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We discuss a class of time-dependent Hamilton-Jacobi equations, where an unknown function of time is intended to keep the maximum of the solution to the constant value 0. Our main result is that the full problem has a unique viscosity solution, which is in fact classical. The motivation is a selection-mutation model which, in the limit of small diffusion, exhibits concentration on the zero level set of the solution of the Hamilton-Jacobi equation. Uniqueness is obtained by noticing that, as a consequence of the dynamic programming principle, the solution of the Hamilton-Jacobi equation is classical. It is then possible to write an ODE for the maximum of the solution, and treat the full problem as a nonstandard Cauchy problem.

Introduction 1.Model and question

The purpose of this paper is to discuss existence and uniqueness for the following problem, with unknowns (I(t), u(t, x)):

       ∂ t u = |∇u| 2 + R(x, I) (t > 0, x ∈ R d ), max
x u(t, x) = 0

I(0) = I 0 > 0, u(0, x) = u 0 (x), (1) 
where I 0 > 0 and u 0 is a concave, quadratic function. For a given continuous function I(t), u(t, x) solves a Hamilton-Jacobi equation. The unknown I may be thought of as a sort of regulator, or a sort of Lagrange multiplier, to maintain the maximum of u equal to 0. The constraint on the maximum of u(t, .) makes the problem nonstandard.

1

Existence of a solution (u, I) to [START_REF] Barles | Solutions de viscosité des quations de Hamilton-Jacobi[END_REF] is not new, the first result is due to Perthame and Barles [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF] (see also for a result with weaker assumptions). An important improvement is given by Lorz, Perthame and the first author in [START_REF] Lorz | Dirac mass dynamics in a multidimensional nonlocal parabolic equation[END_REF]; they indeed notice that a concavity assumptions on R -that we also make here -entail regularity. This allows them to derive the dynamics of the maximum point of a solution u(t, x). See also [START_REF] Mirrahimi | Phénomènes de concentration dans certaines EDPs issues de la biologie[END_REF]. Both types of results rely on a special viscous approximation of (1) -see equation ( 4) below. Uniqueness, however, has remained an open problem, apart from a very particular case [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF].

The main goal of the paper is to prove the missing uniqueness property; a result that we had already announced in [START_REF] Mirrahimi | Uniqueness in a class of Hamilton-Jacobi equations with constraints[END_REF]. We also provide a constructive existence proof which was not available in the previous existence results [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF][START_REF] Lorz | Dirac mass dynamics in a multidimensional nonlocal parabolic equation[END_REF]. Two important consequences, that we will present in a forthcoming paper [START_REF] Mirrahimi | Approximation of solutions of selection-mutation models and error estimates[END_REF] (see also [START_REF] Mirrahimi | Uniqueness in a class of Hamilton-Jacobi equations with constraints[END_REF]), will be the convergence of the underlying selection-mutation model in a stronger sense than what is known, and asymptotic expansion of the viscous solution. The asymptotic expansion, which allows to approximate the phenotypical distribution of the population when the mutation steps are small but nonzero, is particularly interesting in view of biological applications. One of the main ingredients will be regularity under suitable concavity assumptions on R and u 0 , which is far from being available in general. Instead of relying on viscous approximations we will prove these results directly for the equation

u t = |∇u| 2 + R(t, x). (2) 
This will allow a much easier treatment than in the usual viscosity sense.

The uniqueness result will also be helpful to develop the so-called Hamilton-Jacobi approach (see for instance Diekmann et al. [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF], [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Lorz | Dirac mass dynamics in a multidimensional nonlocal parabolic equation[END_REF] and Subsection 1.2) to study more complex models describing selection and mutations. For instance, our result would allow to generalize a result due to Perthame and the first author in [START_REF] Mirrahimi | Asymptotic analysis of a selection model with space[END_REF] on a selection model with spatial structure, where the proof relies on the uniqueness of the solution to a corresponding Hamilton-Jacobi equation with constraint.

Motivation

Model (1) arises in the limit ε → 0 of the solutions to the problem

∂ t n ε -ε∆n ε = n ε ε R x, I ε (t) (t > 0, x ∈ R d ), I ε (t) = R d ψ(x)n ε (t, x)dx, (3) 
where n ε (t, x) is the density of a population characterized by a d-dimensional biological trait x. The population competes for a single resource, this is represented by I ε (t), where ψ is a given positive smooth function. The term R(x, I) is the reproduction rate; it is, as can be expected, very negative for large x and decreases as the competition increases. The Laplace term corresponds to the mutations. The small parameter ε is introduced to consider the long time dynamics of the population when the mutation steps are small. Such models can be derived from individual based stochastic processes in the limit of large populations (see Champagnat-Ferrière-Méléard [START_REF] Champagnat | Unifying evolutionary dynamics: From individual stochastic processes to macroscopic models[END_REF][START_REF] Champagnat | Individual-based probabilistic models of adaptive evolution and various scaling approximations[END_REF]). There is a large literature on the models of population dynamics under selection and mutations. We refer the interested reader, for instance to Geritz et al. [START_REF] Geritz | Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree[END_REF] and Diekmann [START_REF] Diekmann | Beginner's guide to adaptive dynamics[END_REF] for an approach based on the study of the stability of differential systems (the so-called adaptive dynamics approach), to Champagnat [START_REF] Champagnat | Mathematical study of stochastic models of evolution belonging to the ecological theory of adaptive dynamics[END_REF] for the study of stochastic individual based models, to Raoul [START_REF] Raoul | Etude qualitative et numérique d'équations aux dérivées partielles issues des sciences de la nature[END_REF] and Mirrahimi [START_REF] Mirrahimi | Phénomènes de concentration dans certaines EDPs issues de la biologie[END_REF] for the study of integro-differnetial models.

