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New characterizations for the eigenvalues of the prolate spheroidal wave equation

In this paper, we give new characterizations for the eigenvalues of the prolate wave equation as limits of the zeros of some families of polynomials: the coefficients of the formal power series appearing in the solutions near 0, 1 or ∞ (in the variables x, x -1 or 1/x respectively). The result, which seems to be true for all values of the parameter τ , according to our numerical experiments, is here proved for small values of the parameter τ .

. The reader can easily check that if τ := 0, then the eigenvalue 2j(2j + 1) is a zero of all the polynomials P 2p for p ≥ j. Most of our methods are perturbative, therefore we have complete results only for "small values" of the parameter τ . Therefore, as a byproduct, we get new proofs of such results.

Introduction

This paper is devoted to the study of the spectral problem D τ y = µy where: D τ : y → (x 2 -1)y ′′ + 2xy ′ + τ 2 x 2 y, τ being a real parameter (τ ≥ 0).

It is equivalent to the study of the spectral problem for the prolate spheroidal wave operators 1 but D τ , being a perturbation of the opposite of the Legendre operator:

D 0 = (x 2 -1) d dx 2 + 2x d dx = - d dx (1 -x 2 ) d dx ,
is more adapted to a perturbative approach. The differential operator D τ is interpreted as defined on the Riemann sphere P 1 ( ) := ∪ {∞}. It admits 3 singularities: x = 1, x = -1, x = ∞; 1 and -1 are regular-singular and ∞ is irregular. The differential equation D τ y -µy = 0 is a confluent Heun equation.

In a preceding paper [START_REF] Fauvet | Stokes phenomenon for the prolate wave equation[END_REF], we made the following observations.

For τ ≥ 0 fixed and µ ∈ Ê, the following properties are equivalent:

1. µ is not an eigenvalue of D τ ;

Francoise.Jung@imag.fr, ramis@picard.ups-tlse.fr, thomann@math.u-strasbg.fr, fauvet@math.u-strasbg.fr 1 Of order m = 0. DOI: 10.1002/Pro.late˙fin 1 STUDIES IN APPLIED MATHEMATICS 00:1-35 c Wiley Periodicals, Inc., A Wiley Company 2. a non trivial power series solution of D τ y -µy = 0 at x = 1 admits 2 as convergence radius; 3. a non trivial power series solution of D τ y -µy = 0 at x = -1 admits 2 as convergence radius; 4. the non trivial power series solution of D τ y -µy = 0 at x = 0 admits 1 as convergence radius; 5. the power series solutions appearing in a fundamental system of formal solutions of D τ y -µy = 0 at x = ∞ are divergent.

For τ ≥ 0 fixed and µ ∈ Ê, the following properties are equivalent:

1. µ is an eigenvalue of D τ ; 2. a power series solution of D τ y -µy = 0 at x = 1 admits +∞ as convergence radius; 3. a power series solution of D τ y -µy = 0 at x = -1 admits +∞ as convergence radius; 4. there exists a non trivial even or odd power series solution of D τ y -µy = 0 at x = 0 admitting +∞ as convergence radius; 5. the power series solutions of D τ y -µy = 0 appearing in the formal series solutions at x = ∞ are convergent.

In the above observations all the power series (respectively in the variables x -1, x + 1, x, 1/x) admits as coefficients some polynomials in µ with coefficients in [τ, τ -1 ], satisfying some polynomial linear recurrences. For example there exists a unique even power series solution at x = 0: n∈AE P 2n x 2n , P 0 := 1. (The P 2n satisfy a three terms recurrence, they are polynomials of degree n in the variable µ with coefficients in É[τ].) For a fixed value of the parameter τ and µ ∈ Ê, the problem to decide if µ is an eigenvalue of D τ is a priori a global problem but it follows from the above observations that this problem can be "solved" locally at x = 1, or x = -1, or x = 0, or x = ∞. For example at x = 0 we have to "see" if the radius of convergence of n∈AE P 2n (µ)x 2n is +∞ or finite. The source of our article is the following experimental observation. (We will explain what is happening at x = 0 but there are similar phenomena for x = 1, x = -1 or x = ∞.) Trying to use the above considerations, that is the "jump" in the radius of convergence when µ crosses an eigenvalue, to get an heuristic "quick and efficient" numerical method to compute the eigenvalues 2 , we discovered a surprising phenomenon: experimentally, for all j ∈ AE, the j-th zero of the polynomial P 2p (p ≥ j) tends to the 2j-th eigenvalue of D τ when p tends to +∞ 3 .

Our article contains a proof of this result and of its variations at x = 1, x = -1 or x = ∞. 4 Our proof does not use the classical results on the eigenvalues problem for the prolate spheroidal equations as the convergent power series expansions in τ of the eigenvalues obtained by continued fractions methods in [START_REF] Meixner | Mathieusche funktionen und Sphäroidfunktionen[END_REF] 5 (cf. [START_REF] Meixner | Mathieusche funktionen und Sphäroidfunktionen[END_REF] 3.24 [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF], page 240, [START_REF] Flammer | Spheroidal Wave Functions[END_REF], 3, page [START_REF] Bender | Anharmonic oscillator[END_REF]).

The starting point of our proof was to try to give a rigourous meaning to a method proposed in [START_REF] Bender | Advanced Mathematical Methods for Scientists and Engineers, International Student Edition[END_REF], that is the "computation of the zeroes" of an infinite dimensional determinant, a Hill determinant, associated to the expansion of prolate spheroidal functions in series of Legendre polynomials, as limits of zeroes of finite dimensional determinants obtained by truncation. Our work was nearly finished when we noticed [START_REF] Miyazaki | Numerical Computation of the Eigenvalues for the Spheroidal Wave Equation with Accurate Error Estimation by Matrix Method[END_REF]. This paper contains a proof of this result for an arbitrary value of τ . Our proof only works for "small values" of τ , however it is necessary for the proofs of our main results.

Solutions in the complex plane

In this section, we precise the formal solutions which build basis of solutions in the neighborhood of the points 0, 1, -1 and ∞. Indeed, a complete description of these formal solutions can been obtained using the maple package Desir [START_REF] Della Dora | An algorithm to obtain formal solutions of a linear homogeneous differential equation at an irregular singular point[END_REF][START_REF] Pflügel | On the latest version of DESIR-II[END_REF][START_REF] Richard-Jung | The DESIR Package, Software demonstration[END_REF].

In the neighborhood of the origin, we find a basis of power series, whose first terms are the following:

y 1 (x) = 1 - µ 2 x 2 + 1 24 µ 2 + 1 12 τ 2 - 1 4 µ x 4 + O x 6 , y 2 (x) = x 2 + -µ + 2 3 x 2 + 1 60 µ 2 + 1 10 τ 2 - 7 30 µ + 2 5 x 4 + O x 6 .
In the neighborhood of each of the points ±1, we have a basis of solutions constituted of a regular (holomorphic at the singularity) function f and a solution of the form f (x) log(x ± 1) + g(x), where g is also regular. For example, in the neighborhood of the point 1, we obtain:

f 1 (x) = 1+ -τ 2 + µ 2 (x -1) + 1 16 τ 4 - 1 8 µ τ 2 + 1 16 µ 2 - 1 8 τ 2 - 1 8 µ (x -1) 2 +O (x -1) 3 f 2 (x) = ln (x -1) f 1 (x) + - 1 2 + τ 2 -µ (x -1) + 1 8 τ 2 + 1 8 µ + 1 8 - 3 16 τ 4 + 3 8 µ τ 2 - 3 16 µ 2 (x -1) 2 + O (x -1) 3 .
In general, in the neighborhood of a point x 0 , the solutions are computed using the rational Newton algorithm [START_REF] Barkatou | Rational Newton algorithm for computing formal solutions of linear differential equations[END_REF], this means that we obtain "generalized formal solutions": they are parametrized by a new variable t and have the form (x(t) -x 0 = Λt r , y(t) = exp(Q(1/t))t λ Φ(t)). In this expression, Λ is a complex number (usefull in order to reduce the algebraic extension needed), r is a positive integer, called the ramification, Q is a polynomial without constant term, λ is a complex number, called the exponent, and t λ Φ(t) is the regular part of the formal solution. Φ(t) is a polynomial in log(t) with power series coefficients. In our example, as 1 is a regular singularity, the parametrization is only a translation x(t)-1 = t, and Q = 0.

In the neighborhood of ∞, we obtain a basis of formal solutions constituted of:

x(u) = 1 u , y(u) = e -RootOf(τ 2 + Z 2 ) u u (1 - RootOf(τ 2 + Z 2 )(µ -τ 2 ) u 2 τ 2 + O(u 2 ))
Remark that we have above a condensed shape representing two solutions, corresponding to the two possible values of the RootOf: ±iτ . This gives raise to a basis of formal solutions constituted of:

ŷ1 (x) = e -iτ x x 1 - i (µ -τ 2 ) 2τ 1 x + -µ 2 + 2 µ + 2τ 2 µ + 2τ 2 -τ 4 8τ 2 1 x 2 + O( 1 x 4 ) ŷ2 (x) = e iτ x x 1 + i (µ -τ 2 ) 2τ 1 x + -µ 2 + 2 µ + 2τ 2 µ + 2τ 2 -τ 4 8τ 2 1 x 2 + O( 1 x 4 )
The parametrization is now given by the change of variable x = 1/u, the ramification is trivial, and the two series which appear in these solutions are a priori divergent, but 1-summable in each direction but ±iτ Ê + .

