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Abstract

We revisit the proofs of convergence for a first order primal-dual algorithm for convex

optimization which we have studied a few years ago. In particular, we prove rates of conver-

gence for a more general version, with simpler proofs and more complete results. The new

results can deal with explicit terms and nonlinear proximity operators in spaces with quite

general norms.
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1 Introduction

In this work we revisit a first-order primal-dual algorithm which was introduced in [26, 15] and

its accelerated variants which were studied in [5]. We derive new estimates for the rate of con-

vergence. In particular, exploiting a proximal-point interpretation due to [16], we are able to

give a very elementary proof of an ergodic O(1/N) rate of convergence (where N is the number

of iterations), which also generalizes to non-linear norms [18], to overrelaxed [16, 9] and iner-

tial [19] variants. In the second part, we give new, more precise estimates of the convergence

rate for the accelerated variants of the algorithm. We conclude the paper by showing the prac-

tical performance of the algorithm on a number of randomly generated standard optimization

problems.

The new proofs we propose easily incorporate additional smooth terms such as considered

in [9, 31] (where convergence is already been proved, without rates), and [4] (where the proofs

of [5] are extended to the framework of [31] which considers general monotone operators—in

this setting one must also mention the recent work [10] for a Douglas-Rachford approach to

the same problem, with a slightly different algorithm also presenting very good convergence
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properties). Also, a very recent work of Drori, Sabach and Teboulle, establishes similar results

on a closely related primal-dual (“PAPC”) algorithm [11], which also handles explicit terms, but

cannot jointly handle (without further splitting) nonsmooth functions in both the primal and

dual variables.

We must observe that in addition, our proofs carry on to the nonlinear (or Banach space)

setting. They can indeed take into account without effort non-linear proximity operators, based

on Bregman distance functions (except in the accelerated variables of the accelerated schemes),

in the spirit of the “Mirror-descent” methods introduced by Nemirovski and Yudin [21]. These

were extensively studied by many authors, see in particular [29, 6, 2], and [20] in a primal-dual

framework. See also [8, 25] for recent advances on such primal-dual algorithms, including stochas-

tic versions. On the other hand, in the standard Euclidean setting, the algorithm we study can

be shown to be a particular linearized variant of the ADMM algorithm for which a convergence

theory, with more precise results, is found in [28]. We should add that the relationship between

the type of algorithms which we study here and the ADMM was already stressed in [5] and that,

in particular, one can derive from the analysis in [5] and in this paper convergence rates for the

ADMM which are different from the ones currently found in the literature, see for instance [17].

We are addressing the following problem

min
x∈X

max
y∈Y
L(x, y) = 〈Kx, y〉+ f(x) + g(x)− h∗(y) , (1)

which is the convex-concave saddle-point form of the “primal” minimization problem

min
x∈X

f(x) + g(x) + h(Kx) . (2)

Here, X and Y are, in the most general setting, real reflexive Banach spaces endowed with

corresponding norms ‖·‖x and ‖·‖y. Note however that in this setting it is quite restrictive to

assume that K is bounded, so that the reader could assume that they are finite-dimensional.

The only point where it matters is the fact that the estimates we compute never involve the

dimension of the current spaces, except possibly through quantities such as ‖K‖. For notational

simplicity, we will drop the subscript for the norms whenever there is no ambiguity. The dual

spaces (spaces of all continuous linear functionals) are denoted by X ∗, and Y∗. For x∗ ∈ X ∗ and

x ∈ X , the bilinear form 〈x∗, x〉 gives the value of the function x∗ at x. Similar, for y∗ ∈ Y∗ and

y ∈ Y, 〈y∗, y〉 gives the value of the function y∗ at y. The norms of the dual spaces are defined

as

‖x∗‖∗ = sup
‖x‖≤1

〈x∗, x〉 , ‖y∗‖∗ = sup
‖y‖≤1

〈y∗, y〉 .

By definition, we also have that

〈x∗, x〉 ≤ ‖x‖ · ‖x∗‖∗, 〈y∗, y〉 ≤ ‖y‖ · ‖y∗‖∗.

We further assume that the following assumptions are fulfilled:

(i) K : X → Y∗ is a bounded linear operator, with corresponding adjoint operator K∗ : Y →
X ∗ defined by

〈Kx, y〉 = 〈K∗y, x〉 ∀(x, y) ∈ X × Y.

2



Throughout the whole paper we will keep the notation “L” for the norm of this operator,

defined by

L := ‖K‖ = sup
‖x‖≤1, ‖y‖≤1

〈Kx, y〉 = sup
‖x‖≤1

‖Kx‖∗ = ‖K∗‖ = sup
‖y‖≤1

‖K∗y‖∗.

Hence, we also have that

〈Kx, y〉 ≤ ‖Kx‖∗‖y‖ ≤ L ‖x‖‖y‖, 〈K∗y, x〉 ≤ ‖K∗y‖∗‖x‖ ≤ L ‖x‖‖y‖.

For example, let ‖·‖x = ‖·‖p and ‖·‖y = ‖·‖q, with p, q ≥ 1, i.e. the usual `p norms, then

‖K‖ = sup
‖x‖p≤1

‖Kx‖q′ = sup
‖y‖q≤1

‖K∗y‖p′ = sup
‖x‖p≤1
‖y‖q≤1

〈Kx, y〉 ,

with p′, q′ such that 1/p+ 1/p′ = 1, and 1/q + 1/q′ = 1.

(ii) f is a proper, lower semicontinuous (l.s.c.), convex function, with ∇f Lipschitz continuous

on X , i.e.

‖∇f(x)−∇f(x′)‖∗ ≤ Lf‖x− x′‖ , ∀x, x′ ∈ X ;

(iii) g, h are proper, l.s.c., convex functions with simple structure, in the sense that their prox-

imal maps

min
x
g(x) +

1

τ
Dx(x, x̄) , min

y
h∗(y) +

1

σ
Dy(y, ȳ) ,

can be computed for any τ, σ > 0.

Here Dx and Dy are Bregman proximity/distance functions based on 1-strongly convex (w.r.t.

the respective norms) functions ψx and ψy, defined by

Dx(x, x̄) = ψx(x)− ψx(x̄)− 〈∇ψx(x̄), x− x̄〉 ,
Dy(y, ȳ) = ψy(y)− ψy(ȳ)− 〈∇ψy(ȳ), y − ȳ〉 .

Following [13], we assume that ψx, ψy are continuously differentiable on open sets Sx, Sy, con-

tinuous on Sx, Sy, and that given any converging sequences (xn) and (yn),

xn → x⇒ lim
n→∞

Dx(x, xn) = 0, yn → y ⇒ lim
n→∞

Dy(y, yn) = 0. (3)

We may of course assume that Sx and Sy are the respective domains of ψx, ψy. We need, in

addition to [13], to assume the strong convexity of our functions to ensure the convergence of the

algorithms studied in this paper. This restricts the possible class of Bregman functions, notice

however that classical examples such as the entropy ψx(x) =
∑d
i=1 xi log xi is well-known to be

1-strongly convex with respect to the 1-norm [2, 29] when restricted to the unit simplex, it is

also strongly convex with respect to the 2-norm on bounded sets of (R+)d. Eventually, we must

assume here that dom g ⊆ domψx = Sx and domh∗ ⊆ domψy = Sy.

Clearly, the Lipschitz continuity of f implies that

f(x′) ≤ f(x) + 〈∇f(x), x′ − x〉+
Lf
2
‖x′ − x‖2 , ∀x, x′ ∈ X . (4)
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Furthermore, the 1-strongy convexity of ψx and ψy easily implies that for any x, x̄ and y, ȳ, it

holds

Dx(x, x̄) ≥ 1
2‖x− x̄‖

2 , Dy(y, ȳ) ≥ 1
2‖y − ȳ‖

2 .

The most common choice for ψx and ψy is the usual squared Euclidean norm 1
2‖·‖

2
2 (or Hilbertian

in infinite dimension), which yields

D(x, x̄) =
1

2
‖x− x̄‖22 .

We will refer to this classical case as the “Euclidean case” . In this case, it is standard that given

a convex, l.s.c. function φ, if û is the minimizer of

φ(u) +
1

2
‖u− ū‖22

(which we call the “Euclidean proximity map” of φ at ū), then by strong convexity one has for

all u

φ(u) +
1

2
‖u− ū‖22 ≥ φ(û) +

1

2
‖û− ū‖22 +

1

2
‖u− û‖22 .

It turns out that this property is true also for non-Euclidean proximity operators, that is

û = arg min
u
φ(u) +D(u, ū) =⇒ ∀u, φ(u) +D(u, ū) ≥ φ(û) +D(û, ū) +D(u, û). (5)

This is easily deduced from the optimality conditions for û, see [6, 30].

Before closing this section, we point out that most of our results still hold, if the function h

is a convex l.s.c. function of the form [31, 4, 19]

h(y) = min
y1+y2=y

h1(y1) + h2(y2), (6)

so that

h∗(y) = h∗1(y) + h∗2(y),

h∗1 having simple structure while ∇h∗2 can be evaluated and is Lipschitz continuous with param-

eter Lh∗2 . For the ease of presentation we will not consider this situation but we will mention

when our results can be extended to this case.