The Hopf-Cole transformation n ε = exp (u ε /ε) yields the equation

∂ t u ε = ε∆u ε + |∇u ε | 2 + R(x, I ε ) (4)
which, in the limit ε → 0, yields the equation for u. Furthermore, I ε being uniformly positive and bounded in ε, the Hopf-Cole transformation leads to the constraint on u. One expects that n ε concentrates at the points where u is close to 0 and the function I ε appears, in the limit, as a sort of Lagrange multiplier. One has indeed

n ε (x, t) --⇀ ε→0 n(x, t) = ρ(t) δ(x -x(t))
, weakly in the sense of measures, with

u(t, x(t)) = max x u(t, x) = 0, ρ(t) = I(t) ψ(x(t))
.

This method to study (3) has been introduced in [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF] and then developed in different contexts. See for instance Perthame-Barles [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF] (convergence to Hamilton-Jacobi dynamics for (4), Barles-Mirrahimi-Perthame [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF] (the same type of result, but with nonlinear, nonlocal diffusion), Champagnat-Jabin [START_REF] Champagnat | The evolutionary limit for models of populations interacting competitively via several resources[END_REF] (nonlinear integro-differential model with several resources), [START_REF] Lorz | Dirac mass dynamics in a multidimensional nonlocal parabolic equation[END_REF] (convergence improvement by introduction of the concavity assumptions). This approach has a lot to do with the 'approximation of geometric optics' for reaction-diffusion equations of the Fisher-KPP type. See Freidlin [START_REF] Freidlin | Functional integration and partial differential equations[END_REF][START_REF] Freidlin | Limit theorems for large deviations and reaction-diffusion equations[END_REF] for the probabilistic approach, and Evans-Souganidis [START_REF] Evans | A PDE approach to geometric optics for certain semilinear parabolic equations[END_REF], Barles-Evans-Souganidis [START_REF] Barles | Wavefront propagation for reaction-diffusion systems of PDE[END_REF] for the viscosity solutions approach.

Assumptions

The assumptions we are stating below are in the same spirit (but slightly weaker) as in [START_REF] Lorz | Dirac mass dynamics in a multidimensional nonlocal parabolic equation[END_REF], where the authors noticed that this set of assumptions allowed them to work with smooth solutions, thus going quite far in the study of [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF]. We believe that the results that we will prove would certainly be false if some of those assumptions were removed.

• Assumptions on R(x, I). We choose R to be smooth, and we suppose that there is I M > 0 such that (fixing the origin in x appropriately) max

x∈R d R(x, I M ) = 0 = R(0, I M ), (5) 
-K 1 |x| 2 ≤ R(x, I) ≤ K 0 -K 1 |x| 2 , for 0 ≤ I ≤ I M , (6) 
-2K 1 ≤ D 2 R(x, I) ≤ -2K 1 < 0 as symmetric matrices, (7) 
-K 2 ≤ ∂R ∂I ≤ -K 2 , (8) 
| ∂ 2 R ∂I∂x i (x, I)| + | ∂ 3 R ∂I∂x i ∂x j (x, I)| ≤ K 3 , for 0 ≤ I ≤ I M , and i, j = 1, 2, • • • , d, (9) 
D 3 R(•, I) L ∞ (R d ) ≤ K 4 , for 0 ≤ I ≤ I M . (10) 
• Assumptions on u 0 (.) and I 0 . We assume the existence of positive constants

L 0 , L 0 , L 1 , L 1 such that -L 0 -L 1 |x| 2 ≤ u 0 (x) ≤ L 0 -L 1 |x| 2 , (11) 
-2L 1 ≤ D 2 u 0 ≤ -2L 1 . (12) 
Note that this implies

|Du 0 (x)| ≤ L 2 (1 + |x|), (13) 
for a large constant L 2 > 0. We also need that, for a positive constant L 3 ,

D 3 u 0 L ∞ (R d ) ≤ L 3 . (14) 
Finally we assume that max

x u 0 (x) = u 0 (x 0 ) = 0, R(x 0 , I 0 ) = 0. ( 15 
)
Note that the monotony assumption [START_REF] Diekmann | Beginner's guide to adaptive dynamics[END_REF] means that the growth rate decreases as the competition increases, which is natural from the modeling point of view. The concavity assumption is a technical one.

In Section 2 we will study an unconstrained Hamilton-Jacobi equation where we replace R(x, I) by R(t, x). To prove our results on this unconstrained problem we assume same type of regularity and concavity assumptions on R that we state below:

• Assumptions on R(t, x). We choose R to be smooth, and we suppose that

-K 1 |x| 2 ≤ R(t, x) ≤ K 0 -K 1 |x| 2 , for t ∈ R + , (16) 
-2K 1 ≤ D 2 R(t, x) ≤ -2K 1 < 0 as symmetric matrices, (17) 
D 3 R(t, •) L ∞ (R d ) ≤ K 4 , for t ∈ R + . (18) 

Results and plan of the paper

Our first result concerns the unconstrained Hamilton-Jacobi equation

u t = |∇u| 2 + R(t, x) (t > 0, x ∈ R d ), u(0, x) = u 0 (x). ( 19 
)
The assumptions on u 0 and R are those stated in the preceding subsection.

