
HAL Id: hal-01151614
https://hal.science/hal-01151614v1

Submitted on 15 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Implementation of the Simplex Method on a
CPU-GPU System

Mohamed Esseghir Lalami, Vincent Boyer, Didier El Baz

To cite this version:
Mohamed Esseghir Lalami, Vincent Boyer, Didier El Baz. Efficient Implementation of the Simplex
Method on a CPU-GPU System. 2011 IEEE International Parallel & Distributed Processing Sympo-
sium, May 2011, Anchorage, United States. �10.1109/IPDPS.2011.362�. �hal-01151614�

https://hal.science/hal-01151614v1
https://hal.archives-ouvertes.fr

Efficient Implementation of the Simplex Method on a CPU-GPU System

Mohamed Esseghir Lalami, Vincent Boyer, Didier El-Baz
CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France

Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse France
Email: mlalami@laas.fr vboyer@laas.fr elbaz@laas.fr

Abstract—The Simplex algorithm is a well known method to
solve linear programming (LP) problems. In this paper, we pro-
pose a parallel implementation of the Simplex on a CPU-GPU
systems via CUDA. Double precision implementation is used in
order to improve the quality of solutions. Computational tests
have been carried out on randomly generated instances for
non-sparse LP problems. The tests show a maximum speedup
of 12.5 on a GTX 260 board.

Keywords-hybrid computing; GPU computing; parallel com-
puting; CUDA; Simplex method; linear programming.

I. INTRODUCTION

Initially developed for real time and high-definition 3D
graphic applications, Graphics Processing Units (GPUs)
have gained recently attention for High Performance Com-
puting applications. Indeed, the peak computational capa-
bilities of modern GPUs exceeds the one of top-of-the-line
central processing units (CPUs). GPUs are highly parallel,
multithreaded, manycore units.
In November 2006, NVIDIA introduced, Compute Unified
Device Architecture (CUDA), a technology that enables
users to solve many complex problems on their GPU cards
(see for example [1] - [4]).
Some related works have been presented on the parallel
implementation of algorithms on GPU for linear program-
ming (LP) problems. O’Leary and Jung have proposed in
[5] a combined CPU-GPU implementation of the Interior
Point Method for LP; computational results carried out on
NETLIB LP problems [6] for at most 516 variables and
758 constraints, show that some speedup can be obtained
by using GPU for sufficiently large dense problems.
Spampinato and Elster have proposed in [7] a parallel
implementation of the revised Simplex method for LP on
GPU with NVIDIA CUBLAS [8] and NVIDIA LAPACK
[9] libraries. Tests were carried out on randomly generated
LP problems of at most 2000 variables and 2000 constraints.
The implementation showed a maximum speedup of 2.5
on a NVIDIA GTX 280 GPU as compared with sequential
implementation on CPU with Intel Core2 Quad 2.83 GHz.
Bieling, Peschlow and Martini have proposed in [10] an
other implementation of the revised Simplex method on
GPU. This implementation permits one to speed up solution
with a maximum factor of 18 in single precision on a
NVIDIA GeForce 9600 GT GPU card as compared with
GLPK solver run on Intel Core 2 Duo 3GHz CPU. To the

best of our knowledge, these are the available references on
parallel implementations on GPUs of algorithms for LP.
The revised Simplex method is generally more efficient than
the standard Simplex method for large linear programming
problems (see [11] and [12]), but for dense LP problems,
the two approaches are equivalent (see [13] and [14]).
In this paper, we concentrate on the parallel implementation
of the standard Simplex algorithm on CPU-GPU systems
for dense LP problems. Dense linear programming prob-
lems occur in many important domains. In particular, some
decompositions like Benders, Dantzig-Wolfe give rise to full
dense LP problems. Reference is made to [15] and [16] for
applications leading to dense LP problems.
The standard Simplex method is an iterative method that
manipulates independently at each iteration the elements of a
fixed size matrix. The main challenge was to implement this
algorithm in double precision with CUDA C environment
without using existing NVIDIA libraries like CUBLAS
and LAPACK in order to obtain as best speedup as we
can. By identifying the tasks that can be parallelized and
good management of GPUs memories one can obtain good
speedup with regards to sequential implementation.
We have been solving linear programming problems in
the context of the solution of NP-complete combinatorial
optimization problems (see [17]). For example, one has to
solve frequently linear programming problems for bound
computation purpose when one uses branch and bound
algorithms and it may happen that some instances give rise
to dense LP problems. The present work is part of a study on
the parallelization of optimization methods (see also [1]).
The paper is structured as follows. Section II deals with
the Simplex method. The parallel implementation of the
Simplex algorithm on CPU-GPU systems is presented in
Section III. The Section IV is devoted to presentation and
analysis of computational results for randomly generated
instances. Finally, in Section V, we give some conclusions
and perspectives.