2 The general iteration

Iteration: (x̂, ŷ) = PDτ,σ(x̄, ȳ, x̃, ỹ)x̂ = arg min
x
f(x̄) + 〈∇f(x̄), x− x̄〉+ g(x) + 〈Kx, ỹ〉+ 1

τDx(x, x̄)

ŷ = arg min
y
h∗(y)− 〈Kx̃, y〉+ 1

σDy(y, ȳ) .
(7)

The main iterate of the class of primal-dual algorithms we consider in this paper is defined

in (7). It takes the points (x̄, ȳ) as well as the intermediate points (x̃, ỹ) as input and outputs

the new points (x̂, ŷ). It satisfies the following descent rule:
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Lemma 1. If (7) holds, then for any x ∈ X and y ∈ Y one has

L(x̂, y)− L(x, ŷ) ≤ 1

τ
Dx(x, x̄)− 1

τ
Dx(x, x̂)− 1

τ
Dx(x̂, x̄) +

Lf
2
‖x̂− x̄‖2

+
1

σ
Dy(y, ȳ)− 1

σ
Dy(y, ŷ)− 1

σ
Dy(ŷ, ȳ)+

+ 〈K(x− x̂), ỹ − ŷ〉 − 〈K(x̃− x̂), y − ŷ〉 . (8)

Proof. From the first line in the above iteration (7) and property (5), it follows:

〈∇f(x̄), x〉+ g(x) + 〈Kx, ỹ〉+ 1
τDx(x, x̄) ≥

〈∇f(x̄), x̂〉+ g(x̂) + 〈Kx̂, ỹ〉+ 1
τDx(x̂, x̄) + 1

τDx(x, x̂) .

Moreover, from the convexity of f and (4) it follows

f(x) ≥ f(x̄) + 〈∇f(x̄), x− x̄〉 ≥ f(x̂) + 〈∇f(x̄), x− x̂〉 − Lf
2
‖x̂− x̄‖2 .

Combining this with the previous inequality, we arrive at

f(x) + g(x) + 1
τDx(x, x̄) +

Lf
2
‖x̂− x̄‖2 ≥

f(x̂) + g(x̂) + 〈K(x̂− x), ỹ〉+ 1
τDx(x̂, x̄) + 1

τDx(x, x̂) . (9)

In the same way:

h∗(y) + 1
σDy(y, ȳ) ≥ h∗(ŷ)− 〈Kx̃, ŷ − y〉+ 1

σDy(ŷ, ȳ) + 1
σDy(y, ŷ) . (10)

Summing (9), (10) and rearranging the terms appropriately, we obtain (8).

3 Non-linear primal-dual algorithm

In this section we address the convergence rate of the non-linear primal-dual algorithm shown in

Algorithm 1: The elegant interpretation in [16] shows that by writing the algorithm in this form

Algorithm 1: O(1/N) Non-linear primal-dual algorithm

• Input: Operator norm L := ‖K‖, Lipschitz constant Lf of ∇f , and Bregman distance

functions Dx and Dy.

• Initialization: Choose (x0, y0) ∈ X × Y, τ, σ > 0

• Iterations: For each n ≥ 0 let

(xn+1, yn+1) = PDτ,σ(xn, yn, 2xn+1 − xn, yn) (11)

(which “shifts” the updates with respect to [5]), in the Euclidean case, that is ‖·‖x = ‖·‖y = ‖·‖2,
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and Dx(x, x′) = 1
2‖x− x

′‖22, Dy(y, y′) = 1
2‖y − y

′‖22, then it is an instance of the proximal point

algorithm [27], up to the explicit term ∇f(xn), since(
K∗ + ∂g

−K + ∂h∗

)
(zn+1) +Mτ,σ(zn+1 − zn) 3

(
−∇f(xn)

0

)
,

where the variable z ∈ X × Y represents the pair (x, y), and the matrix Mτ,σ is given by

Mτ,σ =

(
1
τ I −K∗

−K 1
σ I

)
, (12)

which is positive-definite as soon as τσL2 < 1. A proof of convergence is easily deduced. More-

over, since in our particular setting we never really use the machinery of monotone operators,

and rely only on the fact that we are studying a specific saddle-point problem, the results are

a bit improved: in particular we deal easily with the explicit term f and non-linear proximity

operators.

Theorem 1. Let (xn, yn), n = 0, . . . , N − 1 be a sequence generated by the non-linear primal-

dual algorithm (11). Let the step size parameters τ, σ > 0 be chosen such that for all x, x′ ∈ dom g

and y, y′ ∈ domh∗ it holds that(
1

τ
− Lf

)
Dx(x, x′) +

1

σ
Dy(y, y′)− 〈K(x− x′), y − y′〉 ≥ 0 . (13)

Then, for any (x, y) ∈ X × Y it holds that

L(XN , y)− L(x, Y N ) ≤ 1

N

(
1

τ
Dx(x, x0) +

1

σ
Dy(y, y0)−

〈
K(x− x0), y − y0

〉)
, (14)

where XN = 1
N

∑N
n=1 x

n, and Y N = 1
N

∑N
n=1 y

n.

Proof. According to the iterative scheme (11), the estimate (8) becomes

L(xn+1, y)− L(x, yn+1) ≤
[

1

τ
Dx(x, xn) +

1

σ
Dy(y, yn)− 〈K(x− xn), y − yn〉

]
−
[

1

τ
Dx(x, xn+1) +

1

σ
Dy(y, yn+1)−

〈
K(x− xn+1), y − yn+1

〉 ]
−
[

1

τ
Dx(xn+1, xn) +

1

σ
Dy(yn+1, yn)−

〈
K(xn+1 − xn), yn+1 − yn

〉
− Lf

2
‖xn+1 − xn‖2

]
. (15)

Thanks to (13), the terms in the brackets are non-negative. Now we sum the last estimate from

n = 0, . . . , N − 1 and find

N∑
n=1

L(xn, y)− L(x, yn) ≤ 1

τ
Dx(x, x0) +

1

σ
Dy(y, y0)−

〈
K(x− x0), y − y0

〉
,

where we have removed negative terms on the right hand side. Equation (14) follows from the

convexity of (ξ, η) 7→ L(ξ, y)− L(x, η).
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Remark 1. Observe that since Dx(·, x′) and Dy(·, y′) are 1-convex, (13) is ensured as soon as(
1

τ
− Lf

)
1

σ
≥ L2. (16)

Remark 2. The rate (14) can also be written solely in terms of the distance functions Dx and

Dy. In fact, for any α > 0,

|
〈
K(x− x0), y − y0

〉
| ≤ L‖x− x0‖‖y − y0‖ ≤

αL

2
‖x− x0‖2 +

L

2α
‖y − y0‖2 ≤ αLDx(x, x0) +

L

α
Dy(y, y0).

In case Lf = 0, τσL2 = 1 and choosing α = 1/(τL), the rate (14) becomes

L(XN , y)− L(x, Y N ) ≤ 2

N

(
1

τ
Dx(x, x0) +

1

σ
Dy(y, y0)

)
. (17)

In the Euclidean setting, that is ‖·‖x = ‖·‖y = ‖·‖2 = 〈·, ·〉
1
2 , and D(x, x′) = 1

2‖x− x
′‖22,

D(y, y′) = 1
2‖y − y

′‖22, the estimate (15) reduces to

L(xn+1, y)− L(x, yn+1) ≤ 1

2
‖z − zn‖2Mτ,σ

− 1

2
‖z − zn+1‖2Mτ,σ

− 1

2
‖zn+1 − zn‖2Mτ,σ

+
Lf
2
‖xn+1 − xn‖22,

with Mτ,σ defined in (12). This can also be rewritten as

L(xn+1, y)− L(x, yn+1) ≤
〈
zn+1 − zn, z − zn+1

〉
Mτ,σ

+
Lf
2
‖xn+1 − xn‖22 (18)

while the final estimate (14) becomes

L(XN , y)− L(x, Y N ) ≤ 1

2N
‖z − z0‖2Mτ,σ

. (19)

Observe that this rate is different from the rate obtained in [5], which does only depend on the

diagonal part of Mτ,σ (each rate can be bounded by twice the other).

Remark 3. If we assume in addition that the inequality τσL2 < 1 is strict (which follows from (16)

if Lf > 0, and has to be assumed else), then we can deduce as in [5] convergence results for the

algorithm, whenever a saddle-point z∗ = (x∗, y∗) exists. The first thing to observe is that this

inequality yields that

1

τ
Dx(x, x′) +

1

σ
Dy(y, y′)− 〈K(x− x′), y − y′〉 ≥ α(‖x− x′‖2 + ‖y − y′‖2) (20)

for some α > 0. As a consequence, it follows from (15) that the sequence zn = (xn, yn) is

globally bounded (indeed, L(XN , y∗)− L(x∗, Y N ) ≥ 0). Obviously, this also yields a bound for

ZN = (XN , Y N ). We may thus assume that a subsequence (ZNk)k weakly converges in X × Y
to some Z = (X,Y ), and from (14) and the lower-semicontinuity of f, g, h∗ it follows that the

limit Z is a saddle-point.
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In finite dimension, we can also show the convergence of the whole sequences zn and ZN to

the same saddle-point. The proof follows the proof in [26, 5], in the linear case. Let us assume

that z is a limit point for a subsequence (znk)k, then since (15) guaranties the summability of

‖zn+1 − zn‖2, we have that also znk±1 → z. It follows that z is a fixed point of the algorithm

and thus a saddle-point (which we now denote z∗ = (x∗, y∗)).

