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A class of Hamilton-Jacobi equations with constraint: uniqueness and

constructive approach

Sepideh Mirrahimi∗ Jean-Michel Roquejoffre ††

May 13, 2015

Abstract

We discuss a class of time-dependent Hamilton-Jacobi equations, where an unknown function of
time is intended to keep the maximum of the solution to the constant value 0. Our main result is
that the full problem has a unique viscosity solution, which is in fact classical. The motivation is a
selection-mutation model which, in the limit of small diffusion, exhibits concentration on the zero
level set of the solution of the Hamilton-Jacobi equation.
Uniqueness is obtained by noticing that, as a consequence of the dynamic programming principle,
the solution of the Hamilton-Jacobi equation is classical. It is then possible to write an ODE for
the maximum of the solution, and treat the full problem as a nonstandard Cauchy problem.

Key-Words: Hamilton-Jacobi equation with constraint, uniqueness, constructive existence result,
selection-mutation models
AMS Class. No: 35A02, 35F21, 35Q92.

1 Introduction

1.1 Model and question

The purpose of this paper is to discuss existence and uniqueness for the following problem, with
unknowns (I(t), u(t, x)):





∂tu = |∇u|2 +R(x, I) (t > 0, x ∈ R
d), max

x
u(t, x) = 0

I(0) = I0 > 0,

u(0, x) = u0(x),

(1)

where I0 > 0 and u0 is a concave, quadratic function. For a given continuous function I(t), u(t, x)
solves a Hamilton-Jacobi equation. The unknown I may be thought of as a sort of regulator, or a sort
of Lagrange multiplier, to maintain the maximum of u equal to 0. The constraint on the maximum
of u(t, .) makes the problem nonstandard.
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Existence of a solution (u, I) to (1) is not new, the first result is due to Perthame and Barles [21] (see
also Barles-Perthame-Mirrahimi [3] for a result with weaker assumptions). An important improvement
is given by Lorz, Perthame and the first author in [16]; they indeed notice that a concavity assumptions
on R - that we also make here - entail regularity. This allows them to derive the dynamics of the
maximum point of a solution u(t, x). See also [17]. Both types of results rely on a special viscous
approximation of (1) - see equation (4) below. Uniqueness, however, has remained an open problem,
apart from a very particular case [21].
The main goal of the paper is to prove the missing uniqueness property; a result that we had already

announced in [19]. We also provide a constructive existence proof which was not available in the pre-
vious existence results [21, 3, 16]. Two important consequences, that we will present in a forthcoming
paper [20] (see also [19]), will be the convergence of the underlying selection-mutation model in a
stronger sense than what is known, and asymptotic expansion of the viscous solution. The asymptotic
expansion, which allows to approximate the phenotypical distribution of the population when the mu-
tation steps are small but nonzero, is particularly interesting in view of biological applications. One
of the main ingredients will be regularity under suitable concavity assumptions on R and u0, which is
far from being available in general. Instead of relying on viscous approximations we will prove these
results directly for the equation

ut = |∇u|2 +R(t, x). (2)

This will allow a much easier treatment than in the usual viscosity sense.
The uniqueness result will also be helpful to develop the so-called Hamilton-Jacobi approach (see for
instance Diekmann et al. [9], [21, 16] and Subsection 1.2) to study more complex models describing
selection and mutations. For instance, our result would allow to generalize a result due to Perthame
and the first author in [18] on a selection model with spatial structure, where the proof relies on the
uniqueness of the solution to a corresponding Hamilton-Jacobi equation with constraint.

1.2 Motivation

Model (1) arises in the limit ε→ 0 of the solutions to the problem

∂tnε − ε∆nε =
nε
ε
R
(
x, Iε(t)

)
(t > 0, x ∈ R

d), Iε(t) =

∫

Rd

ψ(x)nε(t, x)dx, (3)

where nε(t, x) is the density of a population characterized by a d-dimensional biological trait x. The
population competes for a single resource, this is represented by Iε(t), where ψ is a given positive
smooth function. The term R(x, I) is the reproduction rate; it is, as can be expected, very negative
for large x and decreases as the competition increases. The Laplace term corresponds to the muta-
tions. The small parameter ε is introduced to consider the long time dynamics of the population when
the mutation steps are small. Such models can be derived from individual based stochastic processes
in the limit of large populations (see Champagnat-Ferrière-Méléard [5, 6]). There is a large litera-
ture on the models of population dynamics under selection and mutations. We refer the interested
reader, for instance to Geritz et al. [15] and Diekmann [8] for an approach based on the study of
the stability of differential systems (the so-called adaptive dynamics approach), to Champagnat [4]
for the study of stochastic individual based models, to Raoul [22] and Mirrahimi [17] for the study of
integro-differnetial models.

The Hopf-Cole transformation nε = exp (uε/ε) yields the equation

∂tuε = ε∆uε + |∇uε|2 +R(x, Iε) (4)
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which, in the limit ε → 0, yields the equation for u. Furthermore, Iε being uniformly positive
and bounded in ε, the Hopf-Cole transformation leads to the constraint on u. One expects that nε
concentrates at the points where u is close to 0 and the function Iε appears, in the limit, as a sort of
Lagrange multiplier. One has indeed

nε(x, t) −−⇀
ε→0

n(x, t) = ρ(t) δ(x − x̄(t)), weakly in the sense of measures,

with

u(t, x(t)) = max
x

u(t, x) = 0, ρ(t) =
I(t)

ψ(x(t))
.