Theorem 1.1 Equation (19) has a unique viscosity solution u that is bounded from above. Moreover, it is a classical solution:

u ∈ L ∞ loc R + ; W 3,∞ loc (R d ) ∩ W 1,∞ loc R + ; L ∞ loc (R d ) , -max(2 L 1 , K 1 ) ≤ D 2 u ≤ -min(2L 1 , K 1 ) and D 3 u L ∞ ([0,T ]×R d ) ≤ L 4 (T ) where L 4 (T ) is a positive constant depending on L 1 , K 1 , K 4 , L 3 and T .
Let us point out that the assumption of boundedness from above is, most certainly, irrelevant. However the constraint in [START_REF] Barles | Solutions de viscosité des quations de Hamilton-Jacobi[END_REF] implies that all the solutions that we consider are bounded from above. This extra condition is thus legitimate, and will keep the length of the preliminary work to a minimum.

Theorem 1.2

The Hamilton-Jacobi equation with constraint (1) has a unique solution (u, I). Moreover we have

(u, I) ∈ L ∞ loc R + ; W 3,∞ loc (R d ) ∩ W 1,∞ loc R + ; L ∞ loc (R d ) × W 1,∞ (R).
The paper is organised as follows. In Section 2 we prove the Cauchy Problem for [START_REF] Mirrahimi | Uniqueness in a class of Hamilton-Jacobi equations with constraints[END_REF]. In Section 3 we reduce (1) to a (nonstandard) differential system. Theorem 1.2 is proved in Section 4. Section 5 is devoted to the study of a particular example.

The Cauchy problem

In this section, we prove Theorem 1.1.

We will first prove that the only solution to (2) that is bounded from above is the solution u(t, x) of the dynamic programming principle

u(t, x) = sup (γ(s),s)∈R d ×[0,t] γ(t)=x F (γ) : γ ∈ C 1 ([0, t]; R d ) , (20) 
with

F (γ) := u 0 (γ(0)) + t 0 - | γ| 2 4 (s) + R(s, γ(s)) ds.
Such a solution is a viscosity solution to (1). We will prove, in addition, that it is classical and satisfies the properties claimed by Theorem 1.1.

Uniqueness. This step essentially consists in showing that a viscosity solution of (2) does not grow too wildly, which will reduce the problem to the application of classical arguments. We have already assumed boundedness from above, so let us show that u goes to -∞ at most in a quadratic fashion. Due to the assumptions ( 16) on R, we have

∂ t v ≥ 0, v(t, x) = u(t, x) + tK 1 |x| 2
in the viscosity sense, which implies that v is time-increasing -thus the needed estimate. Let usalthough this is elementary -explain why: choose T > 0 and assume the existence of 0 < s < t ≤ T such that the inequality v(t, x) ≥ v(s, x) does not hold. In other words there is x 0 such that v(s, x 0 ) > v(t, x 0 ). For ε > 0 consider the quantity

w ε (t, x) := v(t, x) -v(s, x 0 ) + ε T -t + |x -x 0 | 2 ε 2 .
For ε > 0 small enough, there is a local minimum point for w ε , called (t ε , x ε ), such that t ε is bounded away from s and T , and x ε → x 0 as ε → 0. At that minimum point the viscosity inequality implies

-∂ t 1 T -t ≥ 0, a contradiction.
So there is a large C > 0 such that

-C(1 + t)(1 + |x| 2 ) ≤ u(t, x) ≤ C.
And so, by an easy adaptation of Chap. 2 of Barles [START_REF] Barles | Solutions de viscosité des quations de Hamilton-Jacobi[END_REF], where a uniqueness result for solutions that grow at most exponentially fast is provided (see also [START_REF] Fujita | Asymptotic solutions of viscous Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator[END_REF][START_REF] Fujita | Asymptotic solutions of Hamilton-Jacobi equations in Euclidean n space[END_REF]), there is at most one viscosity solution to (2) that is bounded from above.

Existence. We may thus turn to [START_REF] Mirrahimi | Approximation of solutions of selection-mutation models and error estimates[END_REF]. Let us suppose that (γ n ) 1≤n , with

γ n ∈ C 1 ([0, t]; R d ) and γ n (t) = x, is such that F (γ n ) → u(t, x)
as n → ∞. Since R and u 0 are bounded from above, we obtain that, for some constant

C t 0 | γn | 2 (s)ds < C.
Consequently, from γ n (t) = x we deduce, modifying the constant C if necessary, that

γ n W 1,2 [0,t] < C. It follows that, there exists γ ∈ W 1,2 ([0, t]; R d ), such that as n → ∞, γ n → γ strongly in C([0, t]; R d )
and weakly in W 1,2 ([0, t]; R d ). We deduce that, as n → ∞,

u 0 (γ n (0)) → u 0 (γ), t 0 R(s, γ n (s))ds → t 0 R(s, γ(s))ds, t 0 | γ| 2 (s)ds ≤ lim inf n→∞ t 0 | γn | 2 (s)ds.
We conclude that

u(t, x) = u 0 (γ(0)) + t 0 - | γ| 2 4 (s) + R(s, γ(s)) ds. (21) 
We claim that such a trajectory is unique, which entails uniqueness for the Cauchy problem [START_REF] Mirrahimi | Uniqueness in a class of Hamilton-Jacobi equations with constraints[END_REF]. We note indeed that such trajectory γ satisfies the following Euler-Lagrange equation

     γ(s) = -2∇R(s, γ(s)), γ(0) = -2∇u 0 (γ(0)), γ(t) = x. (22) 
However, from the concavity assumptions on R and u 0 we obtain that the above elliptic problem is coercive and hence the solution γ is unique.