Let m ≥ 0 be the limit of the nonincreasing sequence

1

τ
Dx(x∗, xn) +

1

σ
Dy(y∗, yn)− 〈K(x∗ − xn), y∗ − yn〉 ,

we wish to show that m = 0. Since znk → z∗ we deduce

lim
k→∞

1

τ
Dx(x∗, xnk) +

1

σ
Dy(y∗, ynk) = m.

Using assumption (3), we deduce m = 0. The convergence of the global sequence follows

from (20). In Hilbert spaces of infinite dimension, the same proof shows weak convergence

of the sequence for Euclidean proximity operators, invoking Opial’s theorem [24].

Remark 4. In the Euclidean setting and when g = 0, a better algorithm (in fact, optimal,

see [21, 23]) is proposed in [7], which yields a rate of order O(Lf/N
2 + L/N).

Remark 5. In case h has the composite form (6), then the theorem still holds with the condi-

tion (16) replaced with (
1

τ
− Lf

)(
1

σ
− Lh∗2

)
≥ L2. (21)

4 Overrelaxed and inertial variants

In this section, we consider overrelaxed and inertial versions of the primal-dual algorithm. We

will only consider the Euclidean setting, that is ‖·‖x = ‖·‖y = ‖·‖2 = 〈·, ·〉
1
2 , and D(x, x′) =

1
2‖x− x

′‖22, D(y, y′) = 1
2‖y − y

′‖22, since our proofs heavily rely on the fact that ‖·‖22 = 〈·, ·〉.

4.1 Relaxed primal-dual algorithm

Algorithm 2: O(1/N) Overrelaxed primal-dual algorithm

• Input: Operator norm L = ‖K‖2,2, Lipschitz constant Lf of ∇f , Bregman distance

functions D(x, x′) = 1
2‖x− x

′‖22, D(y, y′) = 1
2‖y − y

′‖22.

• Initialization: Choose z0 = (x0, y0) ∈ X × Y, τ, σ > 0 and ρn ∈ (0, 2)

• Iterations: For each n ≥ 0 let{
(ξn+1, ηn+1) = PDτ,σ(xn, yn, 2ξn+1 − xn, yn)

zn+1 = (1− ρn)zn + ρnζ
n+1

(22)

where zn = (xn, yn) and ζn = (ξn, ηn).
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First we consider the overrelaxed primal-dual Algorithm 2, whose convergence has been con-

sidered already in [14, 16]. It is known that an overrelaxation parameter close to 2 can speed up

the convergence but a theoretical justification was still missing.

Theorem 2. Assume ‖·‖x = ‖·‖y = ‖·‖2 = 〈·, ·〉
1
2 , Dx(x, x′) = 1

2‖x− x
′‖22, Dy(y, y′) =

1
2‖y − y

′‖22. Let (ξn, ηn), n = 0, . . . , N − 1 be a sequence generated by the overrelaxed Eu-

clidean primal-dual algorithm (22). Let the step size parameters τ, σ > 0 and the overrelaxation

parameter ρn be a non-decreasing sequence in (0, ρ) with ρ < 2 such that for all x, x′ ∈ dom g

and y, y′ ∈ domh∗ it holds that (
1

τ
− Lf

2− ρ

)
1

σ
> ‖K‖22. (23)

Then, for any z = (x, y) ∈ X × Y it holds that

L(XN , y)− L(x, Y N ) ≤ 1

2ρ0N
‖z − z0‖2Mτ,σ

, (24)

where XN = 1
N

∑N
n=1 ξ

n, and Y N = 1
N

∑N
n=1 η

n.

Proof. We start with the basic inequality (8). According to (22), using z̄ = zn and z̃ = (2ξn+1−
xn, yn) and ẑ = ζn+1, we obtain

L(ξn+1, y)− L(x, ηn+1) ≤
〈
ζn+1 − zn, z − ζn+1

〉
Mτ,σ

+
Lf
2
‖ξn+1 − xn‖22,

where Mτ,σ is defined in (12) and we have used the fact that 2 〈a, b〉M = ‖a‖2M+‖b‖2M−‖a− b‖2M .

Now, observe that from the second line in (22), the auxiliary point ζn+1 can be written as

ζn+1 = zn +
1

ρn
(zn+1 − zn) .

Substituting back into the previous inequality, we have

L(ξn+1, y)− L(x, ηn+1)

≤
〈
zn +

1

ρn
(zn+1 − zn)− zn, z − zn − 1

ρn
(zn+1 − zn)

〉
Mτ,σ

+
Lf
2
‖xn +

1

ρn
(xn+1 − xn)− xn‖22

=
1

ρn

〈
zn+1 − zn, z − zn

〉
Mτ,σ

− 1

ρ2
n

‖zn+1 − zn‖2Mτ,σ
+
Lf
2ρ2
n

‖xn+1 − xn‖22

=
1

2ρn

(
‖z − zn‖2Mτ,σ

− ‖z − zn+1‖2Mτ,σ

)
− 2− ρn

2ρ2
n

‖zn+1 − zn‖2Mτ,σ
+
Lf
2ρ2
n

‖xn+1 − xn‖22

≤ 1

2ρn

(
‖z − zn‖2Mτ,σ

− ‖z − zn+1‖2Mτ,σ

)
− 2− ρn

2ρ2
n

‖zn+1 − zn‖2Mτ,σ,ρn
,

where we have defined the metric

Mτ,σ,ρn =

((
1
τ −

Lf
2−ρn

)
I −K∗

−K 1
σ I

)
,

9



which is positive definite for all n as soon as (23) is fulfilled. In addition, since ρn is a non-

decreasing sequence in (0, ρ) with ρ < 2, summing the above inequality for n = 0, . . . , N − 1 and

omitting all nonpositive terms on the right hand side, it follows

N∑
n=1

L(ξn, y)− L(x, ηn) ≤ 1

2ρ0
‖z − z0‖2Mτ,σ

.

The final estimate (24) follows from defining appropriate averages and the convexity of the gap

function.

Remark 6. The last result indeed shows that the convergence rate is improved by choosing ρ0

as large as possible, i.e. close to 2. However, observe that in case the smooth explicit term ∇f
is not zero, it might be less beneficial to use a overrerlaxation parameter larger than one since it

requires a smaller primal step size τ .

4.2 Inertial primal-dual algorithm

Next, we consider an inertial version of the primal-dual algorithm, who has recently been consid-

ered in [19] as an extension of the inertial proximal point algorithm of Alvarez and Attouch [1].

It has already been observed in numerical experiments that inertial terms leads to a faster con-

vergence of the algorithm. Here we give a theoretical evidence that indeed the presence of an

inertial term leads to a smaller worst-case complexity.

Algorithm 3: O(1/N) Inertial primal-dual algorithm

• Input: Operator norm L = ‖K‖2,2, Lipschitz constant Lf of ∇f , and Bregman dis-

tance functions Dx(x, x′) = 1
2‖x− x

′‖22 and Dy(y, y′) = 1
2‖y − y

′‖22.

• Initialization: Choose (x−1, y−1) = (x0, y0) ∈ X × Y, τ, σ > 0 and αn ∈ [0, 1/3)

• Iterations: For each n ≥ 0 leta{
ζn = zn + αn(zn − zn−1)

(xn+1, yn+1) = PDτ,σ(ξn, ηn, 2xn+1 − ξn, ηn)
(25)

aHere as before, z = (x, y) and similarly, ζ = (ξ, η).

Theorem 3. Assume ‖·‖x = ‖·‖y = ‖·‖2 = 〈·, ·〉
1
2 , Dx(x, x′) = 1

2‖x− x
′‖22, Dy(y, y′) =

1
2‖y − y

′‖22. Let (xn, yn), n = 0, . . . , N − 1 be a sequence generated by the inertial Euclidean

primal-dual algorithm (25). Let the step size parameters τ, σ > 0 and the inertial parameter

αn be a non-decreasing sequence in [0, α] with α < 1/3 such that for all x, x′ ∈ dom g and

y, y′ ∈ domh∗ it holds that (
1

τ
− (1 + α)2

1− 3α
Lf

)
1

σ
> ‖K‖22. (26)

Then, for any z = (x, y) ∈ X × Y it holds that

L(XN , y)− L(x, Y N ) ≤ 1− α0

2N
‖z − z0‖2Mτ,σ

, (27)

10



where XN = 1
N

∑N
n=1 x

n, and Y N = 1
N

∑N
n=1 y

n.

Proof. We again start with the basic inequality (8). According to (25), using z̄ = ζn and

ẑ = zn+1, we have

L(xn+1, y)− L(x, yn+1) ≤
〈
zn+1 − ζn, z − zn+1

〉
Mτ,σ

+
Lf
2
‖xn+1 − ξn‖22 .