This method to study (3) has been introduced in [9] and then developed in different contexts. See for
instance Perthame-Barles [21] (convergence to Hamilton-Jacobi dynamics for (4), Barles-Mirrahimi-
Perthame [3] (the same type of result, but with nonlinear, nonlocal diffusion), Champagnat-Jabin
[7] (nonlinear integro-differential model with several resources), [16] (convergence improvement by
introduction of the concavity assumptions). This approach has a lot to do with the ’approximation
of geometric optics’ for reaction-diffusion equations of the Fisher-KPP type. See Freidlin [11, 12] for
the probabilistic approach, and Evans-Souganidis [10], Barles-Evans-Souganidis [2] for the viscosity
solutions approach.

1.3 Assumptions

The assumptions we are stating below are in the same spirit (but slightly weaker) as in [16], where the
authors noticed that this set of assumptions allowed them to work with smooth solutions, thus going
quite far in the study of (3). We believe that the results that we will prove would certainly be false if
some of those assumptions were removed.

• Assumptions on R(x, I). We choose R to be smooth, and we suppose that there is IM > 0
such that (fixing the origin in x appropriately)

max
x∈Rd

R(x, IM ) = 0 = R(0, IM ), (5)

−K1|x|2 ≤ R(x, I) ≤ K0 −K1|x|2, for 0 ≤ I ≤ IM , (6)

− 2K1 ≤ D2R(x, I) ≤ −2K1 < 0 as symmetric matrices, (7)

−K2 ≤
∂R

∂I
≤ −K2, (8)

| ∂
2R

∂I∂xi
(x, I)| + | ∂3R

∂I∂xi∂xj
(x, I)| ≤ K3, for 0 ≤ I ≤ IM , and i, j = 1, 2, · · · , d, (9)

‖D3R(·, I)‖L∞(Rd) ≤ K4, for 0 ≤ I ≤ IM . (10)

• Assumptions on u0(.) and I0. We assume the existence of positive constants L0, L0, L1, L1

such that
− L0 − L1|x|2 ≤ u0(x) ≤ L0 − L1|x|2, (11)

− 2L1 ≤ D2u0 ≤ −2L1. (12)

Note that this implies
|Du0(x)| ≤ L2(1 + |x|), (13)
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for a large constant L2 > 0. We also need that, for a positive constant L3,

‖D3u0‖L∞(Rd) ≤ L3. (14)

Finally we assume that

max
x

u0(x) = u0(x0) = 0, R(x0, I0) = 0. (15)

Note that the monotony assumption (8) means that the growth rate decreases as the competition in-
creases, which is natural from the modeling point of view. The concavity assumption is a technical one.

In Section 2 we will study an unconstrained Hamilton-Jacobi equation where we replace R(x, I) by
R(t, x). To prove our results on this unconstrained problem we assume same type of regularity and
concavity assumptions on R that we state below:

• Assumptions on R(t, x). We choose R to be smooth, and we suppose that

−K1|x|2 ≤ R(t, x) ≤ K0 −K1|x|2, for t ∈ R
+, (16)

− 2K1 ≤ D2R(t, x) ≤ −2K1 < 0 as symmetric matrices, (17)

‖D3R(t, ·)‖L∞(Rd) ≤ K4, for t ∈ R
+. (18)

1.4 Results and plan of the paper

Our first result concerns the unconstrained Hamilton-Jacobi equation

{
ut = |∇u|2 +R(t, x) (t > 0, x ∈ R

d),

u(0, x) = u0(x).
(19)

The assumptions on u0 and R are those stated in the preceding subsection.

Theorem 1.1 Equation (19) has a unique viscosity solution u that is bounded from above. Moreover,
it is a classical solution: u ∈ L∞

loc

(
R
+;W 3,∞

loc (Rd)
)
∩W 1,∞

loc

(
R
+;L∞

loc(R
d)
)
, −max(2L1,

√
K1) ≤ D2u ≤

−min(2L1,
√
K1) and ‖D3u‖L∞([0,T ]×Rd) ≤ L4(T ) where L4(T ) is a positive constant depending on

L1, K1, K4, L3 and T .

Let us point out that the assumption of boundedness from above is, most certainly, irrelevant. However
the constraint in (1) implies that all the solutions that we consider are bounded from above. This
extra condition is thus legitimate, and will keep the length of the preliminary work to a minimum.

Theorem 1.2 The Hamilton-Jacobi equation with constraint (1) has a unique solution (u, I). More-
over we have

(u, I) ∈ L∞
loc

(
R+;W 3,∞

loc (Rd)
)
∩W 1,∞

loc

(
R+;L∞

loc(R
d)
)
×W 1,∞(R).

The paper is organised as follows. In Section 2 we prove the Cauchy Problem for (19). In Section
3 we reduce (1) to a (nonstandard) differential system. Theorem 1.2 is proved in Section 4. Section 5
is devoted to the study of a particular example.

4



2 The Cauchy problem

In this section, we prove Theorem 1.1.

We will first prove that the only solution to (2) that is bounded from above is the solution u(t, x) of
the dynamic programming principle

u(t, x) = sup
(γ(s),s)∈Rd×[0,t]

γ(t)=x

{
F (γ) : γ ∈ C1([0, t];Rd)

}
, (20)

with

F (γ) := u0(γ(0)) +

∫ t

0

(
−|γ̇|2

4
(s) +R(s, γ(s))

)
ds.