Regularity. Let us denote by γ x (t) the unique solution of [START_REF] Raoul | Etude qualitative et numérique d'équations aux dérivées partielles issues des sciences de la nature[END_REF]. The function

(t, x) → (γ x (t), γx (t)) belongs to L ∞ loc (R + , W 2,∞ loc (R d )) because ∇u 0 and ∇R(t, .) are in W 2,∞ loc (R d ). Now, we have u(t, x) = u 0 (γ x (0)) + F (γ x ),
yielding (this is a classical computation):

∂ i u(t, x) = ∇u 0 (γ x (0)).∂ i γ x (0) + t 0 - γx (s).∂ i γx (s) 2 + ∇R(s, γ x (s))∂ i γ x (s) ds.
Integrating by parts and using the Euler-Lagrange equation ( 22), we get:

∇u(t, x) = - γx (t) 2 . ( 23 
) Thus u ∈ L ∞ loc (R + , W 3,∞ loc (R d )).
Strict concavity. We will prove that u(t, x) is uniformly strictly concave, namely that D 2 u ≤ -2λI

in the sense of symmetric matrices, for λ = min L 1 , √

K 1 2
. To this end, we show that, for all σ ∈ [0, 1] and (x,

y) ∈ R d × R d : σu(t, x) + (1 -σ)u(t, y) + λσ(1 -σ)|x -y| 2 ≤ u(t, σx + (1 -σ)y). ( 24 
)
Let γ x and γ y be optimal trajectories, solving [START_REF] Raoul | Etude qualitative et numérique d'équations aux dérivées partielles issues des sciences de la nature[END_REF], with γ x (t) = x and γ y (t) = y. Note from the choice of γ x and γ y that we have

u(t, x) = u 0 (γ x (0)) + t 0 - | γx (s)| 2 4 + R(s, γ x (s)) ds, u(t, y) = u 0 (γ y (0)) + t 0 - | γy (s)| 2 4 + R(s, γ y (s)) ds, and 
u(t, σx + (1 -σ)y) ≥ u 0 (σγ x (0) + (1 -σ)γ y (0)) + t 0 - |σ γx + (1 -σ) γy (s)| 2 4 + R(s, σγ x (s) + (1 -σ)γ y (s)) ds.
Furthermore, from the concavity assumptions on R and u 0 we have

σu 0 (t, x) + (1 -σ)u 0 (t, y) + L 1 σ(1 -σ)|γ x (0) -γ y (0)| 2 ≤ u 0 (t, σx + (1 -σ)y), and 
σ t 0 R(s, γ x (s))ds + (1 -σ) t 0 R(s, γ y (s))ds + K 1 σ(1 -σ) t 0 |γ x (s) -γ y (s)| 2 ds ≤ t 0 R(s, σγ x (s) + (1 -σ)γ y (s))ds.
Moreover, from the strict concavity of µ → -|µ| 2 , we obtain that

σ t 0 - | γx (s)| 2 4 ds + (1 -σ) t 0 - | γy (s)| 2 4 ds + σ(1 -σ) t 0 | γx (s) -γy (s)| 2 4 ds ≤ t 0 - |σ γx + (1 -σ) γy (s)| 2 4 ds.
We deduce that

u(t, σx + (1 -σ)y)) ≥ σu(t, x) + (1 -σ)u(t, y) + σ(1 -σ) t 0 ( 1 4 | γx (s) -γy (s)| 2 + K 1 |γ x (s) -γ y (s)| 2 )ds + L 1 |γ x (0) -γ y (0)| 2 (25) 
Next we have

K 1 2 t 0 d ds |γ x (s) -γ y (s)| 2 ds ≤ K 1 t 0 |γ x (s) -γ y (s)| 2 ds + t 0 | γx -γy | 2 4 (s)ds. Writing |x -y| 2 = |γ x (t) -γ y (t)| 2 = |γ x (0) -γ y (0)| 2 + t 0 d ds |γ x (t) -γ y (t)| 2 ds we find |x -y| 2 ≤ |γ x (0) -γ y (0)| 2 + 2 K 1 t 0 |γ x (s) -γ y (s)| 2 ds + 1 2 K 1 t 0 | γx -γy | 2 (s)ds.
Combing the above line with (25), we obtain (24) for λ = min L 1 , K

Bounds on u and ∇u. The first thing to notice is a bound for (γ x , γx ). Indeed, the coercivity for [START_REF] Raoul | Etude qualitative et numérique d'équations aux dérivées partielles issues des sciences de la nature[END_REF], as well as the fact that x → ∇R(t, x) grows linearly with a constant only depending on t, implies the existence of a locally bounded constant K(t) such that

|(γ x (s), γx (s))| ≤ K(t)(1 + |x|), for all s ∈ [0, t]. (26) 
This implies, modifying the constant K(t) if necessary, thanks to [START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF]:

|u(t, x)| ≤ K(t)(1 + |x| 2 ).
Moreover, from (23), we have

|∇u(t, x)| ≤ K(t)(1 + |x|). (27) 
Semi-convexity. Because u is three times differentiable in x, then ∂ t u is locally W 2,∞ in x and equation ( 19) may be differentiated twice with respect to x. So, let e be any unit vector, we have

∂ t (∂ ee u) = 2|∇∂ e u| 2 + 2∇u.∇(∂ ee u) + ∂ ee R(t, x) ≥ 2|∂ ee u| 2 + 2∇u.∇(∂ ee u) + ∂ ee R(t, x).
Because of (27), the curve t → γ x (t) becomes a characteristic curve for the equation

∂ t v = 2v 2 + 2∇u(t, x).∇v(t, x) + ∂ ee R(t, x).
Moreover, along this characteristics, we find

d dt v(t, γ x (t)) = 2v(t, γ x (t)) 2 + ∂ ee R(t, γ x (t)).
We deduce, thanks to ( 12) and ( 17), that