Plugging in the first line of (25) we arrive at

L(xn+1, y)−L(x, yn+1)

≤
〈
zn+1 − zn, z − zn+1

〉
Mτ,σ

− αn
〈
zn − zn−1, z − zn+1

〉
Mτ,σ

+
Lf
2
‖xn+1 − xn − αn(xn − xn−1)‖22

≤
〈
zn+1 − zn, z − zn+1

〉
Mτ,σ

− αn
〈
zn − zn−1, z − zn + zn − zn+1

〉
Mτ,σ

+
Lf
2

(
(1 + αn)‖xn+1 − xn‖22 + (αn + α2

n)‖xn − xn−1‖22
)

≤ 1

2

(
‖z − zn‖2Mτ,σ

− ‖z − zn+1‖2Mτ,σ
− ‖zn+1 − zn‖2Mτ,σ

)
− αn

2

(
‖z − zn−1‖2Mτ,σ

− ‖z − zn‖2Mτ,σ
− ‖zn − zn−1‖2Mτ,σ

)
− αn

〈
zn − zn−1, zn − zn+1

〉
Mτ,σ

+
Lf
2

(
(1 + αn)‖xn+1 − xn‖22 + (αn + α2

n)‖xn − xn−1‖22
)
.

Using the inequality | 〈a, b〉M | ≤
1
2

(
‖a‖2M + ‖b‖2M

)
we obtain the estimate

L(xn+1, y)− L(x, yn+1)

≤ 1

2

(
‖z − zn‖2Mτ,σ

− ‖z − zn+1‖2Mτ,σ

)
+
αn
2

(
‖z − zn‖2Mτ,σ

− ‖z − zn−1‖2Mτ,σ

)
+
αn − 1

2
‖zn+1 − zn‖2Mτ,σ

+ αn‖zn − zn−1‖2Mτ,σ

+
Lf
2

(
(1 + αn)‖xn+1 − xn‖22 + (αn + α2

n)‖xn − xn−1‖22
)
.

Now, since αn ≥ 0 is non-decreasing and z−1 = z0, summing the above inequality for n =

0, . . . , N − 1, we find:

N∑
n=1

L(xn, y)− L(x, yn) ≤ 1− α0

2
‖z − z0‖2Mτ,σ

− 1

2
‖z − zN‖2Mτ,σ

+
αN−1

2
‖z − zN−1‖2Mτ,σ

+

N−2∑
n=0

3αn+1 − 1

2
‖zn+1 − zn‖2Mτ,σ,αn+1

+
αN−1 − 1

2
‖zN − zN−1‖2Mτ,σ

+
Lf
2

(1 + αN−1)‖xN − xN−1‖22,

where

Mτ,σ,αn =

((
1
τ −

(1+αn)2

1−3αn
Lf
)
I −K∗

−K 1
σ I

)
,
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which is positive definite for all n as soon as (26) is fulfilled for all αn ≤ α < 1/3 since the

function (1+αn)2

1−3αn
is monotonically increasing in αn. Our last estimate can be further simplified

as

N∑
n=1

L(xn, y)− L(x, yn) ≤ 1− α0

2
‖z − z0‖2Mτ,σ

+
αN−1

2
‖z − zN−1‖2Mτ,σ

+
αN−1 − 1

2
‖zN − zN−1‖2Mτ,σ

− 1

2
‖z − zN‖2Mτ,σ

+
Lf
2

(1 + αN−1)‖xN − xN−1‖22

It remains to show that the term in the last two lines of the above estimate is nonpositive. In

fact:

αN−1

2
‖z − zN + zN − zN−1‖2Mτ,σ

+
αN−1 − 1

2
‖zN − zN−1‖2Mτ,σ

− 1

2
‖z − zN‖2Mτ,σ

+
Lf
2

(1 + αN−1)‖xN − xN−1‖22

≤ αN−1

(
‖z − zN‖2Mτ,σ

+ ‖zN − zN−1‖2Mτ,σ

)
+
αN−1 − 1

2
‖zN − zN−1‖2Mτ,σ

− 1

2
‖z − zN‖2Mτ,σ

+
Lf
2

(1 + αN−1)‖xN − xN−1‖22

= (αN−1 −
1

2
)‖z − zN‖2Mτ,σ

+
3αN−1 − 1

2
‖zN − zN−1‖2Mτ,σ

+
Lf
2

(1 + αN−1)‖xN − xN−1‖22

= (αN−1 −
1

2
)‖z − zN‖2Mτ,σ

+
3αN−1 − 1

2
‖zN − zN−1‖2P ≤ 0,

as αn ≤ α < 1/3 and as the matrix

P =

((
1
τ −

1+αN−1

1−3αN−1
Lf
)
I −K∗

−K 1
σ I

)
is clearly positive definite if (26) is fulfilled. It remains to derive the ergodic rate by defining

appropriate averages and exploiting the convexity of the gap function.

Remark 7. This result again shows that it is beneficial to choose α0 as large as possible, i.e.

α0 close to 1/3 in order to reduce the constant on the right hand side. Similar to the case of

overrelaxation, larger values of αn leads to smaller primal step sizes τ and hence an inertial term

might be less beneficial in presence of an explicit term ∇f .

Remark 8. Letting γ = τLf we find that the parameter α should satisfy

α <

√
16γ + 9− 3

2γ
− 1

in order for the left-hand side term in (26) to be positive (and then σ needs to be chosen

accordingly). We point out that this condition is a bit more restrictive than the condition

in [19]. This is due to the fact that our convergence proof is based on the Lipschitz continuity

of ∇f rather than its co-coercivity, which leads to the loss of a factor 2 in the size of the primal

step size τ relatively to the Lipschitz parameter Lf .
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5 Acceleration for strongly convex problems

Here in this section, we slightly improve the results in [5] on accelerated algorithms. We address

more precisely the natural generalization proposed in [9] (also [31]) and studied in [4] (where

rates of convergence are proven). The main novelty with respect to [4] is a proof that in an

ergodic sense, also the primal-dual gap is controlled and decreases at rate O(1/N2) where N is

the number of iterations. In addition to our assumptions (i)-(iii) we assume that

(iv) f or g (or both) are strongly convex with respective parameters γf , γg and hence the primal

objective is strongly convex with parameter γ = γf + γg > 0.

In fact, we observe that since

f(x) + g(x) =
(
f(x)− γf

2
‖x‖2

)
+
(
g(x) +

γf
2
‖x‖2

)
we can “transfer” the strong convexity of f to g: letting f̃ = f − γf‖·‖2/2, g̃ = g + γf‖·‖2/2,

and γ = γf + γg, we have now that g̃ is γ-convex. In addition, ∇f̃ = ∇f − γfI, so that

x′ = (I + τ̃ ∂g̃)−1(x− τ̃∇f̃(x)) ⇔ x′ = (I + τ∂g)−1(x− τ∇f(x))

with

τ =
τ̃

1 + γf τ̃
, so that τ̃ :=

τ

1− γfτ
(28)

(observe that τ needs, as expected, to be less than 1/γf > 1/Lf ). In addition, we find that ∇f̃
is (Lf − γf )-Lipschitz. Hence in the following, to simplify we will just assume that g is strongly

convex (that is, γf = 0, γ = γg), replacing assumption (iv) with the simpler assumption:

(iv’) g is strongly convex with parameter γ > 0.

We must eventually mention here that in case f = 0, the dual problem, which has the form

miny g
∗(−K∗y) + h∗(y), is the sum of a smooth plus a nonsmooth objective which could be

tackled directly by more standard optimal methods [3, 22, 23] yielding similar convergence rates

(provided one knows how to compute the Lipschitz gradient ∇g∗, which is slightly different from

the assumptions we use in this paper).

5.1 Convergence analysis

With this additional assumption, the descent rule (9) can be slightly improved: indeed, thanks

to the strong convexity of g, we can control an additional quadratic term on the right-hand side.

It follows that for any x ∈ X ,

f(x) + g(x) + 1
τDx(x, x̄) +

Lf
2 ‖x̂− x̄‖

2 ≥
f(x̂) + g(x̂) + 〈K(x̂− x), ỹ〉+ 1

τDx(x̂, x̄) + 1
τDx(x, x̂) + γ

2 ‖x− x̂‖
2 . (29)

It follows that (8) is also improved, with the additional term γ
2 ‖x− x̂‖

2 on the left-hand side.

One sees that one will be able to obtain a good convergence rate whenever the last two terms

in (29) can be combined into one, which requires that Dx(x, x̂) = 1
2‖x− x̂‖

2
2, that is, we must
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consider linear proximity operators in the x variable.1 To simplify the notation we will drop the

subscript “2” in the norm for x, in the rest of this section.

Algorithm 4: O(1/N2) Accelerated primal-dual algorithm

• Input: Operator norm L = ‖K‖, Lipschitz constant Lf of ∇f , parameter γ of strong

convexity of g, and Bregman distance function Dy, Dx(x, x′) = 1
2‖x− x

′‖2x

• Initialization: Choose x−1 = x0 ∈ X , τ0, σ0, θ0 > 0 which satisfy (34).