Such a solution is a viscosity solution to (1). We will prove, in addition, that it is classical and satisfies
the properties claimed by Theorem 1.1.

Uniqueness. This step essentially consists in showing that a viscosity solution of (2) does not grow
too wildly, which will reduce the problem to the application of classical arguments. We have already
assumed boundedness from above, so let us show that u goes to −∞ at most in a quadratic fashion.
Due to the assumptions (16) on R, we have

∂tv ≥ 0, v(t, x) = u(t, x) + tK1|x|2

in the viscosity sense, which implies that v is time-increasing - thus the needed estimate. Let us -
although this is elementary - explain why: choose T > 0 and assume the existence of 0 < s < t ≤ T
such that the inequality v(t, x) ≥ v(s, x) does not hold. In other words there is x0 such that v(s, x0) >
v(t, x0). For ε > 0 consider the quantity

wε(t, x) := v(t, x)− v(s, x0) +
ε

T − t
+

|x− x0|2
ε2

.

For ε > 0 small enough, there is a local minimum point for wε, called (tε, xε), such that tε is bounded
away from s and T , and xε → x0 as ε → 0. At that minimum point the viscosity inequality implies

−∂t
1

T − t
≥ 0, a contradiction.

So there is a large C > 0 such that

−C(1 + t)(1 + |x|2) ≤ u(t, x) ≤ C.

And so, by an easy adaptation of Chap. 2 of Barles [1], where a uniqueness result for solutions that
grow at most exponentially fast is provided (see also [13, 14]), there is at most one viscosity solution
to (2) that is bounded from above.

Existence. We may thus turn to (20). Let us suppose that (γn)1≤n, with γn ∈ C1([0, t];Rd) and
γn(t) = x, is such that F (γn) → u(t, x) as n→ ∞. Since R and u0 are bounded from above, we obtain
that, for some constant C ∫ t

0
|γ̇n|2(s)ds < C.
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Consequently, from γn(t) = x we deduce, modifying the constant C if necessary, that

‖γn‖W 1,2[0,t] < C.

It follows that, there exists γ ∈ W 1,2([0, t];Rd), such that as n → ∞, γn → γ strongly in C([0, t];Rd)
and weakly in W 1,2([0, t];Rd). We deduce that, as n→ ∞,

u0(γn(0)) → u0(γ),

∫ t

0
R(s, γn(s))ds →

∫ t

0
R(s, γ(s))ds,

∫ t

0
|γ̇|2(s)ds ≤ lim inf

n→∞

∫ t

0
|γ̇n|2(s)ds.

We conclude that

u(t, x) = u0(γ(0)) +

∫ t

0

(
−|γ̇|2

4
(s) +R(s, γ(s))

)
ds. (21)

We claim that such a trajectory is unique, which entails uniqueness for the Cauchy problem (19). We
note indeed that such trajectory γ satisfies the following Euler-Lagrange equation





γ̈(s) = −2∇R(s, γ(s)),
γ̇(0) = −2∇u0(γ(0)),
γ(t) = x.

(22)

However, from the concavity assumptions on R and u0 we obtain that the above elliptic problem is
coercive and hence the solution γ is unique.

Regularity. Let us denote by γx(t) the unique solution of (22). The function (t, x) 7→ (γx(t), γ̇x(t))
belongs to L∞

loc(R
+,W 2,∞

loc (Rd)) because ∇u0 and ∇R(t, .) are in W 2,∞
loc (Rd). Now, we have

u(t, x) = u0(γx(0)) + F (γx),

yielding (this is a classical computation):

∂iu(t, x) = ∇u0(γx(0)).∂iγx(0) +
∫ t

0

(
− γ̇x(s).∂iγ̇x(s)

2
+∇R(s, γx(s))∂iγx(s)

)
ds.

Integrating by parts and using the Euler-Lagrange equation (22), we get:

∇u(t, x) = − γ̇x(t)
2

. (23)

Thus u ∈ L∞
loc(R

+,W 3,∞
loc (Rd)).

Strict concavity. We will prove that u(t, x) is uniformly strictly concave, namely that D2u ≤ −2λI

in the sense of symmetric matrices, for λ = min
(
L1,

√
K1

2

)
. To this end, we show that, for all σ ∈ [0, 1]

and (x, y) ∈ R
d × R

d:

σu(t, x) + (1− σ)u(t, y) + λσ(1 − σ)|x− y|2 ≤ u(t, σx+ (1− σ)y). (24)

Let γx and γy be optimal trajectories, solving (22), with γx(t) = x and γy(t) = y. Note from the
choice of γx and γy that we have

u(t, x) = u0(γx(0)) +

∫ t

0

(
−|γ̇x(s)|2

4
+R(s, γx(s))

)
ds,
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u(t, y) = u0(γy(0)) +

∫ t

0

(
−|γ̇y(s)|2

4
+R(s, γy(s))

)
ds,

and

u(t, σx+ (1− σ)y) ≥ u0(σγx(0) + (1− σ)γy(0))

+

∫ t

0

(
−|σγ̇x + (1− σ)γ̇y(s)|2

4
+R(s, σγx(s) + (1− σ)γy(s))

)
ds.