Of course, we give here only the first terms of the series, but the following ones can be generated using a recurrence formula, so (theoretically) we can obtain as much terms as wanted in all the series appearing in the solutions.

The eigenvalues as roots of an infinite determinant

Following [ [START_REF] Bender | Advanced Mathematical Methods for Scientists and Engineers, International Student Edition[END_REF], chapter 7, paragraph 7.5] (cf. also [START_REF] Miyazaki | Numerical Computation of the Eigenvalues for the Spheroidal Wave Equation with Accurate Error Estimation by Matrix Method[END_REF]), we try to expand a solution of the equation

D τ (y) = µy (1) 
as an infinite linear combination of eigenfunctions of the unperturbated problem, i.e. the Legendre polynomials,

y(x) = ∞ n=0 a n L n (x).
We consider also x 2 L n (x) as expanded in terms of the Legendre polynomials:

x 2 L n (x) = ∞ m=0 A n m L m (x).
Applying the differential equation (1) to y(x) and equating coefficients of L n for each n gives an infinite matrix equation satisfied by the coefficients a n :

M a =          -µ + τ 2 A 0 0 τ 2 A 1 0 τ 2 A 2 0 τ 2 A 3 0 . . . τ 2 A 0 1 2 -µ + τ 2 A 1 1 τ 2 A 2 1 τ 2 A 3 1 . . . τ 2 A 0 2 τ 2 A 1 2 6 -µ -τ 2 A 2 2 τ 2 A 3 2 . . . . . . . . . . . . . . . . . .                   a 0 a 1 a 2 . . .          = 0.
In our case, it is possible to obtain explicit formulas for the coefficients

A n m . Indeed, A n m = 1 m+1/2 1 -1 x 2 L n (x)L m (x)dx. Using the recurrence relation (2n + 1)xL n = (n + 1)L n+1 + nL n-1
and the fact that

1 -1 L n (x)L m (x)dx = 2δ n m 2n + 1
, we obtain:

A n n = 2n 2 + 2n -1 (2n + 3)(2n -1) , A n+2 n = (n + 1)(n + 2) (2n + 1)(2n + 3) , A n n+2 = (n + 1)(n + 2) (2n + 3)(2n + 5)
.

Then the matrix M is tridiagonal: 

M =               -µ + τ 2 /3 0 2τ 2 /3 0 0 . . . 0 2 -µ + 3τ
             
.

Moreover, we can split the odd and even coefficients a n , by extracting from the matrix M the corresponding columns and rows. For example, the even coefficients satisfy the following system:

         -µ + τ 2 /3 2τ 2 /3 0 . . . 2τ 2 /15 6 -µ + 11τ 2 /21 12τ 2 /35 . . . 0 4τ 2 /21 20 -µ + 39τ 2 /77 . . . . . . . . . . . . . . .                   a 0 a 2 a 4 . . .          = 0. ( 2 
)
Next we truncate the previous infinite matrix, and define M (n) the n×n matrix whose entries are the same as the first n rows and columns of the infinite matrix.

We define D n as the determinant of M (n) . D n is a polynomial in the variables µ and τ 2 , of nth-order in the variable µ. Considering the special shape of the matrix M (n) , it is easy to derive the recurrence formula:

D n+1 = 2n(2n + 1) -µ + A 2n 2n τ 2 D n -A 2n-2 2n A 2n 2n-2 τ 4 D n-1 .
So we obtain a family of polynomials, defined by the initial values

D 0 = 1, D 1 = -µ + 1 3 τ 2 ,
and a recurrence equation, whose roots are good candidates to approach the exact eigenvalues of even index of the differential equation ( 1).

Proposition 1. The polynomial D n is a polynomial of degree n in the variable µ. For all n ≥ 1,

D n mod τ 2 = (-1) n n-1 j=0 (µ -2j(2j + 1))
Then D n mod τ 2 admits n (integer) roots: 0, 6, . . . , 2j(2j + 1), . . . , (2n -2)(2n -1), all are simple. The polynomial D n admits n Puiseux series solutions, we note µ 

Proof:

The following result can be found in [ [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF], p. 95]: Let X be a unitary space, let T (x) = T + xT (1) a linear operator on X and let T be normal. Then the power series for the eigenvalues λ(x) are convergent if "the magnitude of the perturbation" ||xT (1) || is smaller than half the isolation distance of the eigenvalue λ of T . More precisely, if λ(x) = p≥0 λ p x p , the coefficients λ p satisfy the majorations:

|λ 1 | ≤ a, |λ p | ≤ a p 2 d p-1 , p ≥ 2,
where a = ||T (1) || and d is the isolation distance of the eigenvalues of T . We apply this result here by searching the eigenvalues of:

F (n) + τ 2 G (n)
where 

F (n) =             0 6 20 . . . 2(n -1)(2n -1)             , and 
G (n) =             1/3 2/
A 2n-4 2n-2 A 2n-2 2n-2            
The matrices F (n) and G (n) are n × n square matrices, G (n) is a tridiagonal matrix, whose elements are explicitely known.

It is easy to majorate the 2-norm of G (n) , using the inequality

||G (n) || 2 ≤ ||G (n) || 1 ||G (n) || ∞ ≤ 3.
We obtain the announced result by noting that d = 6 (for all n).

In the following paragraph, we will study the link between the series µ (n) 2j , when j is fixed and n is growing.

The eigenvalues as sums of a series

First we compute the beginning of the Puiseux series of the polynomials D n , for small n.

> algcurves[puiseux](D(1),tau=0,mu,9);

1 3 τ 2
> algcurves[puiseux](D(2),tau=0,mu,9); We notice that the first terms of the series stabilize little by little. More precisely, consider the "first" series solution of all polynomials, the series whose constant term is null. The term of degree 2 is the same for all poynomials, the terms of degree 4 and 6 are the same for all polynomials of index greater than 1, the terms of degrre 6 and 8 are the same for all polynomial of index greater than 2. This phenomenon is repeated for the "second" series solution, the series whose constant term is 6. The term of degree 2 is the same for all polynomials of index greater than 1, the terms of degree 4 and 6 are the same for all polynomials of index greater than 2, etc... We can express that in the following way: if we put

µ 0 = 0, D 1 (µ 0 ) = 0 mod τ 2 , µ 1 = τ 2 3 , D 1 (µ 1 ) = 0 mod τ 4 ; µ 2 = µ 1 -2 135 τ 4 + 4 8505 τ 6 , D 2 (µ 2 ) = 0 mod τ 8 . Also, if µ 0 = 6, D 2 (µ 0 ) = 0 mod τ 2 , µ 1 = 6 + 11 21 τ 2 , D 2 (µ 1 ) = 0 mod τ 4 ; µ 2 = µ 1 + 94 9261 τ 4 - 21388 44925111 τ 6 , D 3 (µ 2 ) = 0 mod τ 8 .
And also, if µ 0 = 20, D 3 (µ 0 ) = 0 mod τ 2 , µ 1 = 20 + 39 77 τ 2 , D 3 (µ 1 ) = 0 mod τ 4 . So we can prove the Proposition 3. Let j ≥ 0. We put µ 0 = 2j(2j + 1). Then D j+1 (µ 0 ) = 0 mod τ 2 .

We build

µ 1 = µ 0 - D j+1 (µ 0 ) D ′ j+1 (µ 0 )
mod τ 4 and we prove that D j+1 (µ 1 ) = 0 mod τ 4 .

More generally, for all

i ≥ 1, if µ i = µ i-1 - D j+i (µ i-1 ) D ′ j+i (µ i-1 ) mod τ 4i , then D j+i (µ i ) = 0 mod τ 4i . Proof: From above, it is clear that D j+1 (µ 0 ) = 0 mod τ 2 and that (D j+1 mod τ ) ′ (µ 0 ) = 0. So D ′ j+1 (µ 0
) is a polynomial in τ with a non nul constant term, which means that it is invertible in the ring of formal series, then µ 1 is well defined. Moreover µ 1 = µ 0 mod τ 2 . We recall the following Taylor formula [ [START_REF] Geddes | Algorithms for Computer Algebra[END_REF], p. 51]: let a be a univariate polynomial over an arbitrary integral domain A. In the polynomial domain A[x, y], a(x + y) = a(x) + a ′ (x)y + b(x, y)y 2 for some polynomial b ∈ A[x, y]. We apply this result with a = D j+1 and A = É[τ] :

D j+1 (µ 1 ) = D j+1 (µ 0 ) + (µ 1 -µ 0 )D ′ j+1 (µ 0 ) + (µ 1 -µ 0 ) 2 b(µ 0 , µ 1 ) = D j+1 (µ 0 ) + (µ 1 -µ 0 )D ′ j+1 (µ 0 ) mod τ 4 = 0 mod τ 4 .
We assume now that we have built the first terms until the index i -1 (for some i ≥ 2). By construction:

µ i-1 = µ 0 mod τ 2 , then D ′ j+i (µ i-1 ) mod τ = (D j+i mod τ ) ′ (µ i-1 mod τ ) = (D j+i mod τ ) ′ (µ 0
) is not null. Then µ i is well defined. Moreover, by using the recurrence equation and the fact that D j+i-1 (µ i-1 ) = 0 mod τ 4(i-1) and that 1) . The same Taylor formula enables us to prove that D j+i (µ i ) = 0 mod τ 4i . In fact, µ i is built by adding to µ i-1 two monomials, of degree 4i -4 and 4i -2, and from a computing point of view

D j+i-2 (µ i-1 ) mod τ 4(i-2) = D j+i-2 (µ i-2 ) mod τ 4(i-2) = 0, we obtain that D j+i (µ i-1 ) = 0 mod τ 4(i-1) , thus µ i = µ i-1 mod τ 4(i-
µ i = µ i-1 - D j+i (µ i-1 ) D ′ j+i (µ 1 ) mod τ 4i .
Proposition 4. For all j ≥ 0, we have built a formal series in the variable τ , μ2j , such that

μ2j = 2j(2j + 1) mod τ 2 et ∀n > j, D n (μ 2j ) = 0 mod τ 4(n-j) .
To fix the ideas, we give the first terms of the series μ0 , μ2 , μ4 . μ0 = In the following paragraphs, we will apply the following lemma: 

Lemma 1. Let P be a polynomial, P ∈ [τ ][y], µ * a series (∈ [[τ ]]) satisfying P (µ * ) = 0, P ′ (µ * ) =
∀j ≥ 0, ∀n > j, µ (n) 2j = μ2j mod τ 4(n-j) .
Proof: By construction of the series μ2j or by applying the lemma.

Theorem 1. For all j ≥ 0, the series μ2j is convergent in the open unit disk, and for all |τ | < 1, the sequence µ 

µ (n) 0 (τ ) -μ0 (τ ) = p>4n (α (n) p -α p )τ 2p , and 
|µ (n) 0 (τ ) -μ0 (τ )| ≤ 6 p>4n |τ 2p |,
what we can make arbitrarily small when n tends to infinity. The last part of the theorem, the fact that μ2j (τ ) is an eigenvalue of D τ , will be proved in the paragraph 9. It is also possible to prove this result using [START_REF] Miyazaki | Numerical Computation of the Eigenvalues for the Spheroidal Wave Equation with Accurate Error Estimation by Matrix Method[END_REF] but we propose a self-contained proof for all our results.

The eigenvalues and the coordinates of the eigenfunctions in Legendre basis

Consider an eigenfunction of even index of the equation D τ (y) = µy as an infinite linear combination of the Legendre polynomials,

y(x) = ∞ n=0 a 2n L 2n (x), a 0 = 1.
We will now see that there exists a simple relation between a 2n and D n .

Proposition 6. ∀n ≥ 1, D n = (-1) n n i=1 A 2i 2i-2 τ 2n a 2n .
Proof: By recurrence. For n = 1: a 2 is defined by the equation D 1 a 0 + A 2 0 τ 2 a 2 = 0. Suppose that the relation is satisfied for a fixed integer n ≥ 1. We perform the Gaussian elimination algorithm, in order to put the matrix M (n+2) in an echelon form.

We assume that the first steps give the intermediate result:

                                      D 1 A 2 0 τ 2 D 2 A 4 2 τ 2 D 1 . . . . . . D j A 2j 2j-2 τ 2 D j-1 A 2j-2 2j τ 2 2j(2j + 1) -µ + A 2j 2j τ 2 A 2j+2 2j τ 2 . . . . . . . . . A 2n-2 2n τ 2 2n(2n + 1) -µ + A 2n 2n τ 2 A 2n+2 2n τ 2 A 2n 2n+2 τ 2 (2n + 2)(2n + 3) -µ + A 2n+2 2n+2 τ 2                                       .
The next step is: replace row j+1 by D j row j+1 -A 2j-2 2j τ 2 row j ; using the recurrence relation giving D j+1 in terms of D j and D j-1 , we obtain:

                            D1 A 2 0 τ 2 D2 A 4 2 τ 2 D1 . . . . . . Dj A 2j 2j-2 τ 2 Dj-1 Dj+1 A 2j+2 2j τ 2 Dj . . . . . . . . . A 2n-2 2n τ 2 2n(2n + 1) -µ + A 2n 2n τ 2 A 2n+2 2n τ 2 A 2n 2n+2 τ 2 (2n + 2)(2n + 3) -µ + A 2n+2 2n+2 τ 2                            
.

Then, at the final step, we will have:

                            D1 A 2 0 τ 2 D2 A 4 2 τ 2 D1 . . . . . . . . . Dj A 2j 2j-2 τ 2 Dj-1 Dj+1 A 2j+2 2j τ 2 Dj . . . . . . Dn+1 A 2n+2 2n τ 2 Dn A 2n 2n+2 τ 2 (2n + 2)(2n + 3) -µ + A 2n+2 2n+2 τ 2                             .
The penultimate row gives:

D n+1 a 2n + A 2n+2 2n τ 2 D n a 2n+2 = 0, which is the expected relation for n + 1.
Corollary 1: for all n ≥ 1, the coefficient a 2n has the same zeros as the polynomial D n . Thus, for all |τ | < 1, the zero of index j of the coefficient a 2n converges to μ2j (τ ), when n tends to infinity. Proposition 7. For all j ≥ 0, the series μ2j satisfies : ∀n > 2j, a 2n (μ 2j ) = 0 mod τ 2(n-2j) .

The eigenvalues and the formal solutions at the origin

We recall that, in the neighborhood of the origin, we know a basis of convergent series solutions, y 1 (x) et y 2 (x). In particular:

y 1 (x) = 1 - µ 2 x 2 + 1 24 µ 2 + 1 12 τ 2 - 1 4 µ x 4 + O x 6 .
Let P n be the coordinates of this function in the monomial basis:

P 0 = 1, P 1 = 0, P 2 = - µ 2 , P 3 = 0, P 4 = 1 24 µ 2 + 1 12 τ 2 - 1 4 µ,
the following polynomials satisfying a three terms recurrence:

-n(n -

1)P n + (n 2 -µ -3n + 2)P n-2 + τ 2 P n-4 = 0.
Proposition 8. The odd coordinates are null. The even coordinates, P 2n are polynomials of degree n in the variable µ and for all n ≥ 1, P 2n mod τ 2 = (-1) n (2n)! n-1 j=0 µ -2j(2j + 1). The polynomial P 2n admits n Puiseux series solutions, we will denote δ (n) j , j = 0 . . . n -1, the series which has 2j(2j + 1) as constant term.

Proof: Reduce the recurrence equation modulo τ 2 : 2n(2n -1)(P 2n mod τ 2 ) = ((2n -1)(2n -2) -µ)(P 2n-2 mod τ 2 ). Proposition 9. For all j ≥ 0, the series μ2j satisfies:

∀n > j, P 2n (μ 2j ) = 0 mod τ 2(n-j) .
Proof: Taking into account the parity of the functions, the eigenfunction of even index that we consider:

y(x) = ∞ n=0 a 2n L 2n (x), a 0 = 1, is proportional to y 1 , that is y(x) = cy 1 (x).
We obtain by change of basis:

         c cP 2 cP 4 . . .          = A          1 a 2 a 4 . . .         
, where we only need to note that A is an infinite upper triangular matrix, whose elements will be noted α ij .

A =          1 -1/2 3/8 . . . 3/2 -15/4 . . . 35/8 . . . . . .         
.

Then: c = ∞ j=0 α 1j a 2j and, using the proposition 7, c(μ 0 ) = 1 mod τ 2 . We deduce:

c(μ 0 )P 2n (μ 0 ) = α nn a 2n (μ 0 ) mod τ 2n+2 = 0 mod τ 2n , ∀n ≥ 1. Also τ 2 c(μ 2 ) = τ 2 -1 2 τ 2 a 2 (μ 2 ) + 3 8 τ 2 a 4 (μ 2 ) mod τ 4 = 1 2A 2 0 D 1 (μ 2 ) mod τ 2 = 0 mod τ . We deduce: τ 2 c(μ 2 )P 4 (μ 2 ) = -35 8 τ 2 a 4 (μ 2 ) mod τ 4 = -35 8A 2 0 A 4 2 τ 2 D 2 (μ 2 ) mod τ 4 = 0 mod τ 2 , hence P 4 (μ 2 ) = 0 mod τ 2 . And ∀n ≥ 2, τ 2 c(μ 2 )P 2n (μ 2 ) = α nn τ 2 a 2n (μ 2 ) mod τ 2n = cste τ 2(n-1) D n (μ 2 ) mod τ 2n = 0 mod τ 2(n-1) , then P 2n (μ 2 ) = 0 mod τ 2(n-1) , ∀n ≥ 2.
In a general way:

τ 2j c(μ 2j ) = i=0 α 1i τ 2j a 2i (μ 2j ) = 2j i=0 α 1i τ 2j a 2i (μ 2j ) mod τ 2j+2 = α 1j (-1) j j k=1 A 2k 2k-2 D j (μ 2j ) mod τ 2 = 0 mod τ.
We deduce:

∀n > j, τ 2j c(μ 2j )P 2n (μ 2j ) = α nn τ 2j a 2n (μ 2j ) mod τ 2(n+1-j) = cste τ 2(n-j) D n (μ 2j ) mod τ 2(n+1-j) = 0 mod τ 2(n-j) , then P 2n (μ 2j ) = 0 mod τ 2(n-j) , ∀n > j.
Proposition 10. Link between the series δ (n) j and μ2j . ∀j ≥ 0, ∀n > j, δ

(n) j = μ2j mod τ 2(n-j) .
Proof: Apply lemma 1.