• Iterations: For each n ≥ 0 let{
(xn+1, yn+1) = PDτn,σn(xn, yn, xn + θn(xn − xn−1), yn+1)

τn+1, σn+1, θn+1 satisfy (32), (33), (34).
(30)

Now, we can specialize “à la” [5]. That is, we choose in (8) ỹ = ŷ = yn+1, x̂ = xn+1,

x̃ = xn + θn(xn − xn−1), x̄ = xn, ȳ = yn, and make τ, σ depend also on the iteration counter n.

In particular, now, for any (x, y) ∈ X × Y,

〈K(x− x̂), ŷ − ỹ〉 − 〈K(x̂− x̃), y − ŷ〉
= −

〈
K(xn+1 − xn), y − yn+1

〉
+ θn

〈
K(xn − xn−1), y − yn+1

〉
= −

〈
K(xn+1 − xn), y − yn+1

〉
+ θn

〈
K(xn − xn−1), y − yn

〉
+ θn

〈
K(xn − xn−1), yn − yn+1

〉
.

The last term is simply controlled by observing that

θn
〈
K(xn − xn−1), yn − yn+1

〉
≥ −θnL‖xn − xn−1‖‖yn − yn+1‖ ≥ −θnL

(
µ
‖xn − xn−1‖

2

2

+
‖yn − yn+1‖

2µ

2
)

for any µ > 0, and choosing µ = θnLσn we obtain

〈K(x− x̂), ŷ − ỹ〉 − 〈K(x̂− x̃), y − ŷ〉
≥ −

〈
K(xn+1 − xn), y − yn+1

〉
+ θn

〈
K(xn − xn−1), y − yn

〉
− ‖y

n+1 − yn‖
2σn

2

− (θ2
nL

2σn)
‖xn − xn−1‖

2

2

.

To sum up, it follows from (8), with the additional strong convexity term from (29), that for any

1It must be observed here that the right assumption on g to obtain an accelerated scheme with an arbitrary

Bregman distance Dx should be that g is “strongly convex with respect to ψx”, in the sense that g − γψx is

convex. The proof would then be similar. However, it is not clear whether this covers very interesting situations

beyond the standard case.

14



(x, y), using also that Dy(yn+1, yn) ≥ 1
2‖y

n+1 − yn‖2,

‖x− xn‖
2τn

2

+
Dy(y, yn)

σn
− θn

〈
K(xn − xn−1), y − yn

〉
+
θ2
nL

2σn
2
‖xn − xn−1‖2

≥ L(xn+1, y)− L(x, yn+1) +
1 + γτn

2τn
‖x− xn+1‖2

+
Dy(y, yn+1)

σn
−
〈
K(xn+1 − xn), y − yn+1

〉
+

1− Lfτn
2τn

‖xn+1 − xn‖2. (31)

Assume the sequences θn, τn, σn satisfy for all n ≥ 0

1 + γτn
τn

≥ 1

θn+1τn+1
, (32)

1

σn
=

1

θn+1σn+1
, (33)

L2σn ≤
1

τn
− Lf . (34)

Then (31) becomes (using θ2
nL

2σn = θnL
2σn−1, thanks to (33))

‖x− xn‖
2τn

2

+
Dy(y, yn)

2σn
+ θn

(
L2σn−1

‖xn − xn−1‖
2

2

−
〈
K(xn − xn−1), y − yn

〉)
≥ L(xn+1, y)− L(x, yn+1) +

1

θn+1

(
‖x− xn+1‖

2τn+1

2

+
Dy(y, yn+1)

2σn+1

+ θn+1

(
L2σn

‖xn+1 − xn‖
2

2

−
〈
K(xn+1 − xn), y − yn+1

〉))
. (35)

Observe that from (33),
∏N
n=1 θn = σ0/σN . We now let

TN =

N∑
n=1

σn−1

σ0
, XN =

1

TN

N∑
n=1

σn−1

σ0
xn, Y N =

1

TN

N∑
n=1

σn−1

σ0
yn. (36)

Then, summing (35) (first multiplied on both sides by σn/σ0) from n = 0 to n = N − 1 and

assuming x−1 = x0, using also the convexity of (ξ, η) 7→ L(ξ, y) − L(x, η) (for fixed x, y), we

deduce

TN
(
L(XN , y)− L(x, Y N )

)
+
σN
σ0

(
‖x− xN‖

2τN

2

+
Dy(y, yN )

σN

+ θN

(
L2σN−1

‖xN − xN−1‖
2

2

−
〈
K(xN − xN−1), y − yN

〉))

≤ ‖x− x
0‖

2τ0

2

+
Dy(y, y0)

σ0
.

Considering eventually that (using again (33))〈
K(xN − xN−1), y − yN

〉
≤ Dy(y, yN )

θNσN
+
L2σN−1

2
‖xN − xN−1‖2,

we deduce the following result.
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Theorem 4. Assume Dx(x, x′) = 1
2‖x− x

′‖2x. Let (xn, yn) be a sequence generated by Algo-

rithm 4, and let (XN , Y N ) and (TN ) be the ergodic averages given by (36). Then, for all x and

y, for all N ≥ 1, one has the estimate

TN
(
L(XN , y)− L(x, Y N )

)
+
σN
σ0

‖x− xN‖
2τN

2

≤ ‖x− x
0‖

2τ0

2

+
Dy(y, y0)

σ0
. (37)

Remark 9. Notice that, taking (x, y) = (x∗, y∗) a saddle-point in (37), we find that XN and xN

are bounded (and converge to x∗). If we assume that h has full domain, so that h∗(y)/|y| → ∞ as

|y| → ∞, we deduce that also Y N is bounded (since otherwise −L(x∗, Y N ) would go to infinity),

and it follows that the (x, y) which realize the supremum in the expression L(XN , y)−L(x, Y N )

are also globally bounded. It follows the global estimate on the gap

sup
x,y
L(XN , y)− L(x, Y N ) ≤ C

TN
. (38)

5.2 Parameter choices

It turns out that it is possible to choose sequences (τn, σn, θn) satisfying (32), (33), (34) in order

to have 1/TN = O(1/N2). A possible choice, similar to [5], to ensure (32), (33), (34) is to keep

the product σnτn constant and let

θn+1 =
1√

1 + γτn
, τn+1 = θn+1τn , σn+1 = σn/θn+1. (39)

Then, letting

τ0 =
1

2Lf
, σ0 =

Lf
L2

(or τ0 = σ0 = 1/L if Lf = 0), we find that by induction, since τn+1/τn = σn/σn+1 < 1 for each

n, (34) will be satisfied. We refer to [5] for a proof that this choice ensures that σn ∼ γn/(4L2),

so that TN ∼ γN2/(4Lf ).

A simpler (still slightly suboptimal) choice is to take σ0 > 0 arbitrary, and

τn =
2

γn+ 2(Lf + L2σ0)
, σn = σ0 +

γnσ0

γ + 2(Lf + L2σ0)
. (40)

Then, (32), (33), (34) hold, and

TN = N +
N(N − 1)

2

γ

γ + 2(Lf + L2σ0)
. (41)

Observe that in this case,

θn+1 =
σn
σn+1

=
γ(n+ 1) + 2(Lf + L2σ0)

γ(n+ 2) + 2(Lf + L2σ0)

and

θn+1τn+1 =
2

γ(n+ 2) + 2(Lf + L2σ0)
=

τn
1 + γτn

,

that is, the equality holds in (32).
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The optimal rule should consist in choosing equalities in (32), (33) and (34). We find that

σ0 > 0 can be chosen arbitrarily,

τ0 =
1

Lf + L2σ0
,

and then:

1 + γτn =
τn
τn+1

σn+1

σn
=

τ2
n

τ2
n+1

1− Lfτn+1

1− Lfτn
,

τ2
n+1

1− Lfτn+1
=

τ2
n

(1 + γτn)(1− Lfτn)
=: β2

n+1

so that, assuming Lfτn < 1 (which is true for n = 0),

τn+1 = βn+1

(√
1 +

L2
f

4 β
2
n+1 −

Lf
2
βn+1

)
=

βn+1√
1 +

L2
f

4 β
2
n+1 +

Lf
2 βn+1

=
τn√

(1 + γτn)(1− Lfτn) +
L2
f

4 τ
2
n +

Lf
2 τn

≤ τn,

and

θn+1 =

√
(1 + γτn)(1− Lfτn) +

L2
f

4 τ
2
n +

Lf
2 τn

1 + γτn
∈
(

1

1 + γτn
,

1√
1 + γτn

)
.

Let us denote τoptn , σopt
n and T opt

N the τn, σn and TN obtained by this “optimal” rule (and the

corresponding TN ) and let us keep the notation τn, σn, TN for the expressions in (40) and (41).

These choices, in particular, satisfy the equality in (32), (33), but a strict inequality (for n ≥ 1)

in (34). We assume that the starting point σ0 = σopt
0 is the same, then of course also τ0 = τopt0 .

Then one has:

Lemma 2. For each n ≥ 0, σopt
n ≥ σn, and T opt

n ≥ Tn ∼ cn2.