II. MATHEMATICAL BACKGROUND ON SIMPLEX
METHOD

Linear programming (LP) problems consist in maximizing
(or minimizing) a linear objective function subject to a set of
linear constraints. More formally, we consider the following

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.362

1998

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.362

1994

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.362

1994

problem :
maxx0 = cx

′
,

s.t : A
′
x

′ ≤ b′ ,
x

′ ≥ 0,

(1)

with
c
′
= (c1, c2, ..., cn) ∈ Rn,

A
′
=

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 ∈ Rm×n,

and
x

′
= (x1, x2, ..., xn)

T ,

n and m are the number of variables and constraints,
respectively.
Inequality constraints can be written as equality constraints
by introducing m new variables xn+l named slack variables,
so that:

al1x1 + al2x2 + ...+ alnxn +xn+l = bl, l ∈ {1, 2, . . . ,m},

with xn+l ≥ 0 and cn+l = 0. Then, the standard form of
linear programming problem can be written as follows:

maxx0 = cx,
s.t : Ax = b,

x ≥ 0,
(2)

with
c = (c

′
, 0, ..., 0) ∈ R(n+m),

A =
(
A

′
, Im

)
∈ Rm×(n+m),

Im is the m × m identity matrix and x =
(x

′
, xn+1, xn+2, . . . , xn+m)T .

In 1947, George Dantzig proposed the Simplex algorithm
for solving linear programming problems (see [11]). The
Simplex algorithm is a pivoting method that proceeds
from a first feasible extreme point solution of a LP
problem to another feasible solution, by using matrix
manipulations, the so-called pivoting operations, in such
a way as to continually increase the objective value.
Different versions of this method have been proposed. In
this paper, we consider the method proposed by Garfinkel
and Nemhauser in [19] which improves the algorithm of
Dantzig by reducing the number of operations and the
memory occupancy.
We suppose that the columns of A are permuted so that
A = (B,N), where B is an m×m nonsingular matrix. B
is so-called basic matrix for the LP problem. We denote by
xB the sub-vector of x of dimension m of basic variables
associated to matrix B and xN the sub-vector of x of

dimension n of nonbasic variables associated to N .
The problem can then be written as follows:[

x0
xB

]
=

[
cBB

−1b
B−1b

]
−
[
cBB

−1N − cN
B−1N

]
xN . (3)

Remark: By setting xN = 0, xB = B−1b and
x0 = cBB

−1b, a feasible basic solution is obtained if
xB ≥ 0.

Simplex tableau

We introduce now the following notations:

•

s0,0
s1,0
...
sm,0

 ≡
[
cBB

−1b
B−1b

]

•

s0,1 s0,2 · · · s0,n
s1,1 s1,2 · · · s1,n
...

...
. . .

...
sm,1 sm,2 · · · sm,n

 ≡
[
cBB

−1N − cN
B−1N

]

Then (3) can be written as follows:
x0
xB1

...
xBm

 =

s0,0
s1,0
...
sm,0

−

s0,1 s0,2 · · · s0,n
s1,1 s1,2 · · · s1,n
...

...
. . .

...
sm,1 sm,2 · · · sm,n

xN . (4)

From (4), we construct the so called Simplex tableau as
shown in Table I.

Table I
SIMPLEX TABLEAU

x0 s0,0 s0,1 s0,2 · · · s0,n
xB1

s1,0 s1,1 s1,2 · · · s1,n
...

...
...

...
. . .

...
xBm sm,0 sm,1 sm,2 · · · sm,n

By adding the slack variables in LP problem (see 2) and
setting N = A

′
, B = Im ⇒ B−1 = Im, a first basic

feasible solution can be written as follows:
xN = x

′
= (0, 0, ..., 0) ∈ Rn and xB = B−1b = b.