∂ ee u ≥ -max(2 L 1 , K 1 ).
Bounds on D 3 u. As for the third derivative, we set v(t, x) = D 3 u(t, x), the equation for v -that we may obtain using differential quotients -is 3 Uniqueness: reduction to a differential system and properties of the function I

∂ t v -2∇v.∇u = S(
The idea is to change the constrained problem (1) by the following slightly nonstandard differential system:

     R (x(t), I(t)) = 0, for t ∈ R + , ẋ(t) = -D 2 u t, x(t) -1 ∇R x(t), I(t) , for t ∈ R + , ∂ t u = |∇u| 2 + R(x, I), in R + × R d , (28) 
with initial conditions

I(0) = I 0 , u(0, •) = u 0 (•), x(0) = x 0 , such that max x u 0 (x) = u 0 (x 0 ) = 0 and R(x 0 , I 0 ) = 0. ( 29 
)
Note that (28) is really a differential system because the assumptions on R imply that I(t) can implicitely be expressed in terms of x(t). And it is slightly nonstandard because x solves an ODE whose nonlinearity depends on u. The precise statement is the following Proof. Let (u, I) be a solution of (1) with initial datum (u 0 , I 0 ), the function I being continuous, and u a solution of the Hamilton-Jacobi equation in the sense of (20). Theorem 1.1 is applicable, and yields a solution u(t, x) which has at least three locally bounded spatial derivatives, locally uniformaly in time. Moreover, the D 2 u is bounded uniformly in time and in x, and finally the function u(t, .) is strictly concave. This allows a lot.

• There is, at each time, a unique x(t) maximising u(t, .) over R d . Thus the trivial identity ∇u(t, x(t)) = 0 (30) can (use differential quotients) be differentiated with respect to t, to yield that (i) x(t) is locally W 1,∞ and (ii) the (a priori less trivial) identity

∂ t (∇u)(t, x(t)) + D 2 u(t, x(t)). dx dt (t) = 0. ( 31 
)
• The function u(t, x) has enough regularity so that we may take the gradient of (1) with respect to x, and evaluate the result at x = x(t). Because of (30) we have D 2 u(t, x(t)).∇u(t, x(t)) = 0 and, because of (31), we have

-D 2 u(t, x(t)). dx dt (t) = ∇R(x(t), I(t)). (32) 
• The last item to take into account is the constraint u(t, x(t)) = 0, which we may (still with the use of differential quotients) differentiate with respect to time, in order to yield

∂ t u(t, x(t)) + ∇u(t, x(t)). dx dt (t) = 0, thus entailing ∂ t u(t, x(t)) = 0. This yields, from (1), R(x(t), I(t)) = 0. ( 33 
)
Gathering (33), ( 1) and (32) shows that the constrained problem implies (28).

We also prove that regularity plus (28) easily implies [START_REF] Barles | Solutions de viscosité des quations de Hamilton-Jacobi[END_REF]. Let (u, I) solve (28). The first line of (1) derives immediately. To prove the second line, note that, thanks to Theorem 1.1 and the third line of (28) we deduce that u is strictly concave. It has hence, for all t ∈ R + , a unique strict maximum point, in the variable x, that we denote y(t). Following similar arguments as above, we obtain that ẏ(t) = (-D 2 u (t, y(t)) -1 ∇R(y(t), I(t)), for t ∈ R + ,

y(0) = x 0 .
Comparing this with the second line of ( 28) and ( 29) we obtain that x(t) = y(t), for all t ∈ R + . Finally, evaluating the third line of (28) at x(t) and using the first line of (28), we obtain that ∂ t u(t, x(t)) = 0. This equality together with ∇u(t, x(t)) = 0 and (29) implies that max x u(t, x) = u(t, x(t)) = 0. and the proof of Theorem 3.1 is complete.

Remark. What we have done here is nothing else than the derivation of the equation for x carried out in [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF]. In particular, the equilibrium property R(x, I) = 0 would hold in a more general setting than here. The new point here is that we establish, in a mathematically rigorous fashion, the equivalence between the initial problem (1) and the coupled system (28), and this equivalence holds because of all the differentiations with respect to x and t that we are allowed to make.

The proof of Theorem 1.2

We fix T > 0. To prove that (1) has a unique solution (u, I) in [0, T ] × R d , it is enough to prove that there exists a unique solution to (28)-( 29).

We prove this using the Banach fixed point Theorem in a small interval and then iterate. 

The mapping Φ and its domain

A = x(•) ∈ C [0, δ]; B x 0 , r δ x(0) = x 0 ,
where B(z, r) is the ball of radius r centered at z, and δ is a positive constant such that

δ < min(µ, c(T )), with µ = min(2L 1 , K 1 ) C M d(Ω 0 , Ω), (34) 
where d(A, B) is the distance between the sets A and B. The constant r δ is given by

r δ = C M δ min(2L 1 , K 1 ) , the constant C M is chosen such that |∇R(x, I)| ≤ C M , in Ω × [0, I M ], (35) 
and c(T ), a constant depending only on T , will be chosen later. Note that, by the choice of δ and since x 0 ∈ Ω 0 , we obtain that B (x 0 , r δ ) ⊂ Ω.

Our theorem will be proved by the introduction of a mapping Φ : A → A, Φ(x) = y.

We will prove the following theorem.

Theorem 4.1 The mapping Φ is a strict contraction from A into itself.