Furthermore, from the concavity assumptions on R and u0 we have

σu0(t, x) + (1− σ)u0(t, y) + L1σ(1 − σ)|γx(0) − γy(0)|2 ≤ u0(t, σx+ (1− σ)y),

and

σ

∫ t

0
R(s, γx(s))ds + (1− σ)

∫ t

0
R(s, γy(s))ds +K1σ(1− σ)

∫ t

0
|γx(s)− γy(s)|2ds

≤
∫ t

0
R(s, σγx(s) + (1− σ)γy(s))ds.

Moreover, from the strict concavity of µ 7→ −|µ|2, we obtain that

σ

∫ t

0
−|γ̇x(s)|2

4
ds+ (1− σ)

∫ t

0
−|γ̇y(s)|2

4
ds + σ(1 − σ)

∫ t

0

|γ̇x(s)− γ̇y(s)|2
4

ds

≤
∫ t

0
−|σγ̇x + (1− σ)γ̇y(s)|2

4
ds.

We deduce that

u(t, σx+ (1− σ)y)) ≥ σu(t, x) + (1− σ)u(t, y)

+ σ(1− σ)

(∫ t

0
(
1

4
|γ̇x(s)− γ̇y(s)|2 +K1|γx(s)− γy(s)|2)ds+ L1|γx(0)− γy(0)|2

)
(25)

Next we have
√
K1

2

∫ t

0

d

ds
|γx(s)− γy(s)|2ds ≤ K1

∫ t

0
|γx(s)− γy(s)|2ds+

∫ t

0

|γ̇x − γ̇y|2
4

(s)ds.

Writing

|x− y|2 = |γx(t)− γy(t)|2 = |γx(0)− γy(0)|2 +
∫ t

0

d

ds
|γx(t)− γy(t)|2ds

we find

|x− y|2 ≤ |γx(0)− γy(0)|2 + 2

√
K1

∫ t

0
|γx(s)− γy(s)|2ds+

1

2
√
K1

∫ t

0
|γ̇x − γ̇y|2(s)ds.

Combing the above line with (25), we obtain (24) for λ = min
(
L1,

√
K1

2

)
.

Bounds on u and ∇u. The first thing to notice is a bound for (γx, γ̇x). Indeed, the coercivity for
(22), as well as the fact that x 7→ ∇R(t, x) grows linearly with a constant only depending on t, implies
the existence of a locally bounded constant K(t) such that

|(γx(s), γ̇x(s))| ≤ K(t)(1 + |x|), for all s ∈ [0, t]. (26)
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This implies, modifying the constant K(t) if necessary, thanks to (21):

|u(t, x)| ≤ K(t)(1 + |x|2).

Moreover, from (23), we have
|∇u(t, x)| ≤ K(t)(1 + |x|). (27)

Semi-convexity. Because u is three times differentiable in x, then ∂tu is locally W 2,∞ in x and
equation (19) may be differentiated twice with respect to x. So, let e be any unit vector, we have

∂t(∂eeu) = 2|∇∂eu|2 + 2∇u.∇(∂eeu) + ∂eeR(t, x)
≥ 2|∂eeu|2 + 2∇u.∇(∂eeu) + ∂eeR(t, x).

Because of (27), the curve t 7→ γx(t) becomes a characteristic curve for the equation

∂tv = 2v2 + 2∇u(t, x).∇v(t, x) + ∂eeR(t, x).

Moreover, along this characteristics, we find

d

dt
v(t, γx(t)) = 2v(t, γx(t))

2 + ∂eeR(t, γx(t)).

We deduce, thanks to (12) and (17), that

∂eeu ≥ −max(2L1,
√
K1).

Bounds on D3u. As for the third derivative, we set v(t, x) = D3u(t, x), the equation for v - that we
may obtain using differential quotients - is

∂tv − 2∇v.∇u = S(t, x, v) := 6v.D2u+D3R,

where ∇v denotes the column of tensors (∂1v, ..., ∂dv) and v.D2u denotes the column of matrices
(∂1D

2u.D2u, ..., ∂dD
2u.D2u). This is a linear equation with (thanks to the bound on D2u) bounded

coefficients. Thus, local boundedness of ‖v(t, .)‖L∞(Rd) holds, and this concludes the proof of Theorem
1.1.

3 Uniqueness: reduction to a differential system and properties of

the function I

The idea is to change the constrained problem (1) by the following slightly nonstandard differential
system: 




R (x(t), I(t)) = 0, for t ∈ R
+,

ẋ(t) =
(
−D2u

(
t, x̄(t)

))−1∇R
(
x̄(t), I(t)

)
, for t ∈ R

+,

∂tu = |∇u|2 +R(x, I), in R
+ × R

d,

(28)

with initial conditions

I(0) = I0, u(0, ·) = u0(·), x(0) = x0,
such that maxx u0(x) = u0(x0) = 0 and R(x0, I0) = 0.

(29)

Note that (28) is really a differential system because the assumptions on R imply that I(t) can
implicitely be expressed in terms of x̄(t). And it is slightly nonstandard because x̄ solves an ODE
whose nonlinearity depends on u. The precise statement is the following
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Theorem 3.1 Solving the constrained problem (1) is equivalent to solving the initial value ODE-PDE
problem (28)-(29).

Proof. Let (u, I) be a solution of (1) with initial datum (u0, I0), the function I being continuous,
and u a solution of the Hamilton-Jacobi equation in the sense of (20). Theorem 1.1 is applicable, and
yields a solution u(t, x) which has at least three locally bounded spatial derivatives, locally uniformaly
in time. Moreover, the D2u is bounded uniformly in time and in x, and finally the function u(t, .) is
strictly concave. This allows a lot.