At each iteration of the Simplex algorithm, we try to replace
a basic variable, the so-called leaving variable, by a nonbasic
variable, the so-called entering variable, so that the objective
function is increased. Then, a better feasible solution is
yielded by updating the Simplex tableau. More formally,
the Simplex algorithm implements iteratively the following
steps:

• Step 1: Compute the index k of the smallest negative
value of the first line of the Simplex tableau, i.e.

k = arg min
j=1,2,...,n

{s0,j | s0,j < 0}.

199919951995

The variable xk is the entering variable. If no such
index is found, then the current solution is optimal,
else we go to the next step.

• Step 2: Compute the ratio θi,k = si,0/si,k, i =
1, 2, · · · ,m then compute index r as:

r = arg min
i=1,2,··· ,m

{θi,k | si,k > 0}.

The variable xBr
is the leaving variable. If no such

index is found, then the algorithm stops and the
problem is unbounded, else the algorithm continues to
the last step.

• Step 3: Yield a new feasible solution by updating the
previous basis. The variable xBr

will leave the basis
and variable xk will enter into the basis. More formally,
we start by saving the kth column which becomes the
so-called ‘old’ kth column, then the Simplex tableau
is updated as follows:
1 - Divide the rth row by the pivot element sr,k:

sr,j :=
sr,j
sr,k

, j = 0, 1, · · · , n.

2 - Multiply the new rth row by si,k and subtract it
from the ith row, i = 0, 1, · · · ,m, i 6= r:

si,j := si,j − sr,jsi,k, j = 0, 1, · · · , n.

3 - Replace in the Simplex tableau, the old kth column
by its negative divided by sr,k except for the pivot
element sr,k which is replaced by 1/sr,k:

si,k := − si,k
sr,k

, i = 0, 1, · · · ,m , i 6= r,

and

sr,k :=
1

sr,k
.

This step of the Simplex algorithm is the most costly
in terms of processing time.
Then return to the step 1.

The Simplex algorithm finishes in 2 cases:
• when the optimal solution is reached (then the LP

problem is solved).
• when the LP problem is unbounded (then no solution

can be found).
The Simplex algorithm described by Garfinkel and
Nemhauser is interesting in the case of dense LP problems
since the size of the manipulated matrix (Simplex tableau)
is (m+1)× (n+1). This decreases the memory occupancy
and processing time, and permits one to test larger instances.
In the sequel, we present the parallelization of this algorithm
on GPU.

III. SIMPLEX ON CPU-GPU SYSTEM

This section deals with the CPU- GPU implementation
of the Simplex algorithm via CUDA. For that, a brief
description of the GPU architecture is given in the following
paragraph.

A. NVIDIA GPU architecture

Figure 1. Thread and memory hierarchy in GPUs.

NVIDIA’s GPUs are SIMT (single-instruction, multiple-
threads) architectures, i.e. the same instruction is executed
simultaneously on many data elements by the different
threads. They are especially well-suited to address problems
that can be expressed as data-parallel computations.
As shown in Figure 1, a grid represents a set of blocks
where each block contains up to 512 threads. A grid is
launched via a single CUDA program, the so-called kernel.
The execution starts with a host (CPU) execution. When
a kernel function is invoked, the execution is moved to
a device (GPU). When all threads of a kernel complete
their execution, the corresponding grid terminates, the
execution continues on the host until another kernel is
invoked. When a kernel is launched, each multiprocessor
processes one block by executing threads in group of
32 parallel threads named warps. Threads composing a
warp start together at the same program address, they are
nevertheless free to branch and execute independently. As
thread blocks terminate, new blocks are launched on the

200019961996

idle multiprocessors. Threads of different blocks cannot
communicate with each other explicitly but can share their
results by means of a global memory.

Remark: If threads of a warp diverge when executing
a data-dependent conditional branch, then the warp serially
executes each branch path. This leads to poor efficiency.

Threads have access to data from multiple memory
spaces (see Figure 1). We can distinguish two principal
types of memory spaces:

• Read-only memories: the constant memory for constant
data used by the process and texture memory optimized
for 2D spatial locality. These two memories are acces-
sible by all threads.

• Read and write memories: the global memory space
accessible by all threads, the shared memory spaces
accessible only by threads in the same blocks with a
high bandwidth, and finally each thread accesses to his
own registers and private local memory space.