Theorem 2. For τ small enough, the sequence δ (n) j (τ ) converges to μ2j (τ ), when n tends to infinity.

Proof: To obtain this result, we will first prove that the radius of convergence of the series δ (n) j is bounded from below by a constant independent of n. The recurrence equation satisfied by the polynomials P n can be written, noting P n = P 2n :

τ 2 P n-1 + (2n(2n + 1) -µ) P n -(2n + 1)(2n + 2)P n+1 = 0. (3) 
Thus P n+1 (µ) = 0 if and only if

              -µ -2 τ 2 6 -µ -12 . . . . . . . . . τ 2 2k(2k + 1) -µ -2k(2k -1) . . . . . . . . . τ 2 2(n -1)(2n -1) -µ -2(n -1)(2n -3) τ 2 2n(2n + 1) -µ                             P0 P1 . . . P k . . . Pn-1 Pn               = 0.
So we are again concerned with the eigenvalues of a perturbated matrix:

F (n) + τ 2 G (n) ,
where

F (n) =             0 -2 6 -12 . . . . . . 2(n -1)(2n -1) -2(n -1)(2n -3) 2n(2n + 1)             , G (n) =          0 1 0 . . . . . . 1 0         
.

The result used in the proof of propositon 2 can not be applied here, because the new matrix F (n) is not normal. Neverthless, we can follow the developments of Kato, [ [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF], p. 88-90, example 3.3] to evaluate the radii of convergence of the series δ

(n) j
in the following manner: we compute the resolvant of the matrix F (n) and its expansion in the neighborhood of its eigenvalue µ = 2j(2j + 1) (j ≤ n). This expansion can be written:

R (n) (ζ) = (F (n) -ζI n ) -1 = -1 ζ -µ T (n) + ∞ k=0 (ζ -µ) k (S (n) ) k+1 .
Then we denote

p n = ||G (n) T (n) || 1 , q n = ||G (n) S (n) || 1 , s n = ||S (n) -αT (n) || 1 (for any α).
Using methods of majorant series, Kato proves that ((p

n s n ) 1/2 + q 1/2 n ) -2
is a lower bound for the radius of convergence of the series δ

(n) j .
Our problem is thus to prove that p n , q n and s n can be bounded from above independently of n. Now the resolvant R (n) (ζ) is an upper triangular matrix, whose elements can be computed explicitely; these elements don't depend from the index n and we will omit the upper index (n) to simplify the notations:

R il (ζ) = (-1) l-i+1 (2(l -1))! (2(i -1))! l-1 k=i-1 1 ζ -2k(2k + 1)
.

This enables us to compute explicitely the matrix T (n) : it means computing the polar part of the rational fractions R il at the pole µ. This one is null if i > j + 1 or l ≤ j. Thus the first j columns of the matrix T (n) are null, and we can find non null elements only on the first j + 1 rows. For i ≤ j + 1 and l > j,

T il = -R il (ζ) × (ζ -µ) evaluated in µ. Therefore T il = (-1) l-i (2(l -1))! (2(i -1))! l-1 k≥i-1,k =j 1 µ -2k(2k + 1)
.

Thus T il+1 = 2l(2l -1) 2l(2l + 1) -µ T il . For all j, there exists an index l 0 from which the ratio 2l(2l -1) 2l(2l + 1) -µ is lower than 1; from this index, the 1-norm of the columns of T (n) is decreasing.

Finally, considering the structure of

G (n) , (G (n) T (n) ) il = T i-1l
. We conclude that there exists an upper bound for p n , independent of n. It follows from above that the coefficients T il are bounded, we will denote ||T || ∞ a bound for |T il |.

For the matrix S, we compute the constant term in the expansion of the rational fractions R il in the neighborhood of µ. The matrix S has the following structure:

                 coefficients of type (5) coefficients of type (4)                 
For i > j + 1, µ is not a pole, thus S il = R il (µ), that means:

S il = (-1) l-i+1 (2(l -1))! (2(i -1))! l-1 k=i-1 1 µ -2k(2k + 1) , (4) 
if l ≥ i and else 0.

As before,

S il+1 = 2l(2l -1) 2l(2l + 1) -µ S il if l ≥ i, S l+1l+1 = 1 2l(2l + 1) -µ .
Let l 0 the index from which 2l(2l -1) 2l(2l + 1) -µ ≤ 1.

Let

u l = n i=j+2 |S il | = l i=j+2
|S il |. For l ≥ l 0 :

u l+1 ≤ u l + 1 2l(2l + 1) -µ ≤ u l0 + l k=l0 1 2(k -j)(2(k + j) + 1) = u l0 + l-j q=l0-j 1 2q(2q + 4j + 1) ≤ u l0 + ∞ k=1 1 2k(2k + 1) ≤ u l0 + 1 -ln 2.
For i ≤ j + 1,

S il = T il l-1 k=i-1,k =j 1 2k(2k + 1) -µ , (5) 
if l ≥ i and else 0. We deduce that

S il+1 = T il 2l(2l -1) 2l(2l + 1) -µ l-1 k=i-1,k =j 1 2k(2k + 1) -µ + 1 2l(2l + 1) -µ = 2l(2l -1) 2l(2l + 1) -µ S il + 2l(2l -1) (2l(2l + 1) -µ) 2 T il .
For l ≥ l 0 :

|S il+1 | ≤ |S il | + ||T || ∞ 1 2l(2l + 1) -µ ≤ |S il0 | + ||T || ∞ l k=l0 1 2k(2k + 1) -µ ≤ |S il0 | + ||T || ∞ (1 -ln 2).
To evaluate the 1-norm of the column-vector of index l of S, (l ≥ l 0 ), we add:

||S l || 1 = j+1 i=1 |S il | + u l ≤ j+1 i=1 |S il0 | + u l0 + ((j + 1)||T || ∞ + 1)(1 -ln(2)) = ||S l0 || 1 + ((j + 1)||T || ∞ + 1)(1 -ln(2)).
This proves that there exists an upper bound for q n and s n , independent of n.

To conclude, we give an upper bound for the coefficients α Considering the odd solution y 2 in the neigborhood of 0, we introduce an other family of polynomials, defined by:

Q 0 = 0, Q 1 = 2, Q 2 = 0, Q 3 = 2 -µ 3 , Q 4 = 0, Q 5 = µ 2 60 + τ 2 10 - 7µ 30 + 2 5 ,
and the recurrence equation:

-n(n + 1)Q n + (n 2 -µ -n)Q n-2 + τ 2 Q n-4 = 0.
The odd coefficients Q 2n+1 , (n ≥ 0) are polynomials of degree n in the variable µ, and we obtain a similar result about the convergence of their roots to the eigenvalues of odd indices of D τ .

The eigenvalues and the formal solutions at the point 1

In the neighborhood of 1, we know a basis of solutions f 1 (x) and f 2 (x), where f 1 is a convergent series, whose first terms can be computed:

f 1 (x) = 1 + µ -τ 2 2 (x -1) + 1 16 τ 4 - 1 8 µ τ 2 + 1 16 µ 2 - 1 8 τ 2 - 1 8 µ (x -1) 2 + O (x -1) 3
Let U n the coordinates of this series in the basis (x -1) n :

U 0 = 1, U 1 = µ -τ 2 2 , U 2 = 1 16 τ 4 - 1 8 µ τ 2 + 1 16 µ 2 - 1 8 τ 2 - 1 8 µ,
the following polynomials satisfying the recurrence relation:

2n 2 U n + (n 2 + τ 2 -µ -n)U n-1 + 2τ 2 U n-2 + τ 2 U n-3 = 0.
Proposition 11. The polynomials U n are polynomials of degree n in the variable µ and for

all n ≥ 1, U n mod τ 2 = 1 2 n (2n)! 2 n-1 j=0
(µ -j(j + 1)). The polynomial U n admits n Puiseux series solutions, we will note γ (n) j , j = 0 . . . n -1, the series whose constant term is j(j + 1).

Proof: Just reduce the recurrence relation modulo τ 2 :

2n 2 (U n mod τ 2 ) = (µ -n(n -1)) (U n-1 mod τ 2 ).
Proposition 12. For all j ≥ 0, the series μ2j satisfies: ∀n > j, U 2n-1 (μ 2j ) = 0 mod τ 2(n-j) and U 2n (μ 2j ) = 0 mod τ 2(n-j) .

For the proof of this proposition, we will need the Lemma 2. For all j ≥ 0,

∞ i=0 P 2i (2j(2j + 1)) mod τ 2 = 2j i=0 P 2i (2j(2j + 1) mod τ 2 = (-1) j 4 j (j!) 2 (2j)! mod τ 2 .
Proof: For j = 0, we verify P 0 (0) = 1 and P 2i (0) = 0 mod τ 2 . For j ≥ 1, the first equality comes from the fact that P 2i (2j(2j + 1) = 0 mod τ 2 , for all i > j.