• There is, at each time, a unique x(t) maximising u(t, .) over Rd. Thus the trivial identity

∇u(t, x(t)) = 0 (30)

can (use differential quotients) be differentiated with respect to t, to yield that (i) x(t) is locally
W 1,∞ and (ii) the (a priori less trivial) identity

∂t(∇u)(t, x(t)) +D2u(t, x(t)).
dx

dt
(t) = 0. (31)

• The function u(t, x) has enough regularity so that we may take the gradient of (1) with respect
to x, and evaluate the result at x = x(t). Because of (30) we have D2u(t, x(t)).∇u(t, x(t)) = 0
and, because of (31), we have

−D2u(t, x(t)).
dx

dt
(t) = ∇R(x(t), I(t)). (32)

• The last item to take into account is the constraint

u(t, x(t)) = 0,

which we may (still with the use of differential quotients) differentiate with respect to time, in
order to yield

∂tu(t, x(t)) +∇u(t, x(t)).dx
dt

(t) = 0,

thus entailing

∂tu(t, x(t)) = 0.

This yields, from (1),

R(x(t), I(t)) = 0. (33)

Gathering (33), (1) and (32) shows that the constrained problem implies (28).

We also prove that regularity plus (28) easily implies (1). Let (u, I) solve (28). The first line of (1)
derives immediately. To prove the second line, note that, thanks to Theorem 1.1 and the third line
of (28) we deduce that u is strictly concave. It has hence, for all t ∈ R

+, a unique strict maximum
point, in the variable x, that we denote y(t). Following similar arguments as above, we obtain that

{
ẏ(t) = (−D2u (t, y(t))−1 ∇R(y(t), I(t)), for t ∈ R

+,

y(0) = x0.

9



Comparing this with the second line of (28) and (29) we obtain that x(t) = y(t), for all t ∈ R
+. Finally,

evaluating the third line of (28) at x(t) and using the first line of (28), we obtain that ∂tu(t, x(t)) = 0.
This equality together with ∇u(t, x(t)) = 0 and (29) implies that

max
x

u(t, x) = u(t, x(t)) = 0.

and the proof of Theorem 3.1 is complete. �

Remark. What we have done here is nothing else than the derivation of the equation for x carried out
in [9]. In particular, the equilibrium property R(x, I) = 0 would hold in a more general setting than
here. The new point here is that we establish, in a mathematically rigorous fashion, the equivalence
between the initial problem (1) and the coupled system (28), and this equivalence holds because of all
the differentiations with respect to x and t that we are allowed to make.

4 The proof of Theorem 1.2

We fix T > 0. To prove that (1) has a unique solution (u, I) in [0, T ]× R
d, it is enough to prove that

there exists a unique solution to (28)–(29).

We prove this using the Banach fixed point Theorem in a small interval and then iterate.

4.1 The mapping Φ and its domain

First, we define
Ω = {x |R(x, 0) > 0} , Ω0 = {x |R(x, I0) ≥ 0} , and

A =
{
x(·) ∈ C

(
[0, δ];B

(
x0, rδ

)) ∣∣∣x(0) = x0

}
,

where B(z, r) is the ball of radius r centered at z, and δ is a positive constant such that

δ < min(µ, c(T )), with µ =
min(2L1,

√
K1)

CM
d(Ω0 , Ω), (34)

where d(A,B) is the distance between the sets A and B. The constant rδ is given by

rδ =
CMδ

min(2L1,
√
K1)

,

the constant CM is chosen such that

|∇R(x, I)| ≤ CM , in Ω× [0, IM ], (35)

and c(T ), a constant depending only on T , will be chosen later. Note that, by the choice of δ and
since x0 ∈ Ω0, we obtain that

B (x0, rδ) ⊂ Ω.

Our theorem will be proved by the introduction of a mapping

Φ : A → A, Φ(x) = y.

We will prove the following theorem.
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Theorem 4.1 The mapping Φ is a strict contraction from A into itself.

To define Φ, we first need to introduce some other mappings. Let x(·) ∈ A. We define I : A →
C ([0, δ]; [0, IM ]) such that

R(x(t),I[x](t)) = 0.

From (5), (8) and since x(t) ∈ Ω for all t ∈ [0, δ], it follows that I can be defined in a unique way.
Next, we define the following domain

B =
{
v ∈ L∞(

[0, δ];W 3,∞
loc (Rd)

)
∩W 1,∞(

[0, δ];L∞
loc(R

d)
)
|

−max(2L1,
√
K1) ≤ D2v ≤ −min(2L1,

√
K1), ‖D3v‖L∞([0,δ]×Rd) ≤ L4(T )

}
,

and the following mapping {
V : C ([0, δ]; [0, IM ]) → B
V (I) = v,

where v solves {
∂tv = |∇v|2 +R(x, I), in [0, δ] × R

d,

v(0, x) = u0(x), in R
d.

(36)

It follows from Theorem 1.1 that the above mapping is well-defined.
Finally, we introduce a last mapping:

{
F : C ([0, δ]; [0, IM ])×A× B → A,
F (I, x, v) = y,

where y ∈ A solves {
ẏ(t) =

(
−D2v(t, x(t)

)−1 ∇R(x(t), I(t)), in [0, δ],

y(0) = x0.