To define Φ, we first need to introduce some other mappings. Let x(•) ∈ A. We define

I : A → C ([0, δ]; [0, I M ]) such that R(x(t), I[x](t)) = 0.
From ( 5), ( 8) and since x(t) ∈ Ω for all t ∈ [0, δ], it follows that I can be defined in a unique way. Next, we define the following domain

B = v ∈ L ∞ [0, δ]; W 3,∞ loc (R d ) ∩ W 1,∞ [0, δ]; L ∞ loc (R d ) | -max(2 L 1 , K 1 ) ≤ D 2 v ≤ -min(2L 1 , K 1 ), D 3 v L ∞ ([0,δ]×R d ) ≤ L 4 (T ) ,
and the following mapping

V : C ([0, δ]; [0, I M ]) → B V (I) = v,
where v solves

∂ t v = |∇v| 2 + R(x, I), in [0, δ] × R d , v(0, x) = u 0 (x), in R d . (36) 
It follows from Theorem 1.1 that the above mapping is well-defined. Finally, we introduce a last mapping:

F : C ([0, δ]; [0, I M ]) × A × B → A, F (I, x, v) = y,
where y ∈ A solves

ẏ(t) = -D 2 v(t, x(t) -1 ∇R(x(t), I(t)), in [0, δ], y(0) = x 0 .
To prove that F is well-defined, we must verify that y(t) remains in B (x 0 , r δ ). We note that, since v ∈ B, we have

0 < 1 max(2 L 1 , K 1 ) ≤ -D 2 v(t, x(t)) -1 ≤ 1 min(2L 1 , K 1 ) .
We deduce, thanks to (35), that y(t) ∈ B (x 0 , r δ ) .

We are now ready to define mapping Φ:

Φ : A → A, Φ(x) = F I(x), x, V (I(x)) .
It follows from the above arguments that Φ is well-defined.

Proof of Theorem 1.2

In this section we will explain why uniqueness to (28) holds. One main technical lemma will be stated, its proof will be postponed to a special section. Let us prove that Φ is a contraction for c(T ) (and hence δ) small enough. To this end, we first prove that I is Lipschitz:

|I(x 1 ) -I(x 2 )| ≤ C x 1 -x 2 L ∞ ([0,δ]) , for all x 1 , x 2 ∈ C [0, δ]; B x 0 , r δ . (37) 
We have indeed

R(x 1 , I(x 1 )) = R(x 2 , I(x 2 )) = 0. It follows that R(x 1 , I(x 1 )) -R(x 2 , I(x 1 )) = R(x 2 , I(x 2 )) -R(x 2 , I(x 1 )),
and thus

∇R (cx 1 + (1 -c)x 2 , I(x 1 )) • (x 2 -x 1 ) = ∂R ∂I (x 2 , J)(I(x 2 ) -I(x 1 )),
with c ∈ (0, 1) and J ∈ (I(x 1 ), I(x 2 )). Finally, using ( 8), ( 35) and the fact that x 1 (t), x 2 (t) ∈ Ω for all t ∈ [0, δ] we obtain (37

) with C = C M K 2 . Next, we have that V : C ([0, δ]; [0, I M ]) → B is also Lipschitz. Lemma 4.2 Let I 1 , I 2 ∈ C ([0, δ]; [0, I M ]). Then V (I 1 ) -V (I 2 ) W 2,∞ ([0,δ]×R d ) ≤ C I 1 -I 2 L ∞ ([0,δ]) δ. (38) 
This is a nontrivial lemma, whose proof will be given in the next section.

From ( 7) and ( 9), and since x 1 , x 2 ∈ A and V 1 , V 2 ∈ B, we deduce that F : C ([0, δ]; [0, I M ])×A×B → A is Lipschitz with respect to all the variables with Lipschitz constant Cδ:

F (I 1 , x 1 , V 1 ) -F (I 2 , x 2 , V 2 ) L ∞ ([0,δ]) ≤ Cδ x 1 -x 2 L ∞ ([0,δ]) + I 1 -I 2 L ∞ ([0,δ]) + V 1 -V 2 W 2,∞ ([0,δ]×R d ) . (39) 
Finally, we conclude from (37), ( 38) and (39) that Φ : A → A is a Lipschitz mapping with a Lipschitz constant Cδ:

Φ(x 1 ) -Φ(x 2 ) L ∞ ([0,δ]) ≤ Cδ x 1 -x 2 L ∞ ([0,δ]) .
Choosing c(T ) (and hence δ) small enough, we deduce that Φ is a contraction. We deduce from the Banach fixed point Theorem that Φ has a unique fixed point and consequently (28)-( 29) has a unique solution for t ∈ [0, δ].

To prove that (28)-( 29) has a unique solution in [0, T ] we iterate the above procedure K = ⌈ T δ ⌉ times. Let 2 ≤ i ≤ K and (x, I, u) be the unique solution of (28)-(29) for t ∈ [0, (i -1)δ]. Then, at the i-th step, we consider the same mapping Φ but as the initial data we choose

x 0 = x((i -1)δ), u 0 (•) = u((i -1)δ, •), I 0 = I((i -1)δ). ( 40 
)
We claim that these initial conditions satisfy

x 0 ∈ Ω 0 , u 0 ∈ W 3,∞ loc (R d ), with -max(2 L 1 , K 1 ) ≤ D 2 u 0 ≤ -min(2L 1 , K 1 ) D 3 u 0 L ∞ (R d ) ≤ L 4 ((i -1)δ), max x u 0 (x) = x 0 , R( x 0 , I 0 ) = 0. ( 41 
)
Lemma 4.3 Let (x, I, u) be the unique solution of (28)-( 29) in [0, τ ]. Then, I(t) is increasing with respect to t in [0, τ ] and

x(t) ∈ Ω 0 , u(t, •) ∈ W 3,∞ loc (R d ), with -max(2 L 1 , K 1 ) ≤ D 2 u(t, x) ≤ -min(2L 1 , K 1 ), D 3 u L ∞ ([0,τ ]×R d ) ≤ L 4 (τ ), max x u(t, x) = x(t), R(x(t), I(t)) = 0, , for all t ∈ [0, τ ] and x ∈ R d .
Proof. The regularity estimates on u are immediate from Section 2. The two last claims also follow immediately from (28)-( 29) and the arguments in Section 3. We only prove that I(t) is increasing with respect to t and x(t) ∈ Ω 0 .