Proof. We proceed by induction. We assume σopt
n ≥ σn, which is true for n = 0. For practical

reasons, let us set Xopt
n = L2σopt

n , Y opt
n = −1/τoptn , Xn = L2σn, and Yn = −1/τn. Then from

the equality in (32), we have for all n

Xn+1Yn+1 = XnYn − γXn, Xopt
n+1Y

opt
n+1 = Xopt

n Y opt
n − γXopt

n , (42)

We also assume Πn := XnYn ≥ Πopt
n := Xopt

n Y opt
n , which is true at n = 0. It follows then that

from (42) and Xopt
n ≥ Xn that Πn+1 ≥ Πopt

n+1. Observe that being this product negative, it

means in fact that |Πn+1| ≤ |Πopt
n+1|.

On the other hand, from (34), one has that

Σn+1 := Xn+1 + Yn+1 ≤ −Lf = Xopt
n+1 + Y opt

n+1 =: Σopt
n+1 ≤ 0

(and, again, |Σn+1| ≥ |Σopt
n+1|).

One has then

Xn+1 =
Σn+1 +

√
Σ2
n+1 − 4Πn+1

2
=

√
Σ2
n+1 + 4|Πn+1| −

√
Σ2
n+1

2
,

which, by concavity of
√
· and since Σ2

n+1 ≥ (Σopt
n+1)2, |Πn+1| ≤ |Πopt

n+1|, is less than the similar

expression for Xopt
n+1. This shows the Lemma.
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6 Acceleration for smooth and strongly convex problems

In this section, we finally make the additional assumption that

(v) h∗ is strongly convex with parameter δ > 0.

Equivalently, h has (1/δ)-Lipschitz gradient, so that the primal objective is both smooth and

strongly convex. Then, as expected, the rate can be improved, to linear convergence. In this

section, we must assume that the Bregman distance functions satisfy Dx(x, x′) = 1
2‖x− x

′‖22 and

Dy(y, y′) = 1
2‖y − y

′‖22, that is, we are for both variables in the Euclidean/Hilbertian setting.

For simplicity we will drop the subscript “2” in the rest of this section.

We show here how to modify the proof of the previous case to obtain a linear convergence

rate on the gap. This slightly improves the results in [5, 4] which only give a rate on the iterates.

In contrast to [5], we do not show here convergence for a large range of relaxation parameters θ,

but the proof presented can handle the explicit term ∇f and yields a similar convergence rate.

6.1 Convergence analysis

Algorithm 5: O(θN ) Accelerated primal-dual algorithm

• Input: Operator norm L = ‖K‖, Lipschitz constant Lf of ∇f , parameters γ, δ of

strong convexity of g and h∗, Dx(x, x′) = 1
2‖x− x

′‖2x and Dy(y, y′) = 1
2‖y − y

′‖2y.

• Initialization: Choose x−1 = x0 ∈ X , τ, σ, θ > 0 which satisfy (44) and (45).

• Iterations: For each n ≥ 0 let

(xn+1, yn+1) = PDτ,σ(xn, yn, xn + θ(xn − xn−1), yn+1) (43)

A first remark is that the inequality (31), in case h∗ is δ-convex, can be written

‖x− xn‖
2τ

2

+
‖y − yn‖

2σ

2

− θ
〈
K(xn − xn−1), y − yn

〉
+
θ2L2σ

2
‖xn − xn−1‖2

≥ L(xn+1, y)− L(x, yn+1) +
1 + γτ

2τ
‖x− xn+1‖2

+
1 + δσ

2σ
‖y − yn+1‖2 −

〈
K(xn+1 − xn), y − yn+1

〉
+

1− Lfτ
2τ

‖xn+1 − xn‖2.

It follows that if one can choose τ, σ, θ so that

1 + γτ = 1 + δσ =
1

θ
(44)

1− Lfτ
τ

≥ θL2σ (45)

then, multiplying the inequality by θ−n and summing from n = 0 to N − 1, we get (assuming
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x−1 = x0)

‖x− x0‖
2τ

2

+
‖y − y0‖

2σ

2

≥
N∑
n=1

1

θn−1
(L(xn, y)− L(x, yn))

+
1

θN

(
‖x− xN‖

2τ

2

+
‖y − yN‖

2σ

2

− θ
〈
K(xN − xN−1), y − yN

〉)

+
1− Lfτ
2τθN−1

‖xN − xN−1‖2.

Using (45) again, we deduce

N∑
n=1

1

θn−1
(L(xn, y)− L(x, yn)) +

‖x− xN‖
2τθN

2

≤ ‖x− x
0‖

2τ

2

+
‖y − y0‖

2σ

2

.

Hence, letting now

TN =

N∑
n=1

θ−n+1 =
1− θN

1− θ
1

θN−1
and ZN = (XN , Y N ) =

1

TN

N∑
n=1

θ−n+1zn (46)

we obtain the following result

Theorem 5. Assume Dx(x, x′) = 1
2‖x− x

′‖2x and Dy(y, y′) = 1
2‖y − y

′‖2y. Let (xn, yn) be a

sequence generated by Algorithm 5, and let (XN , Y N ) and (TN ) be the ergodic averages defined

in (46). Then, for all x and y, for all N ≥ 1, one has the estimate

L(XN , y)− L(x, Y N ) +
θ(1− θ)
1− θN

‖x− xN‖
2τ

2

≤ 1

TN

(
‖x− x0‖

2τ

2

+
‖y − y0‖

2σ

2
)

(47)

which yields a linear convergence rate.

6.2 Parameter choices

Solving the equations (44) for τ, σ, θ, we obtain, letting 2

µ =
δ(γ + Lf )

2L2

(√
1 + 4

γL2

δ(γ + Lf )2
− 1

)
∈ (0, 1) :

τ =
µ

γ(1− µ)
, σ =

µ

δ(1− µ)
, θ = 1− µ. (48)

In case Lf = 0, one has

µ =
δγ

2L2

(√
1 + 4

L2

δγ
− 1

)
and the above formulas simplify to

τ = δ
1 +

√
1 + 4L

2

γδ

2L2
, σ = γ

1 +
√

1 + 4L
2

γδ

2L2
, θ = 1− δγ

2L2

(√
1 + 4

L2

δγ
− 1

)
. (49)

2using WolframAlpha to check our calculations.
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In this case, if δγ � L2, then the linear rate of convergence is governed by the factor

θ ≤ 1−
√
δγ

L
+

δγ

2L2
≈ 1−

√
δγ

L
:

we remark that this is of the same order as the rate found in [5] (which was not a bound on the

gap though). Note however that a more refined analysis in [5] allowed to obtain better rates, for

a larger choice of parameters θ. A similar analysis with Lf 6= 0 would probably lead to close

results through very tedious calculations. On the other hand, the new proof allows for slightly

larger steps than in [5].

7 Computational examples

In this section we demonstrate the practical performance of the proposed algorithms on a number

of randomly generated instances of classical optimization problems.

7.1 Matrix games

Here, we consider the following min-max matrix game:

min
x∈∆l

max
y∈∆k

L(x, y) = 〈Kx, y〉 , (50)

where ∆k and ∆l denote the standard unit simplices in Rk and Rl and K ∈ Rk×l. This class of

min-max matrix games can be used for approximately finding the Nash equilibrium of two-person

zero-sum matrix games such as two-person Texas Hold’em Poker. Following the computational

experiments in [23], the entries of K are independently and uniformly distributed in the intervall

[−1, 1]. We denote by L = ‖K‖ the operator norm of K. We can also easily compute the

primal-dual gap of a feasible pair (x, y). For this we observe that arg minx∈∆l
L(x, y) = ej ,

where ej ∈ ∆l is the j-th standard basis vector corresponding to the smallest entry of the vector

KT y. Likewise, arg maxy∈∆k
L(x, y) = ei, where i corresponds to the coordinate of the largest

entry of Kx. Hence, the primal-dual gap is computed as

G(x, y) =
[
P(x) = max

i
(Kx)i

]
−
[
D(y) = min

j
(KT y)j

]
7.1.1 Linear and nonlinear primal-dual algorithms

We first consider different Bregman distance settings of the nonlinear primal-dual algorithm

presented in Algorithm 1. The initial points (x0, y0) are chosen to be the centers of the simplices,

that is x0
j = 1/l and y0

i = 1/k for all i, j. There are two obvious choices for the Bregman distance

functions:

1. Euclidean setting: In the Euclidean setting, ‖·‖x = ‖·‖y = ‖·‖2, Dx(x, x′) = 1
2‖x− x

′‖2,

and Dy(y, y′) = 1
2‖y − y

′‖2. It follows that maxx∈∆l
Dx(x, x0) = (1 − 1

l )/2 and likewise

maxy∈∆k
Dy(y, y0) = (1 − 1

k )/2. The operator norm is computed as the largest singular
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value L2 = smax(K). In the iterates of the algorithm, we need to solve subproblems of the

following form:

x̂ = arg min
x∈∆l

〈x, ξ〉+
‖x− x̄‖

2τ

2

⇔ x̂ = proj∆l
(x̄− τξ) ,

where we are using the n log n algorithm described in [12] to compute the orthogonal

projections on the unit simplices. Taking the supremum on the right hand side of (17), the

ergodic O(1/N) rate for the primal-dual gap bounded by

G(XN , Y N ) ≤ 2

N

(
1− 1

l

2τ
+

1− 1
k

2σ

)
.