The second equality can be established by applying the divided differences, in order to compute the coordinates in the Newton basis (1, µ -x 0 , (µ -x 0 )(µ -x 1 ), . . . , j i=0 (µ -x i )) of the polynomial of degree less or equal j interpolating the points (x 0 , z 0 ), (x 1 , z 1 ), . . . , (x j , z j ). From the values z i , we build a lower triangular array in the following way: for i = 0 . . . j, C[i, 0] = z i (the first column), then for i

= 1 . . . j, C[i, 1] = C[i,0]-C[i-1,0] xi-xi-1 (the second col- umn), for i = k . . . j, C[i, k] = C[i,k-1]-C[i-1,k-1] xi-xi-k , at last C[j, j] = C[j,j-1]-C[j-1,j-1] xj-x0
. It is well known that the coordinates in the Newton basis of the interpolation polynomial are the diagonal elements C[i, i].

In our case, we are knowing the coordinates in the Newton basis, and we want the value of the polynomial at the points x i . Indeed x i = 2i(2i + 1) and C[i, i] = (-1) i (2i)! . We deduce an exact formula for all the elements of the array:

∀k ≥ i, C[i, k] = (-1) i 4 i-k i!(i -k)! k!(2i)! .
We prove this formula by recurrence on the index i.

For i = 0, C[0, 0] = 1.
Assume that the formula has been proved for the row i. We prove it for the row i + 1, starting from the known coefficient

C[i + 1, i + 1] = (-1) i+1 (2i+2)! . Assuming that C[i + 1, k] and C[i, k] are known, we compute C[i + 1, k -1] = (x i+1 -x i+1-k )C[i + 1, k] + C[i, k -1]
and we find

C[i + 1, k -1] = (-1) i+1 4 i+2-k (i + 1)!(i + 2 -k)! (k -1)!(2i + 2)! . Conclusion: C[j, 0] = (-1) j 4 j j!j! (2j)! .
Proof: Consider again the eigenfunction y 1 (x), corresponding to an eigenvalue of even index. It is proportional to f 1 (x), which means y 1 (x) = cf 1 (x). Then we obtain by change of basis:

                c cU 1 cU 2 cU 3 cU 4 . . .                 = B                 1 0 P 2 0 P 4 . . .                
, where we just know that B is an infinite upper triangular matrix, whose elements will be noted

β ij . B =             1 1 1 1 . . . 1 2 3 . . . 1 3 . . . 1 . . . . . .            
.

Then: c = i=0 P 2i and, applying the proposition 9, c(μ 0 ) = 1 mod τ 2 . We deduce:

∀i ≥ 1, c(μ 0 )U 2i-1 (μ 0 ) = β 2i-1,2i P 2i (μ 0 ) mod τ 2i+2 = 0 mod τ 2i , c(μ 0 )U 2i (μ 0 ) = β 2i,2i P 2i (μ 0 ) mod τ 2i+2 = 0 mod τ 2i . Also c(μ 2 ) = 1 + P 2 (μ 2 ) mod τ 2 = 0 mod τ . We deduce: c(μ 2 )U 3 (μ 2 ) = 4P 4 (μ 2 ) mod τ 4 = 0 mod τ 2 , thus U 3 (μ 2 ) = 0 mod τ 2 . And c(μ 2 )U 4 (μ 2 ) = P 4 (μ 2 ) mod τ 4 = 0 mod τ 2 , thus U 4 (μ 2 ) = 0 mod τ 2 .
In a general way

c(μ 2j ) = ∞ i=0 β 1,2j P 2i (μ 2j ) = 2j i=0 P 2i (μ 2j ) mod τ 2 = 0 mod τ.
The last inequality is a consequence of lemma 2. We deduce:

∀n > j, c(μ j )U 2n-1 (μ 2j ) = β 2n-1,n P 2n (μ j ) mod τ 2(n+1-j) = 0 mod τ 2(n-j) , thus U 2n-1 (μ 2j ) = 0 mod τ 2(n-j) , ∀n > j. And c(μ j )U 2n (μ 2j ) = β 2n,n P 2n (μ j ) mod τ 2(n+1-j) = 0 mod τ 2(n-j) ,
thus U 2n (μ 2j ) = 0 mod τ 2(n-j) , ∀n > j.

Proposition 13. Link between the series γ (n) 2j and the series μ2j ∀j ≥ 0, ∀n > j, γ

(2n-1) 2j = γ (2n) 2j
= μ2j mod τ 2(n-j) .

Theorem 3. For τ small enough, the sequence γ (n) 2j (τ ) converges to μ2j (τ ), when n tends to infinity.

Proof: If we try to make exactly the same work on the recurrence relation satisfied by U n , it is easy to compute new matrices

F (n) , G (n) , T (n) , S (n) , but the 1-norm of G (n) T (n) is not bounded. We put U n = 2 n U n .
Of course U n has the same roots as U n and satisfies the recurrence relation:

n 2 U n + (n 2 + τ 2 -µ -n)U n-1 + 4τ 2 U n-2 + 4τ 2 U n-3 = 0. Thus U n+1 (µ) = 0 if and only if                 τ 2 -µ 1 4τ 2 τ 2 -µ + 2 4 4τ 2 4τ 2 τ 2 -µ + 6 9 . . . . . . . . . . . . 4τ 2 4τ 2 τ 2 -µ + k(k + 1) (k + 1) 2 . . . . . . . . . . . . 4τ 2 4τ 2 τ 2 -µ + n(n -1) n 2 4τ 2 4τ 2 τ 2 -µ + n(n + 1)                               U0 U1 . . . U k . . . Un-1 Un               = 0.
We are led to search the eigenvalues of the perturbated matrix:

F (n) + τ 2 G (n) ,
where

F (n) =             0 1 2 4 . . . . . . (n -1)n n 2 n(n + 1)             , G (n) =             1 4 1 4 4 1 . . . . . . . . . 4 4 1            
.

Here again the resolvant R (n) (ζ) is an upper triangular matrix whose elements can be computed explicitely (by omitting the upper index (n)):

R ii (ζ) = -1, and R il (ζ) = - l-2 k=i-1 (k + 1) 2 l-1 k=i-1 (ζ -k(k + 1)) , if l > i,
and we can expand these elements in the neighborhood of the eigenvalue µ = j(j + 1). The first j columns and the rows of index greater than j + 1 of the matrix T (n) are null. For i ≤ j + 1,

T ii = -1 and if l > j, T il = -R il (ζ) × (ζ -µ) evaluated in µ. Therefore T il = l-2 k=i-1 (k + 1) 2 l-1 k=i-1,k =j (ζ -k(k + 1))
.

Thus T il+1 = -l 2 l(l + 1) -µ T il . For all j, there exists an index l 0 from which the ratio l 2 l(l + 1) -µ is lower than 1; from this index, the 1-norm of the columns of T (n) are de-creasing. To conclude,

||G (n) T (n) || 1 ≤ ||G (n) || 1 ||T (n) || 1 = 9||T (n) || 1
, and there exists an upper bound of p n independent of n.

The matrix S has the same structure as in the previous paragraph. For i > j + 1, µ is not a pole, thus S il = R il (µ), that means:

S il = l-2 k=i-1 (k + 1) 2 l-1 k=i-1 (µ -k(k + 1)) , (6) 
if l ≥ i and else 0.

As above,

T il+1 = l 2 l(l + 1) -µ S il if l ≥ i, S l+1l+1 = 1 l(l + 1) -µ .
Let l 0 be the index from which

l 2 l(l + 1) -µ ≤ 1. Let u l = n i=j+2 |S il | = l i=j+2 |S il |. For l ≥ l 0 : u l+1 ≤ u l + 1 l(l + 1) -µ ≤ u l0 + l k=l0 1 (k -j)(k + j + 1) = u l0 + l-j q=l0-j 1 q(q + 2j + 1) ≤ u l0 + ∞ k=1 1 k(k + 1) ≤ u l0 + 1.
For i ≤ j + 1,

S il = T il l-1 k=i-1,k =j 1 k(k + 1) -µ , (7) 
if l ≥ i and else 0. We deduce

S il+1 = T il l 2 l(l + 1) -µ l-1 k=i-1,k =j 1 k(k + 1) -µ + 1 l(l + 1) -µ = l 2 l(l + 1) -µ S il + l 2 (l(l + 1) -µ) 2 T il .
For l ≥ l 0 :

|S il+1 | ≤ |S il | + ||T || ∞ 1 l(l + 1) -µ ≤ |S il0 | + ||T || ∞ l k=l0 1 k(k + 1) -µ ≤ |S il0 | + ||T || ∞ .
To compute the 1-norm of the column vector of index l of S, (l ≥ l 0 ), we add:

||S l || 1 = j+1 i=1 |S il | + u l ≤ j+1 i=1 |S il0 | + u l0 + (j + 1)||T || ∞ + 1 = ||S l0 || 1 + (j + 1)||T || ∞ + 1.
This proves that there exists an upper bound for q n and s n , independent of n.

The end of the proof is the same as for theorem 2.

