i,

and we can expand these elements in the neighborhood of the eigenvalue µ = j(j + 1). The
first j columns and the rows of index greater than j + 1 of the matrix T (n) are null. For
i ≤ j + 1, Tii = −1 and if l > j, Til = −Ril(ζ)× (ζ − µ) evaluated in µ. Therefore

Til =

∏l−2
k=i−1(k + 1)2

∏l−1
k=i−1,k 6=j (ζ − k(k + 1))

.

Thus Til+1 =
−l2

l(l + 1)− µ
Til. For all j, there exists an index l0 from which the ratio

l2

l(l + 1)− µ
is lower than 1; from this index, the 1-norm of the columns of T (n) are de-
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creasing. To conclude, ||G(n)T (n)||1 ≤ ||G(n)||1||T (n)||1 = 9||T (n)||1, and there exists an upper
bound of pn independent of n.

The matrix S has the same structure as in the previous paragraph.
For i > j + 1, µ is not a pole, thus Sil = Ril(µ), that means:

Sil =

∏l−2
k=i−1(k + 1)2

∏l−1
k=i−1 (µ− k(k + 1))

, (6)

if l ≥ i and else 0.

As above, Til+1 =
l2

l(l + 1)− µ
Sil if l ≥ i, Sl+1l+1 =

1

l(l + 1)− µ
.

Let l0 be the index from which
l2

l(l + 1)− µ
≤ 1.

Let ul =

n
∑

i=j+2

|Sil| =
l
∑

i=j+2

|Sil|. For l ≥ l0 :

ul+1 ≤ ul +
1

l(l + 1)− µ
≤ ul0 +

l
∑

k=l0

1

(k − j)(k + j + 1)
= ul0 +

l−j
∑

q=l0−j

1

q(q + 2j + 1)

≤ ul0 +

∞
∑

k=1

1

k(k + 1)
≤ ul0 + 1.

For i ≤ j + 1,

Sil = Til

l−1
∑

k=i−1,k 6=j

1

k(k + 1)− µ
, (7)

if l ≥ i and else 0.
We deduce

Sil+1 = Til
l2

l(l + 1)− µ

(

l−1
∑

k=i−1,k 6=j

1

k(k + 1)− µ
+

1

l(l + 1)− µ

)

=
l2

l(l + 1)− µ
Sil +

l2

(l(l + 1)− µ)2
Til.

For l ≥ l0 :

|Sil+1| ≤ |Sil|+ ||T ||∞ 1

l(l + 1)− µ
≤ |Sil0 |+ ||T ||∞

l
∑

k=l0

1

k(k + 1)− µ
≤ |Sil0 |+ ||T ||∞.
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To compute the 1-norm of the column vector of index l of S, (l ≥ l0), we add:

||Sl||1 =
j+1
∑

i=1

|Sil|+ ul ≤
j+1
∑

i=1

|Sil0 |+ ul0 + (j + 1)||T ||∞ + 1 = ||Sl0 ||1 + (j + 1)||T ||∞ + 1.

This proves that there exists an upper bound for qn and sn, independent of n.
The end of the proof is the same as for theorem 2. �

8. The eigenvalues and the formal solutions at infinity

In the neighborhood of infinity, we recall the formal solutions ŷ1(x) and ŷ2(x) and we note
Vn the coordinates of the series xeiτxŷ1(x) in the basis 1/xn.

V0 = 1, V1 =
−i(µ− τ2)

2τ
, V2 =

−µ2 + 2µ+ 2τ2µ+ 2τ2 − τ4

8τ2
,

the following coefficients satisfying the recurrence relation:

2niτVn + (n2 + τ2 − µ− n)Vn−1 − 2iτ(n− 1)Vn−2 − (n− 1)(n− 2)Vn−3 = 0.

Proposition 14.

∀n ≥ 0, Vn = n!

(−i
τ

)n

Un.