Differentiating the first line of (28) with respect to t we obtain

∇R(x(t), I(t)) • ẋ(t) + ∂ ∂I R(x(t), I(t)) İ (t) = 0.
Moreover, multiplying the second line of (28) by ∇R we obtain

∇R(x(t), I(t)) • ẋ(t) = ∇R(x(t), I(t)) -D 2 u(t, x(t) -1 ∇R(x(t), I(t)) ≥ 0.
Combining the above lines we obtain

∂ ∂I R(x(t), I(t)) İ (t) ≤ 0, for t ∈ [0, τ ],
and hence, thanks to (8) we deduce

İ(t) ≥ 0, for t ∈ [0, τ ].
Therefore, I(t) is increasing with respect to t and in particular

I(t) ≥ I 0 , for t ∈ [0, τ ].
Consequently, from the first line of (28) and ( 8), we obtain that

R(x(t), I 0 ) > 0, for t ∈ [0, τ ]. It follows that x(t) ∈ Ω 0 , for t ∈ [0, τ ].
which concludes the proof.

It is then immediate that the initial data given by (40) verify (41). One can verify that the above conditions are the only properties that we have used to prove that Φ is well-defined and a contraction. Therefore, one can apply again the Banach fixed point Theorem and deduce that there exists a unique solution of (28)-(29) for t ∈ [(i -1)δ, iδ].

Proof of Lemma 4.2

(i) We first prove that

V (I 1 ) -V (I 2 ) L ∞ ([0,δ]×R d ) ≤ C I 1 -I 2 L ∞ ([0,δ]) δ. (42) 
Let v 1 = V (I 1 ) and v 2 = V (I 2 ), and r = v 2 -v 1 . From (36) we obtain

∂ t r = (∇v 1 + ∇v 2 ) • ∇r + R(x, I 2 ) -R(x, I 1 ), in [0, δ] × R d r(0, x) = 0, for all x ∈ R d . (43) 
Note that the above equation has a unique classical solution which can be computed by the method of characteristics. The characteristics verify

γ(t) = -∇v 1 (t, γ) -∇v 2 (t, γ). (44) 
For any (t 1 , x 1 ) ∈ [0, δ] × R d , there exists a unique characteristic curve γ which verifies γ(t 1 ) = x 1 . Moreover, this characteristic curve is defined in [0, t 1 ].

The local existence and uniqueness of the characteristic curve γ is derived from the Cauchy-Lipschitz Theorem and the fact that ∇v i is Lipschitz with respect to x, for i = 1, 2. The latter property derives from the fact that 2L

1 ≤ D 2 v i ≤ -2L 1 , for i = 1, 2.
To prove that the characteristic curve γ is defined in [0, t 1 ] we must prove that γ remains bounded in this interval. However, this property follows using (44) and the fact that, since

v 1 , v 2 ∈ B, |∇v i (γ)| ≤ C 1 |γ| + C 2 , for i = 1, 2.
We are now ready to prove (38). To this end, we multiply (44) by ∇r(t, γ) to obtain

∇r(t, γ) • γ(t) = -(∇v 1 (t, γ) + ∇v 2 (t, γ)) • ∇r(t, γ).
Combining this with (43) we deduce that ∇r(t, γ(t)) • γ(t) + ∂ t r(t, γ(t)) = R(x, I 2 ) -R(x, I 1 ).

We integrate this between 0 and t 1 to find r(t 1 , γ(t 1 )) = Since D 2 v j , for j = 1, 2, is bounded, and using [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF] (iii) Finally we prove that

D 2 r L ∞ ([0,δ]×R d ) ≤ C I 1 -I 2 L ∞ ([0,δ]) δ. ( 46 
)
Note that at every point (t, x) ∈ R + × R d , we can write mixed derivatives of the form r ξη in terms of pure derivatives:

r ξη = 1 2 (∂ 2 ξ+η,ξ+η r -∂ 2 ξξ r -∂ 2 ηη r). (47) 
This implies the existence of ξ on the unit sphere of R d such that

D 2 r L ∞ ([0,δ]×R d ) ≤ 3 2 r ξξ L ∞ ([0,δ]×R d ) .
We differentiate (43) twice in the direction of ξ and obtain ∂ t r ξξ = (∇v 1,ξξ + ∇v 2,ξξ ) • ∇r + 2 (∇v 1,ξ + ∇v 2,ξ ) • ∇r ξ + (∇v 1 + ∇v 2 ) • ∇r ξξ + R ξξ (x, I 2 ) -R ξξ (x, I 1 ).

Using the above arguments, the fact that D 2 v i and D 3 v i are bounded, ( 9) and (45) we deduce that 

  t, x, v) := 6v.D 2 u + D 3 R, where ∇v denotes the column of tensors (∂ 1 v, ..., ∂ d v) and v.D 2 u denotes the column of matrices (∂ 1 D 2 u.D 2 u, ..., ∂ d D 2 u.D 2 u). This is a linear equation with (thanks to the bound on D 2 u) bounded coefficients. Thus, local boundedness of v(t, .) L ∞ (R d ) holds, and this concludes the proof of Theorem 1.1.