The eigenvalues and the formal solutions at infinity

In the neighborhood of infinity, we recall the formal solutions ŷ1 (x) and ŷ2 (x) and we note V n the coordinates of the series xe iτ x ŷ1 (x) in the basis 1/x n .

V 0 = 1, V 1 = -i(µ -τ 2 ) 2τ , V 2 = -µ 2 + 2 µ + 2τ 2 µ + 2τ 2 -τ 4 8τ 2 ,
the following coefficients satisfying the recurrence relation:

2niτ V n + (n 2 + τ 2 -µ -n)V n-1 -2iτ (n -1)V n-2 -(n -1)(n -2)V n-3 = 0. Proposition 14. ∀n ≥ 0, V n = n! -i τ n U n .
Proof: This is true for n = 0, n = 1, n = 2. Assume that the property is true for indices

≤ n -1. Then 2niτ V n = -(n 2 + τ 2 -µ -n)V n-1 + 2iτ (n -1)V n-2 + (n -1)(n -2)V n-3 ,
we replace the polynomials V n-1 , V n-2 , V n-3 by their expression in terms of U n-1 , U n-2 , U n-3 and we use the recurrence relation satsified by the polynomials U k to prove that the property is still true for the index n. Theorem 4. For τ small enough, the sequence of the zeros of index 2j of V n converges to μ2j (τ ), when n tends to infinity.

Comment: the result of the proposition 14 is linked to the relations that could been obtained by using Fourier transform. In particular, the operator D 1 is "invariant by Fourier transform" (cf. [START_REF] Connes | Noncommutative Geometry[END_REF], 3.3, page 356) and for τ = 1, the series f 1 , interpreted as a power series in the variable (x -1) is the Borel-transform of the series -ie ix ŷ1 , interpreted as a power series in the variable -i

x . Neverthless, we derive here in a very simple way the relation between the polynomials U n and the coefficients V n , which is suffisant for our initial goal: prove that the zeros of V n converge to the eigenvalues of the differential operator D τ (for small τ ).

We deduce that the asymptotic behavior of P ′ n (µ) is at worst cst n . Then:

|P n (µ)| = |P n (µ) -P n (µ n )| ≤ cst n |µ -µ n |,
which is in contradiction with the asyptotic behavior of |P n (µ)|. Conclusion: µ is an eigenvalue of D τ .

Corollary 2: for τ small enough, μ2j (τ ) is an eigenvalue of D τ .

The following corollary and its variants summarize some of our main results. (We denote δ η the Dirac mass at η ∈ Ê.)

Corollary 3: For τ ≥ 0, we denote by {µ r (τ )} r∈AE the set of eigenvalues of D τ and, for all n ∈ AE, by {ν p (τ )} p=0,...,n-1 the set of roots of the polynomial P 2n6 (as a polynomial in µ, τ being fixed).

There exists ρ > 0 such that if 0 ≤ τ < ρ, is fixed, then, for all n ∈ AE, the roots {ν p (τ )} p=0,...,n-1 are real and distinct and such that the measure p=0,...,n-1 δ νp(τ ) tends to the measure p∈AE δ µ2p(τ ) when n tends to +∞.

There are similar results (mutatis mutandis) replacing the sequence of polynomials P 2n by the sequences Q 2n+1 , U n , V n and D n .

Asymptotic expansions of the eigenvalues for large values of τ

In order to study the eigenvalues of D τ for "big values" of τ one can use, as for "small values" of τ , a perturbative method. The idea is to set x := ξ/ √ 2τ (cf. [START_REF] Barrowes | On the Asymptotic Expansion of the Spheroidal Wave Function and its Eigenvalues for Complex Size Parameter[END_REF][START_REF] Flammer | Spheroidal Wave Functions[END_REF]). Then D τ y -µy = 0 is transformed into:

(ξ 2 -2τ ) d 2 y dξ 2 + 2ξ dy dξ + τ ξ 2 2 -µ y
or equivalently (for τ > 0) into:

d 2 y dξ 2 + µ 2τ - ξ 2 4 y - ξ 2 2τ d 2 y dξ 2 - ξ τ
dy dξ which we can interpret, when τ is "large", as a perturbation of

d 2 y dξ 2 + µ 2τ - ξ 2 4 y.
This differential equation is a particular case of the parabolic-cylinder differential equation:

d 2 y dξ 2 + r + 1 2 - ξ 2 4 y.
For r ∈ AE, this equation admits as a solution:

D r (ξ) = (-1) r e ξ 2 /4 d r dξ r e -ξ 2 /2 = 2 -r/2 e -ξ 2 /4 H r (ξ/ √ 2),
where H r is a Hermite polynomial.

The foregoing suggests that we expand y in terms of the parabolic cylinder functions:

y = +∞ n=0 h n D n .
The coefficients are solutions of a five terms linear recurrence (cf. [START_REF] Flammer | Spheroidal Wave Functions[END_REF]). From this recurrence one obtains asymptotic expansions of the eigenvalues µ n in the variable τ -1 (cf. 

µ n = (2n + 1)τ -(2n 2 + 2n + 3)2 -2 -(2n + 1)(n 2 + n + 3)2 -4 τ -1 + • • • (8) 
Then it is natural to try to imitate what we did above in order to get similar results for large values of τ 7 , replacing the expansion:

y(x) = ∞ n=0 a n L n (x).
by the expansion:

y(x) = +∞ n=0 h n D n (x),
τ by τ -1 , µ by µ/τ and the polynomials P (τ, µ) in (τ, µ), of degree n in µ, by Q(τ -1 , µτ -1 ) := P (τ, µ)τ -n .

Unfortunately this idea does not work because the power series expansions (8) are divergent.

The divergence was proved in [START_REF] Meixner | Mathieusche funktionen und Sphäroidfunktionen[END_REF], 3.253, page 247. The authors compute a power series expansion of µ n (τ ) for purely imaginary values of τ (τ = iτ * , τ * > 0) and remark that it does not match with the expansion [START_REF] Richard-Jung | The DESIR Package, Software demonstration[END_REF].

It is interesting to compare to what it is happening with the anharmonic oscillator whose potential is V (x) := x 2 + βx 4 (a triconfluent Heun equation). The eigenvalues λ n (n ∈ AE * ) are real and real analytic functions defined on the positive ray. In 1969 Bender and Wu [START_REF] Bender | Anharmonic oscillator[END_REF] studied analytic continuation of λ n to the β-plane. They discovered that:

-for all m, n ∈ AE * , λ m is an analytic continuation of λ n ; -the singularities encountered in the analytic continuation of the eigenvalues are algebraic ramification points accumulating to β = 0; -the formal power series expansions of λ n in powers of β are divergent. 7 There is a strong numerical evidence for such results.

The proofs of these results were completed later by various authors (in particular Loeffel-Martin, B. Simon, Eremenko-Gabrielov). There are also a very interesting attempt to obtain such results using the Ecalle resurgence theory (based on Borel transformation) [START_REF] Delabaere | Unfolding the Quartic Oscillator[END_REF]. Unfortunately some proofs remain uncomplete.

By analogy (replacing β by τ -1 ) it would be interesting to try to apply resurgence methods to the study of the eigenvalues of the prolate spheroidal problems. The first test in this direction is the following conjecture.

Conjecture 1: The divergent power series expansion (8) (in τ -1 ) is Gevrey of order 1.

In a recent work [START_REF] Bas ¸ar | Resurgence and the Nekrasov-Shatashvili limit: connecting weak and strong coupling in the Mathieu and Lamé systems[END_REF] G. Başar and G. V. Dunne investigated the resurgence of the asymptotic expansions of the eigenvalues in the cases of Mathieu and Lamé equations in relation with some problems of gauge theory in physics.

As for the prolate spheroidal case it is also possible in the case of the anharmonic oscillator to get convergent expansions of the eigenvalues. The idea is to use a change of variables due to Symanzik to "replace" the potential V (x) := x 2 + βx 4 by the potential V (x) := x 4 + αx 2 . Then the power expansions in α are convergent (cf. [START_REF] Eremenko | Analytic continuation of egienvalues of a quartic oscillator[END_REF]) as the power expansions in τ in the prolate spheroidal case.

Stokes phenomena and analytic continuation of the eigenvalues in the complex τ plane

In this part we shall consider the operator:

D τ = (x 2 -1) d dx 2 + 2x d dx + τ 2 x 2 ,
when τ is a complex parameter. Setting τ := iτ * , we get τ 2 = -(τ * ) 2 and D τ = (x 2 -1)

d dx 2 + 2x d dx -(τ * ) 2
x 2 , therefore we get also the case of the oblate spheroidal functions of order 0.

Definition 1. If τ ∈ , then an eigenvalue of D τ is by definition a complex number µ ∈ such that there exists a non trivial analytic solution at 0 of: D τ (y) = µy such that its analytic continuation is bounded on ]-1, 1[. Then such an analytic function is called an eigenfunction of D τ associated to µ.