Proof: This is true for n = 0, n = 1, n = 2. Assume that the property is true for indices
≤ n− 1. Then

2niτVn = −(n2 + τ2 − µ− n)Vn−1 + 2iτ(n− 1)Vn−2 + (n− 1)(n− 2)Vn−3,

we replace the polynomials Vn−1, Vn−2, Vn−3 by their expression in terms of Un−1, Un−2, Un−3

and we use the recurrence relation satsified by the polynomials Uk to prove that the property
is still true for the index n. �

Theorem 4. For τ small enough, the sequence of the zeros of index 2j of Vn converges
to µ̂2j(τ), when n tends to infinity.

Comment: the result of the proposition 14 is linked to the relations that could been
obtained by using Fourier transform. In particular, the operator D1 is “invariant by Fourier
transform” (cf. [12], 3.3, page 356) and for τ = 1, the series f1, interpreted as a power series in
the variable (x− 1) is the Borel-transform of the series −ieixŷ1, interpreted as a power series
in the variable −i

x . Neverthless, we derive here in a very simple way the relation between the
polynomials Un and the coefficients Vn, which is suffisant for our initial goal: prove that the
zeros of Vn converge to the eigenvalues of the differential operator Dτ (for small τ).
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9. Asymptotic behavior of the coefficients Pn(µ)

The study of the asymptotic behavior of Pn(µ), defined by (3), based on [13], will enable us
to prove that µ̂2j(τ) (if it converges) is an eigenvalue of Dτ .
The recurrence equation satisfied by the polynomials Pn,

(

1 +
1

2n

)(

1 +
1

n

)

Pn+1(µ)−
(

1 +
1

2n
− µ

4n2

)

Pn(µ)−
τ2

4n2
Pn−1(µ) = 0,

is irregular and its characteristic equation is: z2 − z − τ2

4n2 = 0. We search the leading terms
of the Puiseux solutions, that means a beginning of solution of the form z = ρns and find

two possibilities: s = 0, z = 1, and s = −2, z =
−τ2
4

.

Each “solution” ρns corresponds to an asymptot of the recurrence equation of the form
ρnΓ(n)spn, and we have to complete the determination of pn.

• s = −2. Plugging Pn =

(−τ2
4

)n

Γ(n)−2pn in the initial recurrence, we obtain for pn:

− τ2

4n2

(

1 +
1

2n

)(

1 +
1

n

)

pn+1 −
(

1 +
1

2n
− µ

4n2

)

pn +

(

1− 1

n

)2

pn−1 = 0.

Then pn ≈ n−5/2. And so we have the first asymptotic behavior:

C1 =

(−τ2
4

)n

Γ(n)−2n−5/2.

• s = 0.
(

1 +
1

2n

)(

1 +
1

n

)

pn+1 −
(

1 +
1

2n
− µ

4n2

)

pn − τ2

4n2
pn−1 = 0.

Then: pn ≈ 1

n
. The second behavior is: C2 =

1

n
.

Then Pn(µ) ≈ a(µ)C1 + b(µ)C2.

And µ is an eigenvalue if and only if 2n
√

|Pn(µ)| tends to 0.

Now 2n
√

|C1| ≈
τe

2n
; 2n
√

C2 ≈ 1.

Thus µ is an eigenvalue if and only if b(µ) = 0. Finally, if µ is not an eigenvalue, b(µ) 6= 0,

thus Pn(µ) tends to 0 as b(µ)
n .

Proposition 15. Assume that a sequence µn is known, which converges to µ, and satisfies
Pn(µn) = 0, for all n. Then µ is an eigenvalue of Dτ .

Proof: Assume that µ is not an eigenvalue. Then Pn(µ) ≈ b(µ)
n .