To prove that F is well-defined, we must verify that y(t) remains in B (x0, rδ). We note that, since
v ∈ B, we have

0 <
1

max(2L1,
√
K1)

≤
(
−D2v(t, x(t))

)−1 ≤ 1

min(2L1,
√
K1)

.

We deduce, thanks to (35), that

y(t) ∈ B (x0, rδ) .

We are now ready to define mapping Φ:

{
Φ : A → A,
Φ(x) = F

(
I(x), x, V (I(x))

)
.

It follows from the above arguments that Φ is well-defined.
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4.2 Proof of Theorem 1.2

In this section we will explain why uniqueness to (28) holds. One main technical lemma will be stated,
its proof will be postponed to a special section.
Let us prove that Φ is a contraction for c(T ) (and hence δ) small enough. To this end, we first prove

that I is Lipschitz:

|I(x1)− I(x2)| ≤ C‖x1 − x2‖L∞([0,δ]), for all x1, x2 ∈ C
(
[0, δ];B

(
x0, rδ

))
. (37)

We have indeed
R(x1,I(x1)) = R(x2,I(x2)) = 0.

It follows that
R(x1,I(x1))−R(x2, I(x1)) = R(x2,I(x2))−R(x2, I(x1)),

and thus

∇R (cx1 + (1− c)x2, I(x1)) · (x2 − x1) =
∂R

∂I
(x2, J)(I(x2)− I(x1)),

with c ∈ (0, 1) and J ∈ (I(x1), I(x2)). Finally, using (8), (35) and the fact that x1(t), x2(t) ∈ Ω for
all t ∈ [0, δ] we obtain (37) with C = CM

K2
.

Next, we have that V : C ([0, δ]; [0, IM ]) → B is also Lipschitz.

Lemma 4.2 Let I1, I2 ∈ C ([0, δ]; [0, IM ]). Then

‖V (I1)− V (I2)‖W 2,∞([0,δ]×Rd) ≤ C‖I1 − I2‖L∞([0,δ])δ. (38)

This is a nontrivial lemma, whose proof will be given in the next section.

From (7) and (9), and since x1, x2 ∈ A and V1, V2 ∈ B, we deduce that F : C ([0, δ]; [0, IM ])×A×B →
A is Lipschitz with respect to all the variables with Lipschitz constant Cδ:

‖F (I1, x1, V1)− F (I2, x2, V2)‖L∞([0,δ]) ≤ Cδ
[
‖x1 − x2‖L∞([0,δ]) + ‖I1 − I2‖L∞([0,δ])

+‖V1 − V2‖W 2,∞([0,δ]×Rd)

]
.

(39)

Finally, we conclude from (37), (38) and (39) that Φ : A → A is a Lipschitz mapping with a Lipschitz
constant Cδ:

‖Φ(x1)− Φ(x2)‖L∞([0,δ]) ≤ Cδ‖x1 − x2‖L∞([0,δ]).

Choosing c(T ) (and hence δ) small enough, we deduce that Φ is a contraction.
We deduce from the Banach fixed point Theorem that Φ has a unique fixed point and consequently
(28)–(29) has a unique solution for t ∈ [0, δ].

To prove that (28)–(29) has a unique solution in [0, T ] we iterate the above procedure K = ⌈T
δ
⌉

times. Let 2 ≤ i ≤ K and (x, I, u) be the unique solution of (28)-(29) for t ∈ [0, (i − 1)δ]. Then, at
the i-th step, we consider the same mapping Φ but as the initial data we choose

x̃0 = x((i− 1)δ), ũ0(·) = u((i− 1)δ, ·), Ĩ0 = I((i− 1)δ). (40)

We claim that these initial conditions satisfy

x̃0 ∈ Ω0, ũ0 ∈W 3,∞
loc (Rd), with −max(2L1,

√
K1) ≤ D2ũ0 ≤ −min(2L1,

√
K1)

‖D3ũ0‖L∞(Rd) ≤ L4((i− 1)δ), maxx ũ0(x) = x̃0, R(x̃0, Ĩ0) = 0.

(41)
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Lemma 4.3 Let (x, I, u) be the unique solution of (28)-(29) in [0, τ ]. Then, I(t) is increasing with
respect to t in [0, τ ] and

x(t) ∈ Ω0, u(t, ·) ∈W 3,∞
loc (Rd), with −max(2L1,

√
K1) ≤ D2u(t, x) ≤ −min(2L1,

√
K1),

‖D3u‖L∞([0,τ ]×Rd) ≤ L4(τ), maxx u(t, x) = x(t), R(x(t), I(t)) = 0, , for all t ∈ [0, τ ] and x ∈ R
d.

Proof. The regularity estimates on u are immediate from Section 2. The two last claims also follow
immediately from (28)-(29) and the arguments in Section 3. We only prove that I(t) is increasing
with respect to t and x(t) ∈ Ω0.

Differentiating the first line of (28) with respect to t we obtain

∇R(x(t), I(t)) · ẋ(t) + ∂

∂I
R(x(t), I(t)) İ(t) = 0.

Moreover, multiplying the second line of (28) by ∇R we obtain

∇R(x(t), I(t)) · ẋ(t) = ∇R(x(t), I(t))
(
−D2u(t, x(t)

)−1∇R(x(t), I(t)) ≥ 0.

Combining the above lines we obtain

∂

∂I
R(x(t), I(t)) İ(t) ≤ 0, for t ∈ [0, τ ],

and hence, thanks to (8) we deduce

İ(t) ≥ 0, for t ∈ [0, τ ].