This definition is clearly equivalent to the classical definition when τ is real. The eigenvalues in the complex case have been studied by various authors (cf. in particular [START_REF] Barrowes | On the Asymptotic Expansion of the Spheroidal Wave Function and its Eigenvalues for Complex Size Parameter[END_REF]). Remark. Let τ := |τ |e iθ ∈ , then if µ ∈ is an eigenvalue of D τ , the corresponding solution at 0, bounded on ]-1, 1[ extends in an entire function y such that y(z) tends to 0 as z → ∞ along the rays of argument ±θ. Therefore our definition of eigenvalues is in accordance with definitions of other authors in the study of the Schrödinger equation in the complex domain (cf. [START_REF] Sibuya | Global theory of a second order linear ordinary differential equation with a polynomial coefficient[END_REF]).

In [START_REF] Fauvet | Stokes phenomenon for the prolate wave equation[END_REF] we studied the Stokes phenomena for D τ when τ is real. Our study extends easily to the complex case τ := |τ |e iθ ∈ . Using an evident generalisation of the notations of [START_REF] Fauvet | Stokes phenomenon for the prolate wave equation[END_REF] we get two Stokes matrices (respectively associated to the two Stokes rays θ ± π/2):

S θ+π/2 :=    1 α 0 1    and S θ-π/2 :=    1 0 β 1    .
We have Tr (S θ-π/2 S θ+π/2 ) = 2 + αβ therefore αβ is well defined and is an entire function of (τ, µ) ∈ 2 . We define F : (τ, µ) ∈ 2 → α(τ, µ)β(τ, µ). By analogy with the case of the quartic oscillator (cf. [START_REF] Eremenko | Analytic continuation of egienvalues of a quartic oscillator[END_REF][START_REF] Eremenko | Irreducibility of some spectral determinants[END_REF]), we call the entire function F the spectral determinant 8 . We denote by Z ⊂ the set of zeros of F : Moreover if µ is an eigenvalue of D τ , then a corresponding eigenfunction is even or odd and the corresponding eigenspace is a complex vector space of dimension 1.

Z := {(τ, µ) ∈ 2 | F (τ, µ) = 0}.

Proof:

The proof is a variant of the proof of the theorem 1 of [START_REF] Fauvet | Stokes phenomenon for the prolate wave equation[END_REF]. We will only detail the differences.

Let τ, µ ∈ . In the neighborhood of the point 1, we find a basis of solutions (x ∈ ) of D τ (f ) = µf :

f 1 (x), f 1 (x) log(x -1) + ϕ 1 (x).
In the neighborhood of the point -1, we find a basis of solutions (x ∈ ):

g 1 (x), g 1 (x) log(x + 1) + ψ 1 (x).
All the functions f 1 , ϕ 1 , g 1 , ψ 1 are sums of convergent power series (respectively in the variables x -1 and x + 1), with a radius of convergence at least 2.

The dimension of the space of solutions holomorphic at 1 (resp. -1) is 1. It is generated by f 1 (resp. g 1 ).

• The properties (iii) and (iv) are equivalent (cf. [START_REF] Fauvet | Stokes phenomenon for the prolate wave equation[END_REF]).

• The property (iv) implies the property (ii) (cf. [START_REF] Fauvet | Stokes phenomenon for the prolate wave equation[END_REF]).

• The property (ii) implies clearly the property (i). We will show that the property (i) implies the property (iv). That will end the proof.

We suppose that f is an eigenfunction of D τ associated to µ. Then it extends analytically in a neighborhood of -1 and a neighborhood of 1. Therefore f extends analytically in an entire function.

The operator D τ is invariant under the transformation x → -x, therefore g : x → f (-x) is also an eigenfunction. Hence f + g and f -g are equal to zero or are eigenfunction. We cannot have f + g = f -g = 0 (f = 0), then there exists an even or an odd eigenfunction.

We suppose that f is even (the odd case is similar). We prove, as in [START_REF] Fauvet | Stokes phenomenon for the prolate wave equation[END_REF], that there exists another independent solution h := f log x+1

x-1 + η where η is an entire function. The action of the monodromy around [-1, 1] on f, η, log x+1

x-1 is trivial and the result follows.

Corollary 4: If τ ∈ , then µ ∈ is an eigenvalue of D τ if and only if F (τ, µ) = 0, that is if (τ, µ) ∈ Z.
Theorem 6. (i) All the analytic functions µ p : τ → µ p (τ ), |τ | "small", are restrictions of two multi-valued ramified analytic functions Λ i , i = 0, 1, of τ , one for even p the other for odd p. Each branch of Λ i , i = 0, 1, can be extended along any continuous path avoiding the singularities of Λ i . (ii) The only singularities of Λ i over the τ -plane are algebraic ramification points (of order two). (iii) The ramification points accumulate at infinity. Proof: A similar result was proved by F. W. Schäfke in the case of the Mathieu equations [START_REF] Meixner | Mathieusche funktionen und Sphäroidfunktionen[END_REF][START_REF] Meixner | Mathieu Functions and Spheroidal Functions and Their Mathematical Foundations[END_REF][START_REF] Shivakumar | On the double points of a Mathieu equation[END_REF][START_REF] Volkmer | On Riemann Surfaces of Analytic Eigenvalue Functions[END_REF] 9 . For the case of the spherical functions there is a short proof of the essential points in [START_REF] Meixner | Mathieusche funktionen und Sphäroidfunktionen[END_REF], Satz 1 p. 268 (for more details cf. [START_REF] Barrowes | On the Asymptotic Expansion of the Spheroidal Wave Function and its Eigenvalues for Complex Size Parameter[END_REF][START_REF] Guerrieri | The eigenvalues of the angular spheroidal wave-equation[END_REF][START_REF] Skorokhodov | Calculation of the branch points of the eigenfunctions corresponding to wave spheroidal functions[END_REF][START_REF] Oguchi | Eigenvalues of spheroidal wave functions and their branch points for complex values of propagation constants[END_REF]).

We denote by Z i , i = 0, 1, the graph of Λ i in 2 . We can prove easily Z 0 ∪ Z 1 ⊂ Z. The preceding results suggest strongly the following conjecture (cf. [START_REF] Skoda | Sous-ensembles analytiques d'ordre fini ou infini dans n[END_REF]). A similar statement for the Mathieu equations is true, the function F being replaced by the Hill determinant (cf. [START_REF] Volkmer | On Riemann Surfaces of Analytic Eigenvalue Functions[END_REF]).

Conjecture 2: (i) All the branches of the eigenvalues µ(τ ) corresponding to the even (resp. odd) eigenfunctions form a ramified multi-valued analytic function whose graph Z 0 (resp. Z 1 ) is an analytic curve of 2 , a connected component of Z. (ii) We have Z = Z 0 ∪ Z 1 and Z 0 ∩ Z 1 = ∅. The curves Z 0 and Z 1 are the connected components of the curve Z.

(iii) The only singularities of Z over the τ -plane, for the projection (τ, µ) → τ , are algebraic ramification points (of order two).

(iv) For every bounded set K in the τ -plane, there are only finitely many ramification points of the two multivalued functions over K .

(v) We have Z i = Z i , i = 0, 1.

For the proof of the conjecture the delicate point is (iv). If this statement is true, then (v) follows easily (any germ of regular branch of µ at τ = τ 0 ∈ can be extended analytically along a continuous path ending at τ = 0). Then the other statements follows from the Theorem 6. It is perhaps possible to prove (iii) using the methods of Volkmer [START_REF] Volkmer | On Riemann Surfaces of Analytic Eigenvalue Functions[END_REF].

Conjecture 3: For all n ∈ AE we denote V (P 2n ) := {(τ, µ) ∈ 2 | P 2n (τ, µ) = 0}. Then the current of integration 10 on the algebraic curve V (P 2n ) tends, when n tends to infinity, to the current of integration on the analytic curve Z 0 .

There are similar conjectures (mutatis mutandis) for the polynomials Q 2n+1 , U n , τ n V n and D n . Remark It would be interesting to find the order (cf. [START_REF] Skoda | Sous-ensembles analytiques d'ordre fini ou infini dans n[END_REF]) of the current of integration on the analytic curve Z 0 and to study the growth of the entire function F .

Results similar to some results and to the conjecture 11 above were recently proved by Eremenko and Gabrielov for the anharmonic oscillator and other cases [START_REF] Eremenko | Analytic continuation of egienvalues of a quartic oscillator[END_REF][START_REF] Eremenko | Irreducibility of some spectral determinants[END_REF] (cf. part 10) 12 . But it seems that in such situations there exists nothing similar to the phenomena described in the conjecture 3.

Graphical illustration

In this short section, we include the first graphical plots, which give us the idea of the result proved in this paper. For the two figures, the value of τ is fixed to 1. On the left, we plot the graphs of V 9 (µ) (in red), V 10 (in blue) and V 11 (in green) for µ varying from 0 to 30. We see that the polynomials cancel near the first eigenvalues of D 1 [START_REF] Abramowitz | Pocketbook of Mathematical Functions[END_REF]: 0.319, 2.593, 6.533, 12.514, 20.508. On the right, we plot the graphs of V 19 (in green), V 20 (in blue), and V 21 (in brown) in the neighborhood of the first eigenvalue 0.319000.

Cf. [START_REF] Lelong | Intégration sur un ensemble analytique complexe[END_REF][START_REF] Skoda | Sous-ensembles analytiques d'ordre fini ou infini dans n[END_REF][START_REF] De Rham | Differentiable manifolds[END_REF]. In the work of Eremenko and Gabrielov the analog of our conjecture is a theorem. Such results could be related to a Galois theory.