The polynomials P′
n satisfy the recurrence relation:

τ2P′
n−1 + (2n(2n+ 1)− µ)P′

n − (2n+ 1)(2n+ 2)P′
n+1 = Pn.
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We deduce that the asymptotic behavior of P′
n(µ) is at worst

cst
n . Then:

|Pn(µ)| = |Pn(µ)− Pn(µn)| ≤
cst

n
|µ− µn|,

which is in contradiction with the asyptotic behavior of |Pn(µ)|.
Conclusion: µ is an eigenvalue of Dτ . �

Corollary 2: for τ small enough, µ̂2j(τ) is an eigenvalue of Dτ .

The following corollary and its variants summarize some of our main results. (We denote
δη the Dirac mass at η ∈ R.)

Corollary 3: For τ ≥ 0, we denote by {µr(τ)}r∈N the set of eigenvalues of Dτ and, for
all n ∈ N, by {νp(τ)}p=0,...,n−1 the set of roots of the polynomial P2n

6 (as a polynomial in µ,
τ being fixed).

There exists ρ > 0 such that if 0 ≤ τ < ρ, is fixed, then, for all n ∈ N, the roots
{νp(τ)}p=0,...,n−1 are real and distinct and such that the measure

∑

p=0,...,n−1 δνp(τ) tends to

the measure
∑

p∈N δµ2p(τ) when n tends to +∞.

There are similar results (mutatis mutandis) replacing the sequence of polynomials P2n

by the sequences Q2n+1, Un, Vn and Dn.

10. Asymptotic expansions of the eigenvalues for large values of τ

In order to study the eigenvalues of Dτ for “big values” of τ one can use, as for “small values”
of τ , a perturbative method. The idea is to set x := ξ/

√
2τ (cf. [14, 3]). Then Dτy − µy = 0

is transformed into:

(ξ2 − 2τ)
d2y

dξ2
+ 2ξ

dy

dξ
+

(

τξ2

2
− µ

)

y

or equivalently (for τ > 0) into:

d2y

dξ2
+

(

µ

2τ
− ξ2

4

)

y − ξ2

2τ

d2y

dξ2
− ξ

τ

dy

dξ

which we can interpret, when τ is “large”, as a perturbation of

d2y

dξ2
+

(

µ

2τ
− ξ2

4

)

y.

This differential equation is a particular case of the parabolic-cylinder differential equation:

d2y

dξ2
+

(

r +
1

2
− ξ2

4

)

y.

6The roots are complex numbers and if necessary they are repeated according to their multiplicity.
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For r ∈ N, this equation admits as a solution:

Dr(ξ) = (−1)reξ
2/4 d

r

dξr
e−ξ2/2 = 2−r/2e−ξ2/4Hr(ξ/

√
2),

where Hr is a Hermite polynomial.
The foregoing suggests that we expand y in terms of the parabolic cylinder functions:

y =

+∞
∑

n=0

hnDn.

The coefficients are solutions of a five terms linear recurrence (cf. [3]). From this recurrence
one obtains asymptotic expansions of the eigenvalues µn in the variable τ−1 (cf. [2] 3.25 Satz
9, page 243, [15] 21.7.6 page 321, [3] (8.1.11) page 60):

µn = (2n+ 1)τ − (2n2 + 2n+ 3)2−2 − (2n+ 1)(n2 + n+ 3)2−4τ−1 + · · · (8)

Then it is natural to try to imitate what we did above in order to get similar results for
large values of τ7, replacing the expansion:

y(x) =

∞
∑

n=0

anLn(x).

by the expansion:

y(x) =

+∞
∑

n=0

hnDn(x),

τ by τ−1, µ by µ/τ and the polynomials P (τ, µ) in (τ, µ), of degree n in µ, by Q(τ−1, µτ−1) :=
P (τ, µ)τ−n.

Unfortunately this idea does not work because the power series expansions (8) are diver-
gent.

The divergence was proved in [2], 3.253, page 247. The authors compute a power series
expansion of µn(τ) for purely imaginary values of τ (τ = iτ∗, τ∗ > 0) and remark that it
does not match with the expansion (8).