Therefore, I(t) is increasing with respect to t and in particular

I(t) ≥ I0, for t ∈ [0, τ ].

Consequently, from the first line of (28) and (8), we obtain that

R(x(t), I0) > 0, for t ∈ [0, τ ].

It follows that

x(t) ∈ Ω0, for t ∈ [0, τ ].

which concludes the proof.

It is then immediate that the initial data given by (40) verify (41). One can verify that the above
conditions are the only properties that we have used to prove that Φ is well-defined and a contraction.
Therefore, one can apply again the Banach fixed point Theorem and deduce that there exists a unique
solution of (28)-(29) for t ∈ [(i − 1)δ, iδ].

4.3 Proof of Lemma 4.2

(i) We first prove that

‖V (I1)− V (I2)‖L∞([0,δ]×Rd) ≤ C‖I1 − I2‖L∞([0,δ])δ. (42)
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Let v1 = V (I1) and v2 = V (I2), and r = v2 − v1. From (36) we obtain

{
∂tr = (∇v1 +∇v2) · ∇r +R(x, I2)−R(x, I1), in [0, δ] × R

d

r(0, x) = 0, for all x ∈ R
d.

(43)

Note that the above equation has a unique classical solution which can be computed by the method
of characteristics. The characteristics verify

γ̇(t) = −∇v1(t, γ) −∇v2(t, γ). (44)

For any (t1, x1) ∈ [0, δ] × R
d, there exists a unique characteristic curve γ which verifies γ(t1) = x1.

Moreover, this characteristic curve is defined in [0, t1].
The local existence and uniqueness of the characteristic curve γ is derived from the Cauchy-Lipschitz
Theorem and the fact that ∇vi is Lipschitz with respect to x, for i = 1, 2. The latter property derives
from the fact that 2L1 ≤ D2vi ≤ −2L1, for i = 1, 2.
To prove that the characteristic curve γ is defined in [0, t1] we must prove that γ remains bounded in
this interval. However, this property follows using (44) and the fact that, since v1, v2 ∈ B,

|∇vi(γ)| ≤ C1|γ|+ C2, for i = 1, 2.

We are now ready to prove (38). To this end, we multiply (44) by ∇r(t, γ) to obtain

∇r(t, γ) · γ̇(t) = −(∇v1(t, γ) +∇v2(t, γ)) · ∇r(t, γ).

Combining this with (43) we deduce that

∇r(t, γ(t)) · γ̇(t) + ∂tr(t, γ(t)) = R(x, I2)−R(x, I1).

We integrate this between 0 and t1 to find

r(t1, γ(t1)) =

∫ t1

0
R(x, I2(τ))−R(x, I1(τ))dτ.

It follows, using (8), that

|r(t1, γ(t1))| ≤ K2|I1 − I2|t1,

and hence (42).

(ii) Next, we prove that

‖∇r‖L∞([0,δ]×Rd) ≤ C‖I1 − I2‖L∞([0,δ])δ. (45)

We differentiate (43) in the direction ei, for i = 1, · · · , d, to obtain

∂tr(i) =
(
∇v1,(i) +∇v2,(i)

)
· ∇r + (∇v1 +∇v2) · ∇r(i) +R(i)(x, I2)−R(i)(x, I1),

with the notation f(i) = ∇f · ei. We multiply by r(i), sum over i and divide by |∇r| to obtain

∂t|∇r| ≤ (∇v1 +∇v2) · ∇|∇r|+
n∑

i=1

∣∣∇v1,(i) +∇v2,(i)
∣∣ |r(i)|+ |∇R(x, I2)−∇R(x, I1)|.

14



Since D2vj, for j = 1, 2, is bounded, and using (9) we deduce that

∂t|∇r| ≤ (∇v1 +∇v2) · ∇|∇r|+ C|∇r|+K3|I2 − I1|.

The characteristic curves corresponding to the above equation verify again (44). We multiply (44) by
∇|∇r|(t, γ(t)) to obtain

∇|∇r|(t, γ) · γ̇(t) = −(∇v1(t, γ) +∇v2(t, γ)) · ∇|∇r|(t, γ).

Combining the above equations we obtain

d

dt
|∇r|(t, γ(t)) ≤ C|∇r|(t, γ(t)) +K3‖I2 − I1‖L∞([0,δ]).

It follows that

|∇r(t, x)| ≤
(
eCt − 1

) K3

C
‖I2 − I1‖L∞([0,δ]).

Hence (45), modifying the constant C if necessary.

(iii) Finally we prove that

‖D2r‖L∞([0,δ]×Rd) ≤ C‖I1 − I2‖L∞([0,δ])δ. (46)

Note that at every point (t, x) ∈ R
+ ×R

d, we can write mixed derivatives of the form rξη in terms of
pure derivatives:

rξη =
1

2
(∂2ξ+η,ξ+ηr − ∂2ξξr − ∂2ηηr). (47)

This implies the existence of ξ on the unit sphere of Rd such that

‖D2r‖L∞([0,δ]×Rd) ≤
3

2
‖rξξ‖L∞([0,δ]×Rd).

We differentiate (43) twice in the direction of ξ and obtain

∂trξξ = (∇v1,ξξ +∇v2,ξξ) · ∇r+2 (∇v1,ξ +∇v2,ξ) · ∇rξ + (∇v1 +∇v2) · ∇rξξ +Rξξ(x, I2)−Rξξ(x, I1).