Theorem 3 . 1

 31 Solving the constrained problem (1) is equivalent to solving the initial value ODE-PDE problem (28)-(29).

First, we

  define Ω = {x | R(x, 0) > 0} , Ω 0 = {x | R(x, I 0 ) ≥ 0} , and

t 1 0R

 1 (x, I 2 (τ )) -R(x, I 1 (τ ))dτ. It follows, using[START_REF] Diekmann | Beginner's guide to adaptive dynamics[END_REF], that|r(t 1 , γ(t 1 ))| ≤ K 2 |I 1 -I 2 |t 1 ,and hence (42).(ii) Next, we prove that∇r L ∞ ([0,δ]×R d ) ≤ C I 1 -I 2 L ∞ ([0,δ]) δ. (45)We differentiate (43) in the direction e i , for i = 1, • • • , d, to obtain∂ t r (i) = ∇v 1,(i) + ∇v 2,(i) • ∇r + (∇v 1 + ∇v 2 ) • ∇r (i) + R (i) (x, I 2 ) -R (i) (x, I 1 ),with the notation f (i) = ∇f • e i . We multiply by r (i) , sum over i and divide by |∇r| to obtain∂ t |∇r| ≤ (∇v 1 + ∇v 2 ) • ∇|∇r| + n i=1 ∇v1,(i) + ∇v 2,(i) |r (i) | + |∇R(x, I 2 ) -∇R(x, I 1 )|.

∂

  t |r ξξ | ≤ C I 1 -I 2 L ∞ ([0,δ]) δ + C r ξξ L ∞ ([0,δ]×R d ) + (∇v 1 + ∇v 2 ) • ∇|r ξξ | + K 3 |I 2 -I 1 |.Next we use the characteristic curves as previously. We multiply (44) by ∇|r ξξ (t, γ(t))| and obtain∇|r ξξ (t, γ(t))| • γ(t) = -(∇v 1 (t, γ) + ∇v 2 (t, γ)) • ∇|r ξξ (t, γ)|.We combine the above equations to obtaind dt |r ξξ (t, γ(t))| ≤ C I 1 -I 2 L ∞ ([0,δ]) + C r ξξ L ∞ ([0,δ]×R d ) .We conclude that|r ξξ (t, x)| ≤ Ct( I 2 -I 1 L ∞ ([0,δ]) + r ξξ L ∞ ([0,δ]×R d ) ).Restricting c(T ) (and hence δ) if necessary we getr ξξ L ∞ ([0,δ]×R d ) ≤ Cδ 1 -Cδ I 2 -I 1 L ∞ ([0,δ]) ,hence (46).

  we deduce that∂ t |∇r| ≤ (∇v 1 + ∇v 2 ) • ∇|∇r| + C|∇r| + K 3 |I 2 -I 1 |.The characteristic curves corresponding to the above equation verify again (44). We multiply (44) by ∇|∇r|(t, γ(t)) to obtain∇|∇r|(t, γ) • γ(t) = -(∇v 1 (t, γ) + ∇v 2 (t, γ)) • ∇|∇r|(t, γ). C|∇r|(t, γ(t)) + K 3 I 2 -I 1 L ∞ ([0,δ]) . follows that |∇r(t, x)| ≤ e Ct -1 K 3 C I 2 -I 1 L ∞ ([0,δ]) .Hence (45), modifying the constant C if necessary.

	Combining the above equations we obtain
	d dt |∇r|(t, γ(t)) ≤ It

Acknowledgements

The authors thank G. Barles and B. Perthame for interesting comments on an earlier version of this paper, which had a great influence on the present form of this work. They also thank M. Bardi for pointing out the possible tractability of the quadratic case. S. Mirrahimi was partially funded by the ANR projects KIBORD ANR-13-BS01-0004 and MODEVOL ANR-13-JS01-0009. J.-M. Roquejoffre was supported by the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 321186 -ReaDi -"Reaction-Diffusion Equations, Propagation and Modelling" held by Henri Berestycki, as well as the ANR project NONLOCAL ANR-14-CE25-0013. Both authors thank the Labex CIMI for a PDE-probability winter quarter in Toulouse, which provided a stimulating scientific environment to this project.

5 An example with quadratic u 0 and R Let us study the (instructive) example of a quadratic equation [START_REF] Barles | Solutions de viscosité des quations de Hamilton-Jacobi[END_REF]. In other words we choose

where A 0 and A 1 are positive definite matrices and b ∈ R d . The Euler-Lagrange equation for the dynamic programming principle writes

In order to translate the equivalent system (28), we need ∇R(I, x) and D 2 u(t, x). The first quantity is easily obtained:

We then solve (48), differentiate with respect to x and denote by Γ the differential of γ -the solution of (48) with respect to x, to obtain (after an elementary but tedious computation)

Notice that the result was expected because γ is linear function of x, and that B(s) is invertible for 0 ≤ s ≤ t, and the norms of B and B -1 are bounded uniformly in s and t. And so we have

and the matrix C(t) is bounded away from 0 and +∞, uniformly with respect to t. This, by the way, is not easily seen on the formula (50); the proof of Theorem 1.1 is still what one should use here. The equation for x(t) and I(t) is thus straightforward:

Thus, existence and uniqueness of (x, I) is straightforward. For large t, examination of (50) and (49) yields

This is consistent with the known behaviour of I(t) and x(t), as well as a closed form of the competition increase I(t) -I 0 .