It is interesting to compare to what it is happening with the anharmonic oscillator whose
potential is V (x) := x2 + βx4 (a triconfluent Heun equation). The eigenvalues λn (n ∈ N∗)
are real and real analytic functions defined on the positive ray. In 1969 Bender and Wu [16]
studied analytic continuation of λn to the β-plane. They discovered that:

– for all m,n ∈ N∗, λm is an analytic continuation of λn;
– the singularities encountered in the analytic continuation of the eigenvalues are algebraic
ramification points accumulating to β = 0;

– the formal power series expansions of λn in powers of β are divergent.

7There is a strong numerical evidence for such results.
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The proofs of these results were completed later by various authors (in particular Loeffel-
Martin, B. Simon, Eremenko-Gabrielov). There are also a very interesting attempt to obtain
such results using the Ecalle resurgence theory (based on Borel transformation) [17]. Unfor-
tunately some proofs remain uncomplete.

By analogy (replacing β by τ−1) it would be interesting to try to apply resurgence methods
to the study of the eigenvalues of the prolate spheroidal problems. The first test in this
direction is the following conjecture.

Conjecture 1: The divergent power series expansion (8) (in τ−1) is Gevrey of order 1.

In a recent work [18] G. Başar and G. V. Dunne investigated the resurgence of the asymp-
totic expansions of the eigenvalues in the cases of Mathieu and Lamé equations in relation
with some problems of gauge theory in physics.

As for the prolate spheroidal case it is also possible in the case of the anharmonic oscillator
to get convergent expansions of the eigenvalues. The idea is to use a change of variables due
to Symanzik to “replace” the potential V (x) := x2 + βx4 by the potential V (x) := x4 + αx2.
Then the power expansions in α are convergent (cf. [19]) as the power expansions in τ in the
prolate spheroidal case.

11. Stokes phenomena and analytic continuation of the eigenvalues in the
complex τ plane

In this part we shall consider the operator:

Dτ = (x2 − 1)
d

dx

2

+ 2x
d

dx
+ τ2x2,

when τ is a complex parameter. Setting τ := iτ∗, we get τ2 = −(τ∗)2 and Dτ = (x2−1) d
dx

2
+

2x d
dx − (τ∗)2x2, therefore we get also the case of the oblate spheroidal functions of order 0.

Definition 1. If τ ∈ C, then an eigenvalue of Dτ is by definition a complex number
µ ∈ C such that there exists a non trivial analytic solution at 0 of:

Dτ (y) = µy

such that its analytic continuation is bounded on ]−1, 1[. Then such an analytic function is
called an eigenfunction of Dτ associated to µ.

This definition is clearly equivalent to the classical definition when τ is real. The eigen-
values in the complex case have been studied by various authors (cf. in particular [14]).

Remark. Let τ := |τ |eiθ ∈ C, then if µ ∈ C is an eigenvalue of Dτ , the corresponding solution
at 0, bounded on ]−1, 1[ extends in an entire function y such that y(z) tends to 0 as z → ∞
along the rays of argument ±θ. Therefore our definition of eigenvalues is in accordance with
definitions of other authors in the study of the Schrödinger equation in the complex domain
(cf. [21]).
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In [1] we studied the Stokes phenomena for Dτ when τ is real. Our study extends easily
to the complex case τ := |τ |eiθ ∈ C. Using an evident generalisation of the notations of [1]
we get two Stokes matrices (respectively associated to the two Stokes rays θ ± π/2):

Sθ+π/2 :=







1 α

0 1






and Sθ−π/2 :=







1 0

β 1






.

We have Tr (Sθ−π/2Sθ+π/2) = 2 + αβ therefore αβ is well defined and is an entire function
of (τ, µ) ∈ C2. We define F : (τ, µ) ∈ C2 7→ α(τ, µ)β(τ, µ). By analogy with the case of the
quartic oscillator (cf. [19, 20]), we call the entire function F the spectral determinant8. We
denote by Z ⊂ C the set of zeros of F : Z := {(τ, µ) ∈ C2|F (τ, µ) = 0}. It is a plane analytic
curve.