Using the above arguments, the fact that D2vi and D
3vi are bounded, (9) and (45) we deduce that

∂t|rξξ| ≤ C‖I1 − I2‖L∞([0,δ])δ + C‖rξξ‖L∞([0,δ]×Rd) + (∇v1 +∇v2) · ∇|rξξ|+K3|I2 − I1|.

Next we use the characteristic curves as previously. We multiply (44) by ∇|rξξ(t, γ(t))| and obtain

∇|rξξ(t, γ(t))| · γ(t) = −(∇v1(t, γ) +∇v2(t, γ)) · ∇|rξξ(t, γ)|.

We combine the above equations to obtain

d

dt
|rξξ(t, γ(t))| ≤ C‖I1 − I2‖L∞([0,δ]) + C‖rξξ‖L∞([0,δ]×Rd).

We conclude that
|rξξ(t, x)| ≤ Ct(‖I2 − I1‖L∞([0,δ]) + ‖rξξ‖L∞([0,δ]×Rd)).

Restricting c(T ) (and hence δ) if necessary we get

‖rξξ‖L∞([0,δ]×Rd) ≤
Cδ

1− Cδ
‖I2 − I1‖L∞([0,δ]),

hence (46).
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5 An example with quadratic u0 and R

Let us study the (instructive) example of a quadratic equation (1). In other words we choose

{
u0(x) = −1

2A0x · x,
R(x, I) = −1

2A1x · x+ b · x+ I0 − I,

where A0 and A1 are positive definite matrices and b ∈ R
d. The Euler-Lagrange equation for the

dynamic programming principle writes

{
−γ̈ + 2A1γ = 2b,

−γ̇(0) + 2A0γ(0) = 0, γ(t) = x.
(48)

In order to translate the equivalent system (28), we need ∇R(I, x) and D2u(t, x). The first quantity
is easily obtained:

∇R(I, x) = −A1x+ b.

We then solve (48), differentiate with respect to x and denote by Γ the differential of γ - the solution
of (48) with respect to x, to obtain (after an elementary but tedious computation)

Γ(s) = es
√
2A1B(s)B(t)−1e−t

√
2A1 ,

B(s) = Id + e−2s
√
2A1(

√
2A1 + 2A0)

−1(
√
2A1 − 2A0).

(49)

Notice that the result was expected because γ is linear function of x, and that B(s) is invertible for
0 ≤ s ≤ t, and the norms of B and B−1 are bounded uniformly in s and t. And so we have

D2u(t, x) = −A0Γ(0)
2 −

∫ t

0

(
Γ̇(s)2

2
+A1Γ(s).Γ(s)

)
ds := −C(t), (50)

and the matrix C(t) is bounded away from 0 and +∞, uniformly with respect to t. This, by the way,
is not easily seen on the formula (50); the proof of Theorem 1.1 is still what one should use here. The
equation for x(t) and I(t) is thus straightforward:

{
ẋ(t) = C(t)−1(−A1x(t) + b),

I(t) = I0 −
1

2
A1x(t) · x(t) + b · x(t).

Thus, existence and uniqueness of (x, I) is straightforward. For large t, examination of (50) and (49)
yields

D2u(t, x) ∼t→+∞ −
√
A1

2
,

and 



lim
t→+∞

x(t) = A−1
1 b,

lim
t→+∞

I(t) = I0 +
1

2
A−1

1 b · b.

This is consistent with the known behaviour of I(t) and x(t), as well as a closed form of the competition
increase I(t)− I0.
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[7] N. Champagnat, P.-E. Jabin, The evolutionary limit for models of populations interacting competitively via

several resources, Journal of Differential Equations, 261 (2011) pp.179–195.

[8] O. Diekmann, Beginner’s guide to adaptive dynamics, Banach Center Publications 63 (2004) pp. 47–86.

[9] O. Diekmann, P.-E. Jabin, S. Mischler, B. Perthame, The dynamics of adaptation: an illuminating example

and a Hamilton-Jacobi approach, Th. Pop. Biol., 67(4) (2005) pp. 257–271.

[10] L. C. Evans and P. E. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equa-

tions, Indiana Univ. Math. J., 38(1) (1989) pp. 141–172.

[11] M. Freidlin, Functional integration and partial differential equations, Annals of Mathematics Studies, 109 (1985)
Princeton University Press, Princeton, NJ.

[12] M. Freidlin, Limit theorems for large deviations and reaction-diffusion equations, The Annals of Probability,
13(3) (1985) pp. 639–675.

[13] Y. Fujita, H. Ishii, P. Loreti, Asymptotic solutions of viscous Hamilton-Jacobi equations with Ornstein- Uh-

lenbeck operator, Comm. Partial Differential Equations, 31 (2006) pp. 827-848.

[14] Y. Fujita, H. Ishii, P.Loreti, Asymptotic solutions of Hamilton-Jacobi equations in Euclidean n space, Indiana
Univ. Math. J., 55 (2006) pp. 1671-1700.

[15] S. A. H. Geritz, E. Kisdi, G. Mészena, J. A. J. Metz., Evolutionary singular strategies and the adaptive

growth and branching of the evolutionary tree, Evolutionary Ecology, 12 (1998) pp. 35–57.

[16] A. Lorz, S. Mirrahimi, B Perthame, Dirac mass dynamics in a multidimensional nonlocal parabolic equation,

Communications in Partial Differential Equations, 36 (2011) pp.1071–1098.
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