Conclusion

After many numerical experiments (cf. Appendix) we found a strong evidence in favour of the following conjecture and its variations. (We denote δ η the Dirac mass at η ∈ ≈ Ê 2 .) Conjecture 4: For τ ≥ 0, we denote by {µ r (τ )} r∈AE the set of eigenvalues of D τ and, for all n ∈ AE, by {ν p (τ )} p=0,...,n-1 the set of roots of the polynomial P 2n 13 (as a polynomial in µ, τ being fixed).

For all τ ≥ 0 fixed, the measure p=0,...,n-1 δ νp(τ ) (on ≈ Ê 2 ) tends to the measure p∈AE δ µ2p(τ ) (interpreted as a measure on ≈ Ê 2 ) when n tends to +∞.

There are similar conjectures (mutatis mutandis) replacing the sequence of polynomials P 2n by the sequences Q 2n+1 , U n and τ n V n .

We proved the conjecture and its variants for "small values" of τ (cf. corollary 3). We explained in part 10 why the idea to prove such results for "big values" of τ replacing expansions into Legendre polynomials by expansions into parabolic cylinder functions does not work "naively".

In [START_REF] Miyazaki | Numerical Computation of the Eigenvalues for the Spheroidal Wave Equation with Accurate Error Estimation by Matrix Method[END_REF] the similar conjecture is proved for the polynomials D n . The above conjecture 4 14 follows easily from the conjecture 3. As the conjecture 3 seems difficult to prove, it is perhaps possible to prove directly the conjecture 4 using the proposition 2 and the analytic continuation of the eigenvalues (cf. the theorem 6). The technics of [START_REF] Barrowes | On the Asymptotic Expansion of the Spheroidal Wave Function and its Eigenvalues for Complex Size Parameter[END_REF] could be useful.

If we admit the conjecture 3, then we can prove that the union of the finite ramification sets of the algebraic varieties V (P 2n ) and V (Q 2n+1 ) (and similarly the ramification sets of the algebraic varieties V (U n ), V (τ n V n ), V (D n )), for the projection (τ, µ) → τ , admits as "limit" the ramification set of Z, for the same projection 15 , when n tends to +∞. It would be interesting to try to prove this statement directly and also to test it numerically. (About such phenomena cf. [START_REF] Bender | Advanced Mathematical Methods for Scientists and Engineers, International Student Edition[END_REF], 7.5, in particular Possibility 1, page 354).

For sake of simplicity in this paper and our preceding work [START_REF] Fauvet | Stokes phenomenon for the prolate wave equation[END_REF] we worked with prolate differential equations of order 0. It seems easy to extend the results (and the conjectures) to the prolate and oblate differential equations of arbitrary order m ∈ AE + : (x 2 -1)y ′′ + 2xy ′ + τ 2 x 2 -m 2 x 2 -1 y = µy, (x 2 -1)y ′′ + 2xy ′ -τ 2 x 2 + m 2 x 2 -1 y = µy.

It would also be interesting to consider the case of the Mathieu differential equation and more generally the case of general confluent Heun equations.
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Appendix

In the following array, the reader can find the first eigenvalues of D 10 . The first column contains the eigenvalues computed in [START_REF] Slepian | Eigenvalues associated with prolate spheroidal equation of zero order[END_REF], the second column contains the roots of the associated polynomial P 80 (which is a polynomial of degree 40 and has 32 real roots), the third one the roots of Q 81 (which is also of degree 40 and has 32 real roots), the fourth one the roots of U 80 or the roots of V 80 (which both are polynomials of degree 80 and have the same 60 real roots).

[ 

Proposition 2 .

 2 the series, which is equal to 2j(2j + 1) mod τ 2 . Proof: Perform the reduction of D n modulo τ 2 : (D j+1 mod τ 2 ) = (2j(2j + 1) -µ) (D j mod τ 2 ). Convergence radii of the series µ 2j , j ≥ 0 converge for |τ | < 1.

Proposition 5 .

 5 0 and μ an other series such that P (μ) = 0 mod τ k and μ = µ * mod τ . Then μ = µ * mod τ k . Proof: We use the above Taylor formula [[11], p. 51]. Link between the series µ (n) 2j and the series μ2j

  converges, when n tends to infinity, to μ2j (τ ), which is an eigenvalue D τ . Proof: Let α (n) p be the coefficients of the series µ (n) 2j and α p those of μ2j . The majoration given by Kato is independent of n, because d is independent of n and ||G (n) || 2 is bounded independently of n : |α (n) p | ≤ 3 (for all n and for all p). So we have also |α p | ≤ 3 (for all p). Let |τ | < 1.

  of n. To do this, we put ρ n = pn sn1 √ pnsn+ √ qn and r n = ( √ p n s n + √ q n ) -2 . It is proved in [[10], p. 91] that ρ n ≤ d, the isolation distance of the eigenvalues of F (n) (d = 6 for all n), and we have seen above that there exists a lower bound for r n , say r. Choose for Γ the circle |ζ -2j(2j + 1)| = ρ n . For |τ | 2 < r n , the series expansion of the resolvant of the perturbated matrix F (n) + τ 2 G (n) , R(ζ, τ 2 ), is uniformely convergent for ζ ∈ Γ, and the function δ (n) 2j (τ ) -2j(2j + 1) is holomorphic and bounded by ρ n for |τ | 2 < r n . It follows from Cauchy's inequality for the Taylor coefficients that |α (n) p | ≤ ρ n r -p n ≤ dr -p . The end of the proof is the same as for theorem 1.

  [START_REF] Meixner | Mathieusche funktionen und Sphäroidfunktionen[END_REF] 3.[START_REF] Guerrieri | The eigenvalues of the angular spheroidal wave-equation[END_REF] Satz 9, page 243, [15] 21.7.6 page 321, [3] (8.1.11) page 60):

Theorem 5 .

 5 It is a plane analytic curve. Let τ, µ ∈ . the following conditions are equivalent: (i) µ is an eigenvalue of D τ ; (ii) the sums of the power series f 1 and g 1 (the analytic solutions at 1, respectively -1) are entire functions; (iii) the Stokes phenomenon is trivial (i. e. α = β = 0); (iv) the monodromy around [-1, 1] is trivial.

  1 3 τ 2 -2 135 τ 4 + 4 8505 τ 6 + 26 1913625 τ 8 -92 37889775 τ 10 +

			513988 9050920003125 τ 12
	μ2 = 6 + 11 21 τ 2 + 94 9261 τ 4 -21388 44925111 τ 6 -3633830 257555661363 τ 8 + 39611204 16226006665869 τ 10
	-277773545116 4906403669618802351 τ 12	
	μ4 = 20 + 39 77 τ 2 + 52674 29674645 τ 4 + 935076 175940970205 τ 6 + 37764832611642 74924536936711587125 τ 8
	-	3187867616210148 241152114584499914320525 τ 10 -	16139900980217820949844 90612997487168811993405138946875 τ 12

The roots are complex numbers and if necessary they are repeated according to their multiplicity.

In the case of the quartic oscillator and, more generally, in the case of Sibuya's differential equations, the spectral determinant is also defined using Stokes phenomena[START_REF] Sibuya | Global theory of a second order linear ordinary differential equation with a polynomial coefficient[END_REF]. In the case of the spheroidal differential equations this approach seems new.

In this case the graph is connected.

The roots are complex numbers and if necessary they are repeated according to their multiplicity.

And its generalizations for τ ∈ .

That is {τ ∈ | ∂ ∂µ F (τ, µ) = 0}

Asymptotic behavior of the coefficients P n (µ)

The study of the asymptotic behavior of P n (µ), defined by (3), based on [START_REF] Hautot | Accélération de la convergence en analyse numérique, 1ère partie : Théorie des récurrences[END_REF], will enable us to prove that μ2j (τ ) (if it converges) is an eigenvalue of D τ . The recurrence equation satisfied by the polynomials P n ,

is irregular and its characteristic equation is: z 2 -z -τ 2 4n 2 = 0. We search the leading terms of the Puiseux solutions, that means a beginning of solution of the form z = ρn s and find two possibilities: s = 0, z = 1, and s = -2, z = -τ 2 4 . Each "solution" ρn s corresponds to an asymptot of the recurrence equation of the form ρ n Γ(n) s p n , and we have to complete the determination of p n .

p n in the initial recurrence, we obtain for p n :

-

Then p n ≈ n -5/2 . And so we have the first asymptotic behavior:

• s = 0.

Then:

. The second behavior is:

And µ is an eigenvalue if and only if 2n |P n (µ)| tends to 0.

Thus µ is an eigenvalue if and only if b(µ) = 0. Finally, if µ is not an eigenvalue, b(µ) = 0, thus P n (µ) tends to 0 as b(µ) n .

Proposition 15. Assume that a sequence µ n is known, which converges to µ, and satisfies P n (µ n ) = 0, for all n. Then µ is an eigenvalue of D τ .

Proof: Assume that µ is not an eigenvalue. Then P n (µ) ≈ b(µ) n . The polynomials P ′ n satisfy the recurrence relation: τ 2 P ′ n-1 + (2n(2n + 1) -µ)P ′ n -(2n + 1)(2n + 2)P ′ n+1 = P n .