Theorem 5. Let τ, µ ∈ C. the following conditions are equivalent:

(i) µ is an eigenvalue of Dτ ;
(ii) the sums of the power series f1 and g1 (the analytic solutions at 1, respectively −1) are

entire functions;
(iii) the Stokes phenomenon is trivial (i. e. α = β = 0);
(iv) the monodromy around [−1, 1] is trivial.

Moreover if µ is an eigenvalue of Dτ , then a corresponding eigenfunction is even or odd and
the corresponding eigenspace is a complex vector space of dimension 1.

Proof: The proof is a variant of the proof of the theorem 1 of [1]. We will only detail the
differences.

Let τ, µ ∈ C. In the neighborhood of the point 1, we find a basis of solutions (x ∈ C) of
Dτ (f) = µf :

f1(x), f1(x) log(x− 1) + ϕ1(x).

In the neighborhood of the point −1, we find a basis of solutions (x ∈ C):
g1(x), g1(x) log(x+ 1) + ψ1(x).

All the functions f1, ϕ1, g1, ψ1 are sums of convergent power series (respectively in the
variables x− 1 and x+ 1), with a radius of convergence at least 2.

The dimension of the space of solutions holomorphic at 1 (resp. −1) is 1. It is generated
by f1 (resp. g1).

• The properties (iii) and (iv) are equivalent (cf. [1]).
• The property (iv) implies the property (ii) (cf. [1]).

8In the case of the quartic oscillator and, more generally, in the case of Sibuya’s differential equations, the spectral
determinant is also defined using Stokes phenomena [21]. In the case of the spheroidal differential equations this
approach seems new.



New characterizations for the eigenvalues of the prolate spheroidal wave equation 29

• The property (ii) implies clearly the property (i). We will show that the property (i)
implies the property (iv). That will end the proof.

We suppose that f is an eigenfunction of Dτ associated to µ. Then it extends analytically
in a neighborhood of −1 and a neighborhood of 1. Therefore f extends analytically in
an entire function.

The operator Dτ is invariant under the transformation x 7→ −x, therefore g : x 7→ f(−x)
is also an eigenfunction. Hence f + g and f − g are equal to zero or are eigenfunction.
We cannot have f + g = f − g = 0 (f 6= 0), then there exists an even or an odd
eigenfunction.

We suppose that f is even (the odd case is similar). We prove, as in [1], that there
exists another independent solution h := f log x+1

x−1 + η where η is an entire function.

The action of the monodromy around [−1, 1] on f, η, log x+1
x−1 is trivial and the result

follows.

�

Corollary 4: If τ ∈ C, then µ ∈ C is an eigenvalue of Dτ if and only if F (τ, µ) = 0,
that is if (τ, µ) ∈ Z.

Theorem 6. (i) All the analytic functions µp : τ 7→ µp(τ), |τ | “small”, are restrictions
of two multi-valued ramified analytic functions Λi, i = 0, 1, of τ , one for even p the
other for odd p. Each branch of Λi, i = 0, 1, can be extended along any continuous path
avoiding the singularities of Λi.

(ii) The only singularities of Λi over the τ -plane are algebraic ramification points (of order
two).

(iii) The ramification points accumulate at infinity.

Proof: A similar result was proved by F. W. Schäfke in the case of the Mathieu equations
[2, 22, 23, 24]9. For the case of the spherical functions there is a short proof of the essential
points in [2], Satz 1 p. 268 (for more details cf. [14, 25, 26, 27]). �

We denote by Zi, i = 0, 1, the graph of Λi in C2.
We can prove easily Z0 ∪ Z1 ⊂ Z.
The preceding results suggest strongly the following conjecture (cf. [28]). A similar state-

ment for the Mathieu equations is true, the function F being replaced by the Hill determinant
(cf. [24]).