Since τσL2
2 = 1, the right hand side is minimized by setting

τ =
1

L2

√
1− 1

l

1− 1
k

, σ =
1

L2

√
1− 1

k

1− 1
l

.

Hence we get the following final estimate for the gap

G(XN , Y N ) ≤
2
√

(1− 1
l )(1−

1
k )

N
L2.

2. Entropy setting: In the entropy setting we choose ‖·‖x = ‖·‖y = ‖·‖1 and the Bregman

distance functions are given by Dx(x, x′) =
∑
j xj(log xj− log x′j)−xj +x′j and Dy(y, y′) =∑

i yi(log yi − log y′i) − yi + y′i, which are 1-convex with respect to the 1-norm. Now,

maxx∈∆l
Dx(x, x0) = log l and maxy∈∆k

Dy(y, y0) = log k. The operator norm is given by

L1 = sup‖x‖1=1 ‖Kx‖∞ = maxi,j |Ki,j |.

It is well known that in the entropy setting, the iterates of the algorithm are explicit:

x̂ = arg min
x∈∆l

〈x, ξ〉+
1

τ
Dx(x, x̄)⇔ x̂j =

x̄j exp(−τξj)∑l
j=1 x̄j exp(−τξj)

In turn, the ergodic O(1/N) rate in (17) specializes to

G(XN , Y N ) ≤ 2

N

(
log l

τ
+

log k

σ

)
.

Again, the right hand side is minimized by choosing

τ =
1

L1

√
log l

log k
, σ =

1

L1

√
log k

log l

We obtain the final estimate as

G(XN , Y N ) ≤ 4
√

log l log k

N
L1.
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Remark 10. Since the entries of K are uniformly distributed in [−1, 1], the solutions of the

min-max matrix games always cluster around the simplex centers 1/k and 1/l. In this region,

the entropy functions are strongly k- and l-convex, respectively, and hence for small variations

around the center,

Dx(x, x′) '
1

2
(
√
l‖x− x′‖2)2, Dy(y, y′) '

1

2
(
√
k‖y − y′‖2)2.

With this information we can get a better (local) estimate of the operator norm:

Lcent ≈ sup
‖x‖2≤1/

√
l

‖Kx‖2/
√
k = L2/

√
kl

In practice, we observed that slightly larger values, e.g. 1.7 · Lcent worked very well in our

experiments. It would be of great interest to find a method which is able to exploit this variability,

unfortunately we were not able to find a rigorous and efficient method.

First let us observe that our theoretical worst case bounds for the matrix games are exactly

the same as the corresponding worst case bounds in [23]. In Table 1 we report the number of

iterations of the O(1/N) primal-dual algorithms using the Euclidean setting and the entropy

setting to reach a primal-dual gap that is less than ε. One can see that the entropy-based

algorithm is consistently faster compared to the Euclidean-based algorithm. Furthermore, one

can see that the complexity for finding an ε accurate solution grows, as predicted in Theorem 1,

with a factor of order 1/ε. Indeed, one can see that reducing ε by a factor of 10 roughly leads to

10 times more iterations. Comparing the results with the results reported in [23] the proposed

algorithms are significantly faster. Also observe that counterintuively, less iterations are needed

for larger problems. This might be due to the fact that the value of the gap of theses problems

at the centers of the simplices goes to zero as the size goes to infinity, making this initialization

more beneficial for larger problems.

Table 1: Computational results of Algorithm 1 applied to the matrix game problem (50).

ε = 10−3 ε = 10−4

k/l Euclidean Entropy Euclidean Entropy

100/100 942 730 9394 7292

100/500 760 750 7671 7378

100/1000 1138 960 11330 9862

500/100 1085 648 10743 6474

500/500 483 333 4782 3290

500/1000 480 350 4796 3430

1000/100 1537 640 15394 6284

1000/500 547 297 5434 2905

1000/1000 381 261 3797 2546
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7.1.2 Ergodic versus nonergodic sequence

We also tested the performance of the nonergodic sequences, i.e. the rate of convergence of the

primal-dual gap of the iterates (xn, yn). Figure 1 depicts logarithmic convergence plots in the

setting k = l = 1000, for both the Euclidean and the entropy setting. It shows that in the

Euclidean setting, the nonergodic sequence converges even faster than the ergodic sequence. In

the entropy setting however, we observed the contrary. The nonergodic sequence converges much

slower than the ergodic sequence. We do not know the reason for this behavior. For both ergodic

sequences, the gap decreases exactly at rate O(1/N) as predicted by the analysis.
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Figure 1: Comparison between the performance of the ergodic and the nonergodic sequences of

Algorithm 1 applied to the matrix game problem (50).

7.1.3 Overrelaxed and inertial primal-dual algorithms

In this section, we evaluate the performance of the overrelaxed and inertial version of the Eu-

clidean primal-dual algorithm detailed in Algorithm 2 and Algorithm 3. We vary the relaxation

parameter ρ and the inertial parameter α (which are kept constant during the iterations) and

record the number of iterations that are necessary to reach a primal-dual gap which is less a

tolerance of ε = 10−4. For both, the inertial and overrelaxed versions, we observe that the

algorithms are still converging for the theoretical limits ρ = 2 and α = 1/3.

In Table 2, we report the number of iterations using different values of the relaxation param-
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eter ρ. As predicted in Theorem 2, the number of iterations are approximately proportional to

the factor 1/ρ. In Table 3, we report the number of iterations using different inertial parameters

α. Again, as predicted in Theorem 3, the number of iterations roughly correspond to the factor

1− 1/α.

Table 2: Computational results of Algorithm 2 applied to the matrix game problem (50).

k/l ρ = 1 ρ = 5/4 ρ = 3/2 ρ = 7/4 ρ = 2

100/100 9394 7224 5784 4825 4075

100/500 7671 5853 4748 3983 3337

100/1000 11330 8861 7225 6063 5151

500/100 10743 8389 6818 5721 4691

500/500 4782 3651 2924 2402 2051

500/1000 4796 3809 3156 2696 2346

1000/100 15394 11982 9721 8126 6835

1000/500 5434 4224 3426 2860 2437

1000/1000 3797 2975 2433 2050 1881

Table 3: Computational results of Algorithm 3 applied to matrix game problem (50).

k/l α = 0 α = 1/12 α = 1/6 α = 1/4 α = 1/3

100/100 9394 8660 7939 7234 6545

100/500 7671 7065 6467 5882 5328

100/1000 11330 10420 9520 8632 7751

500/100 10743 9882 9034 8203 7411

500/500 4782 4401 4026 3655 3291

500/1000 4796 4410 4029 3656 3299

1000/100 15394 14147 12912 11692 10514

1000/500 5434 4996 4563 4134 3721

1000/1000 3797 3492 3191 2897 2613

7.2 Simplex constrained least squares problem

In this section, we consider the following class of simplex-constrained least squares problems

min
x∈∆l

P(x) =
1

2
‖Kx− b‖2, (51)

where ∆l again denotes the standard unit simplex in Rl and K ∈ Rk×l, and b ∈ Rk. Several

standard optimization problems used in machine learning such as the support vector machine can

be obtained as special cases from (51). Here, K and b are randomly generated with their entries

24



uniformly and independently distributed in the intervall [−1, 1]. We again denote by L = ‖K‖
the operator norm of K. The saddle-point formulation of (51) is given by

min
x∈∆l

max
y
L(x, y) = 〈Kx, y〉 − bT y − 1

2
‖y‖2. (52)

Furthermore, the dual problem is given by

max
y
D(y) = min

j
(KT y)j − bT y −

1

2
‖y‖2

In turn, the primal-dual gap for a pair (x, y) can be easily computed by observing that arg minx∈∆l
L(x, y) =

ej and also arg maxy L(x, y) = Kx− b:

G(x, y) =

[
1

2
‖Kx− b‖2

]
−
[
min
j

(KT y)j − bT y −
1

2
‖y‖2

]
7.2.1 Accelerated primal-dual algorithms

Note that since the saddle-point problem is strongly convex in y, we can use the accelerated

primal-dual algorithm presented in Algorithm 4 (by interchanging the role of the primal and the

dual variables). Since Lf = 0, we apply the simple parameter choice (39). We initialize the

algorithms with the obvious choice (x0)j = 1/l for all j and y0 = Kx0 − b. Recall that in the

accelerated algorithm, we have fixed ‖·‖y = ‖·‖2 and hence Dy(y, y′) = 1
2‖y − y

′‖2. Let us now

consider two different setups of the algorithm:

1. Euclidean setting: In the Euclidean setting, we set ‖·‖x = ‖·‖2 and hence Dx(x, x′) =
1
2‖x− x

′‖2. The operator norm L2 = ‖K‖ is again given by smax(K). According to (37),

we guaranteed that after N iterations for all (x, y) it holds that

TN (L(XN , y)− L(x, Y N )) ≤ ‖x− x
0‖2

2τ0
+
‖y − y0‖2

2σ0

Substituting y = arg maxy L(XN , y) = KXN − b, we obtain for all x

TN (P(XN )− L(x, Y N )) ≤ ‖x− x
0‖2

2τ0
+
‖K(XN − x0)‖2

2σ0

Taking the supremum with respect to x on both sides, it follows

TNG(XN , Y N ) ≤ sup
x∈∆l

‖x− x0‖2

2τ0
+
‖K(XN − x0)‖2

2σ0

≤
1− 1

l

2τ0
+
‖K(XN − x0)‖2

2σ0

≤
1− 1

l

2τ0
+

(1− 1
l )

2σ0
L2

2.