Conjecture 2: (i) All the branches of the eigenvalues µ(τ) corresponding to the even
(resp. odd) eigenfunctions form a ramified multi-valued analytic function whose graph
Z0 (resp. Z1) is an analytic curve of C2, a connected component of Z.

(ii) We have Z = Z0 ∪ Z1 and Z0 ∩ Z1 = ∅. The curves Z0 and Z1 are the connected
components of the curve Z.

9In this case the graph is connected.
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(iii) The only singularities of Z over the τ -plane, for the projection (τ, µ) 7→ τ , are algebraic
ramification points (of order two).

(iv) For every bounded set K in the τ -plane, there are only finitely many ramification points
of the two multivalued functions over K .

(v) We have Zi = Z i, i = 0, 1.

For the proof of the conjecture the delicate point is (iv). If this statement is true, then (v)
follows easily (any germ of regular branch of µ at τ = τ0 ∈ C can be extended analytically
along a continuous path ending at τ = 0). Then the other statements follows from the
Theorem 6. It is perhaps possible to prove (iii) using the methods of Volkmer [24].

Conjecture 3: For all n ∈ N we denote V (P2n) := {(τ, µ) ∈ C2|P2n(τ, µ) = 0}. Then
the current of integration10 on the algebraic curve V (P2n) tends, when n tends to infinity, to
the current of integration on the analytic curve Z0.

There are similar conjectures (mutatis mutandis) for the polynomials Q2n+1, Un, τ
nVn

and Dn.
Remark It would be interesting to find the order (cf. [28]) of the current of integration on
the analytic curve Z0 and to study the growth of the entire function F .

Results similar to some results and to the conjecture11 above were recently proved by
Eremenko and Gabrielov for the anharmonic oscillator and other cases [19, 20] (cf. part
10)12. But it seems that in such situations there exists nothing similar to the phenomena
described in the conjecture 3.

12. Graphical illustration

In this short section, we include the first graphical plots, which give us the idea of the result
proved in this paper. For the two figures, the value of τ is fixed to 1.
On the left, we plot the graphs of V9(µ) (in red), V10 (in blue) and V11 (in green) for µ
varying from 0 to 30. We see that the polynomials cancel near the first eigenvalues of D1

[15]: 0.319, 2.593, 6.533, 12.514, 20.508.
On the right, we plot the graphs of V19 (in green), V20 (in blue), and V21 (in brown) in the
neighborhood of the first eigenvalue 0.319000.

10Cf. [29, 28, 30].
11In the work of Eremenko and Gabrielov the analog of our conjecture is a theorem.
12Such results could be related to a Galois theory.
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13. Conclusion

After many numerical experiments (cf. Appendix) we found a strong evidence in favour of
the following conjecture and its variations. (We denote δη the Dirac mass at η ∈ C ≈ R2.)

Conjecture 4: For τ ≥ 0, we denote by {µr(τ)}r∈N the set of eigenvalues of Dτ and,
for all n ∈ N, by {νp(τ)}p=0,...,n−1 the set of roots of the polynomial P2n

13 (as a polynomial
in µ, τ being fixed).

For all τ ≥ 0 fixed, the measure
∑

p=0,...,n−1 δνp(τ) (on C ≈ R

2) tends to the measure
∑

p∈N δµ2p(τ) (interpreted as a measure on C ≈ R2) when n tends to +∞.

There are similar conjectures (mutatis mutandis) replacing the sequence of polynomials
P2n by the sequences Q2n+1, Un and τnVn.

We proved the conjecture and its variants for “small values” of τ (cf. corollary 3). We
explained in part 10 why the idea to prove such results for “big values” of τ replacing ex-
pansions into Legendre polynomials by expansions into parabolic cylinder functions does not
work “naively”.

In [5] the similar conjecture is proved for the polynomials Dn.
The above conjecture 414 follows easily from the conjecture 3. As the conjecture 3 seems

difficult to prove, it is perhaps possible to prove directly the conjecture 4 using the proposition
2 and the analytic continuation of the eigenvalues (cf. the theorem 6). The technics of [14]
could be useful.

If we admit the conjecture 3, then we can prove that the union of the finite ramification
sets of the algebraic varieties V (P2n) and V (Q2n+1) (and similarly the ramification sets of
the algebraic varieties V (Un), V (τnVn), V (Dn)), for the projection (τ, µ) 7→ τ , admits as

13The roots are complex numbers and if necessary they are repeated according to their multiplicity.
14And its generalizations for τ ∈ C.
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“limit” the ramification set of Z, for the same projection15, when n tends to +∞. It would
be interesting to try to prove this statement directly and also to test it numerically. (About
such phenomena cf. [4], 7.5, in particular Possibility 1, page 354).

For sake of simplicity in this paper and our preceding work [1] we worked with prolate
differential equations of order 0. It seems easy to extend the results (and the conjectures) to
the prolate and oblate differential equations of arbitrary order m ∈ N+:

(x2 − 1)y′′ + 2xy′ +

(

τ2x2 − m2

x2 − 1

)

y = µy,

(x2 − 1)y′′ + 2xy′ −
(

τ2x2 +
m2

x2 − 1

)

y = µy.

It would also be interesting to consider the case of the Mathieu differential equation and more
generally the case of general confluent Heun equations.
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15That is {τ ∈ C| ∂
∂µ
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Appendix

In the following array, the reader can find the first eigenvalues of D10. The first column con-
tains the eigenvalues computed in [31], the second column contains the roots of the associated
polynomial P80 (which is a polynomial of degree 40 and has 32 real roots), the third one the
roots of Q81 (which is also of degree 40 and has 32 real roots), the fourth one the roots of U80

or the roots of V80 (which both are polynomials of degree 80 and have the same 60 real roots).

[31] P80 Q81 U80 or V80 [31] P80 Q81 U80 or V80

0 9.2283043 9.228304297 9.228304297

1 28.133464 28.13346373 28.13346373 21 512.7076800 512.7076837

2 45.868953 45.86895265 45.86895265 22 556.6457413 556.6457564

3 62.257700 62.25770045 62.25770045 23 602.5916176 602.5915522

4 76.993289 76.99328882 76.99328882 24 650.5440426 650.5438110

5 89.739267 89.73926724 89.73926724 25 700.50200 700.5019976 700.5031632

6 101.03543 101.0354307 101.0354307 26 752.4646553 752.4681217

7 112.88107 112.8810658 112.8810658 27 806.4313378 806.4108043

8 127.05083 127.0508253 127.0508253 28 862.4014856 862.3522979

9 143.87201 143.8720080 143.8720080 29 920.3746333 920.7284673

10 163.09665 163.0966527 163.0966527 30 980.35039 980.3503914 981.0345614

11 184.54762 184.5476186 184.5476186 31 1042.328432 1036.867273

12 208.13839 208.1383893 208.1383893 32 1106.308476 1101.726081

13 233.82295 233.8229509 233.8229509 33 1172.290287 1229.956151

14 261.57378 261.5737819 261.5737819 34 1240.273662 1379.347766

15 291.37313 291.3731261 291.3731261 35 1310.2584 1310.258427 1536.553711

16 323.20895 323.2089505 323.2089505 36 1382.244431 1703.373951

17 357.07281 357.0728053 357.0728053 37 1456.231543 1880.007184

18 392.95859 392.9585889 392.9585890 38 1532.219648 2066.700416

19 430.86179 430.8617935 430.8617933 39 1610.208648 2263.751344

20 470.77902 470.7790239 470.7790229 40 1690.1985 1690.198455 2471.510319
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