The right hand side is minimized by choosing τ0 = 1/L2
2 and σ0 = 1 which gives the final

estimate

G(XN , Y N ) ≤
1− 1

l

TN
L2

2,

where TN ∼ O(N2) is defined in (36).
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2. Entropy setting: In the entropy setting, we choose ‖·‖x = ‖·‖1 andDx(x, x′) =
∑
j xj(log xj−

log x′j) − xj + x′j . The operator norm is now given by L12 = ‖K‖ = sup‖x‖1≤1 ‖Kx‖2 =

maxj ‖Kj‖2 where Kj denotes the j-th column of K, which is typically smaller than L2.

In analogy to the above calculations, we have

TNG(XN , Y N ) ≤ sup
x

Dx(x, x0)

τ0
+
‖K(XN − x0)‖2

2σ0

≤ log l

τ0
+
L2

2(1− 1
l )

2σ0
.

The optimal choice for τ0 and σ0 is now

τ0 =

√
2 log l

L2
12L

2
2(1− 1

l )
, σ0 =

√
L2

2(1− 1
l )

2L2
12 log l

,

which yields the final estimate

G(XN , Y N ) ≤
L12L2

√
(1− 1

l ) log l

2

TN
.

We also observed that in the entropy setting, we can choose larger step sizes: choosing

L12 = 0.35 · maxj ‖Kj‖2 gave experimentally good results. In Table 4, we report the number

of iterations for Algorithm 4 in the Euclidean and the entropy setting. One can see that in the

entropy setting, the algorithm converges significantly faster. Furthermore, one can see that the

number of iterations which are necessary to reach a primal-dual gap less than ε nicely reflect the

O(1/N2) rate of Algorithm 4. Indeed, reducing ε by a factor of 10 roughly leads to
√

10 ≈ 3.16

more iterations.

Table 4: Computational results of Algorithm 4 applied to the simplex constrained least squares

problem (51).

ε = 10−3 ε = 10−4

k/l Euclidean Entropy Euclidean Entropy

100/100 423 128 1264 396

100/500 645 179 1881 563

100/1000 1008 191 2946 600

500/100 1039 243 3187 726

500/500 1399 329 4276 1026

500/1000 1530 365 4570 1142

1000/100 1752 367 5508 1115

1000/500 2257 459 7079 1425

1000/1000 2418 499 7507 1554
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7.2.2 Ergodic versus nonergodic sequence

We also investigated the performance difference between the ergodic and the nonergodic se-

quences. Figure 2 shows a comparison between the ergodic and the nonergodic sequences for

both the Euclidean and the entropy setup for the simplex constrained least squares problem (51)

using k = 100, l = 1000. While the ergodic sequences both show a O(1/N2) rate, the nonergodic

sequences show a completely different behavior. In the entropy setting, the nonergodic sequence

converges a little bit faster but is seems to be quite unstable. In the Euclidean setting, the

nonergodic sequence converges extremely fast. We do not know the reason for this, but it will be

interesting to find an alternative proof for the convergence rate that does not rely on the ergodic

sequence.
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Figure 2: Comparison between the performance of the ergodic and the nonergodic sequences of

Algorithm 4 applied to the simplex constrained least squares problem (51).

7.3 Elastic net problem

Finally, we consider the elastic net problem which has been extensively used for feature selection

and sparse coding. It is written as the following optimization problem:

min
x
P(x) =

1

2
‖Kx− b‖2 + λ1‖x‖1 +

λ2

2
‖x‖2, (53)
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where K ∈ Rk×l is a matrix where its columns are features and b ∈ Rk is the measurement

vector. For λ2 = 0, the elastic net is equivalent to the well-known LASSO problem. It can be

rewritten as the following saddle-point problem:

min
x

max
y
L(x, y) = 〈Kx, y〉+ λ1‖x‖1 + λ2‖x‖2 −

1

2
‖y‖2 − bT y

Observe that the above problem is λ2-strongly convex in x and 1-strongly convex in y. Hence,

we can make use of the linearly converging Algorithm 5. The dual problem is computed as

max
y
D(y) = − 1

2λ2
‖(|KT y| − λ1)+‖2 − 1

2
‖y‖2 − bT y,

where the expressions |KT y| and (t)+ = max(0, t) are understood element-wise. In turn the

primal-dual gap can be computed as

G(x, y) =

[
1

2
‖Kx− b‖2 + λ1‖x‖1 +

λ2

2
‖x‖2

]
−
[
− 1

2λ2
‖(|KT y| − λ1)+‖2 − 1

2
‖y‖2 − bT y

]
. (54)

In our experiments, we again choose the entries of K and b uniformly and independently in the

interval [−1, 1] and we again denote by L2 = ‖K‖ = smax(K) the largest singular value of K.

We compute the values for τ , σ and θ using the formulas provided in (49) and we choose x0 = 0,

y0 = Kx0 − b. According to (47), after N iterations, we have for all (x, y):

TN (L(XN , y)− L(x, Y N )) ≤ ‖x− x
0‖2

2τ
+
‖y − y0‖2

2σ
.

Taking the supremum on the left hand with respect to (x, y) we find x = (|KTY N | − λ1)+ ·
sgn(−KTY N )/λ2 and y = KXN − b. Substituting back we obtain the final estimate

TNG(XN , Y N ) ≤ ‖(|K
TY N | − λ1)+‖2

2τλ2
2

+
L2

2‖XN‖2

2σ
<∞,

where TN ∼ O(θ−N ) is defined in (46) and τ, σ are chosen according to (49).

For the implementation of the algorithm we need to solve the proximal map with respect to

the mixed `1-`2 norm appearing in the primal problem. The solution is given by:

x̂ = arg min
x
λ1‖x‖1 +

λ2

2
‖x‖2 +

1

2τ
‖x− x̄‖2 ⇔ x̂ =

max(0, |x̄| − τλ1) · sgn(x̄)

1 + τλ2
,

where the operations are understood element-wise.

In Table 5 we evaluate Algorithm 5 for different problem instances of (53). We set λ1 = 1 and

used different values of λ2 in order to study the behavior of the algorithm for different degrees of

convexity. The table reports the number of iterations that were needed to achieve a primal-dual

gap less than the error tolerance ε. One can see that in general, a smaller value of λ2 leads

to a smaller strong convexity parameter of the primal problem and hence the problem appears

more difficult to the algorithm. Thanks to the O(θN ) linear convergence rate of the algorithm,

reducing the required tolerance by a factor of 10 only leads to a small increase of the required

iterations.
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Table 5: Computational results of Algorithm 5 applied to the elastic net problem (53).

ε = 10−3 ε = 10−4

k/l λ2 = 10−2 λ2 = 10−3 λ2 = 10−2 λ2 = 10−3

100/100 445 1405 577 1823

100/500 446 1339 624 1940

100/1000 459 1319 703 2143

500/100 1015 3209 1227 3879

500/500 1189 3759 1486 4697

500/1000 924 2869 1258 3950

1000/100 1421 4494 1696 5363

1000/500 1753 5542 2109 6667

1000/1000 1707 5397 2123 6714

7.3.1 Ergodic versus nonergodic sequence

Finally Figure 3 shows the performance difference between the ergodic sequence and the noner-

godic sequence for the elastic net problem using k = 100, l = 1000, λ1 = 1, and λ2 = 10−3. One

can see that while the performance of the ergodic sequence is again well predicted by the worst

case rate O(θN ), the performance of the nonergodic sequence is again superior.

8 Conclusion

In this work, we have presented refined ergodic convergence rates for a first-order primal-dual

algorithm for composite convex-concave saddle-point problems. Some of the presented proofs

are quite elementary and easily extend to non-linear Bregman distance functions and inertial or

overrelaxed variants of the algorithm. Furthermore, we have given refined ergodic convergence

rates in terms of the primal-dual gap function for accelerated variants of the algorithm. We have

illustrated the theoretical results by applying the algorithms to a number of standard convex

optimization problems including matrix games, simplex constrained least squares problems and

the elastic net selector. The numerical results show a behaviour which corresponds nicely to

the theoretical predictions. We have also observed that in the Euclidean setting, the nonergodic

sequences very often converge much faster than the ergodic sequences. We will investigate this

issue in more detail in our future research. Furthermore, it will be interesting to investigate

strategies to dynamically adjust the step sizes (τn, σn and θn) to the local smoothness of the

problem, which can vary a lot during the optimization (see Remark 10).
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