In order to have a maximum bandwidth for the global
memory, memory accesses have to be coalesced. Indeed,
the global memory access by all threads within a half-warp
(a group of 16 threads) is done in one or two transactions
if:

• the size of the words accessed by the threads is 4, 8,
or 16 bytes,

• all 16 words lie:
– in the same 64-byte segment, for words of 4 bytes,
– in the same 128-byte segment, for words of 8

bytes,
– in the same 128-byte segment for the first 8 words

and in the following 128-byte segment for the last
8 words, for words of 16 bytes;

• threads access the words in sequence (the kth thread
in the half-warp accesses the kth word).

Otherwise, a separate memory transaction is issued for each
thread, which degrades significantly the overall processing
time. For further details on the NVIDIA cards architecture
and how to optimize the code, reference is made to [18].

When implementing the Simplex method, most of the
time is spent in pivoting operations. This step involves
(m + 1) × (n + 1) double precision multiplications and
subtractions that can be parallelized on GPU.
The SimplexTableau that is available first on the CPU
must be allocated to the Global Memory of the GPU. This
requires communications between the CPU and the GPU.
The pivoting operations will be carried out by the GPU.
A Simplex tableau of size (m+1)×(n+1) is decomposed

into h× w blocks with :

h = d(m+ 1 + 16)/16e
w = d(n+ 1 + 32)/32e

Figure 2. Allocation on GPU of the Simplex Tableau.

Each block is relative to a sub-matrix with 16 lines and 32
columns; this corresponds to a block of 512 threads (the
maximum number of threads per block). The grid of blocks
covers all the Simplex tableau and each thread is associated
to a given entry of the tableau (see Figure 2).
The main steps of the Simplex algorithm are described in
Figure 3.

B. Computing the entering and leaving variables:

Finding the entering or leaving variables results in finding
a minimum within a set of values. This can be done on
GPU via reduction techniques. However, our experiments
showed that we obtain better performance by doing this
step sequentially on the CPU. Indeed, the size of the tested
problems and the double precision operations lead to worst
efficiency for the parallel approach. More explicitly, finding
a minimum in a row of 10000 values, which corresponds
to the maximal row size treated in our experiments, takes
an average time of 0.27ms on CPU and 3.17ms on GPU
at each step of the Simplex algorithm. Furthermore, the use
of atomic functions of CUDA is not possible in this case
since they do not support double precision operations.
Thus, this step is implemented in CPU and the minimum
index is thereafter communicated to the GPU (see Figure
3).
In step 1 of the Simplex algorithm, the first line of the
Simplex tableau is simply communicated to the CPU.

200119971997

Figure 3. Simplex algorithm on a CPU-GPU system.

However, the step 2 requires the processing of a column
of ratios. This is done in parallel by Kernel 1 and the
ratio column θ is communicated to the CPU. Since step 3
requires the column k, the column of entering variable of
the Simplex tableau, Kernel 1 is also used to get the “old”
Columnk and to store it in the device memory in order to
avoid the case of memory conflict.

Remark: Communication with the CPU use page-
locked host memory in order to have a higher bandwidth
between host memory and device memory.

Kernel 1: The GPU Kernel for processing ratio column θ
and getting the “old” column Columnk of entering index
k.

global void Kernel1(double SimplexTableau[m+1][n+1]
double ∗ θ,
double ∗ Columnk, int k)

{
int idx = blockDim.x ∗ blockIdx.x+ threadIdx.x;
double w = SimplexTableau[idx][k];
/*Copy the weights of entering index k*/
Columnk[idx] = w;
θ[idx] = SimplexTableau[idx][1]/w;
}

Figure 4. Matrix manipulation and memory management in kernel 3.

C. Updating the basis:

In the sequel, we use the standard CUDA notation
whereby x, y denote the column and the row, respectively.
Step 3 is entirely carried out on the GPU. The line of the
Simplex tableau relative to the index of the leaving variable
r is updated as follows by Kernel 2: The thread x of block X
processes the element SimplexTableau[r][x+32×X] with
x = 0, · · · , 31 and X = 0, · · · , w − 1. The pivot element
SimplexTableau[r][k] obtained from the old Columnk[r],
is shared between all threads. It is more beneficial to use
the shared memory which is expected to be much faster
than global memory (see [18]).
According to Figure 2, the remaining part of the Simplex
tableau is updated by the Kernel 3. Indeed, for each block
of dimension 16 × 32, a column of 16 element of leaving
index k is loaded in a shared memory. Then blocks process
the corresponding part of Simplex tableau independently (in
parallel) such as thread (x, y) of the block (X,Y) processes
the element SimplexTableau[y+16×Y][x+32×X] with
x = 0, · · · , 31, y = 0, · · · , 15 and X = 0, · · · , w − 1,
Y = 1, · · · , h− 1 (see Figure 4).
Updating the column k of Simplex tableau requires the old
Columnk and in order to avoid the addition of branching
condition like if(idx == k) return; in Kernel 3, which
results in a divergent branch, we use kernel 4 to update
separately the column k.
Thus, step 3 requires the three following kernels:

200219981998

Kernel 2: The GPU Kernel for processing the line relative
to the index of the leaving variable r.

global void Kernel2(double SimplexTableau[m+1][n+1]
double ∗ Columnk, int k, int r)

{
int idx = blockDim.x ∗ blockIdx.x+ threadIdx.x;
shared double w;

/*Get the pivot element : SimplexTableau[r][k] in the
shared memory */
if(threadIdx.x == 0) w = Columnk[r];
syncthreads();

/*Update the line of leaving index r*/
SimplexTableau[r][idx] = SimplexTableau[r][idx]/w;
}

Kernel 3: The GPU Kernel for Updating the basis.

global void Kernel3(double SimplexTableau[m+1][n+1]
double ∗ Columnk, int k, int r)

{
int idx = blockDim.x ∗ blockIdx.x+ threadIdx.x;
int jdx = blockIdx.y ∗ blockDim.y + threadIdx.y;
shared double w[16];

/*Get the column of entering index k in shared memory */
if(threadIdx.y == 0 && threadIdx.x < 16)
{
w[threadIdx.x] = Columnk[blockIdx.y ∗ blockDim.y+

threadIdx.x];
}
syncthreads();

/*Update the basis except the line r*/
if(jdx == r) return;
SimplexTableau[jdx][idx]=SimplexTableau[jdx][idx]−

w[threadIdx.y] ∗SimplexTableau[r][idx];
}

Kernel 4: The GPU Kernel for processing the column of
entering index k.

global void Kernel4(double SimplexTableau[m+1][n+1]
double ∗ Columnk, int k, int r)

{
int jdx = blockDim.x ∗ blockIdx.x+ threadIdx.x;
shared double w;

/*Get the pivot element : SimplexTableau[r][k] in the
shared memory */
if(threadIdx.x == 0) w = Columnk[r];
syncthreads();

/*Update the column of the entering index k*/
SimplexTableau[jdx][k] = −Columnk[jdx]/w;

/*Update the pivot element SimplexTableau[r][k]*/
if(jdx == r) SimplexTableau[jdx][k]=1/w;
}

IV. COMPUTATIONAL EXPERIMENTS

We present now computational results for CPU-GPU and
CPU implementations of the Simplex algorithm. Experi-
ments have been carried out on a CPU with Intel Xeon 3.0
GHz and a NVIDIA GTX 260 GPU. The GTX 260 has 192
cores and a 1.4 GHz clock frequency.
We have considered randomly generated LP problems where
aij , bi, cj , i ∈ {1, ...,m} and j ∈ {1, ..., n}, are integer vari-
ables that are uniformly distributed over the integer[1, 1000].
We can note that the generated matrix A is a non-sparse
matrix. We have been using double precision in order to
insure a good precision of the solution. Processing times
are given for 10 instances and the resulting speedups have
been computed as follows:

speedup =
processing time on CPU(s.)

processing time on CPU -GPU(s.)
.

We note that processing time on CPU corresponds to the
time obtained with the sequential version of the same
Simplex algorithm implemented on the CPU.
Figure 5 displays processing times for the different sizes of
LP problems and for both sequential and parallel algorithms.

Figure 5. Elapsed time (simplex on CPU and CPU-GPU).

We can see that for each size of LP problem, processing time
dispersion is low. Although processing time increases with
the size of problems (see Table II), the parallel algorithm is
always faster than the sequential algorithm.
Figure 6 shows that speedup increases with the size of
problems. An average speedup of 12.61 has been obtained
for large instances (≥ 3000 × 3000). Large instances, e.g.
6000×6000, 7000×7000 and 8000×8000, leading to speed

200319991999

Table II
PROCESSING TIME OF THE SIMPLEX ALGORITHM (S).

m× n CPU CPU-GPU system
500× 500 1.16 0.44

1000× 1000 29.28 3.37
1500× 1500 184.21 16.21
2000× 2000 524.61 44.30
2500× 2500 1250.51 106.27
3000× 3000 2432.42 196.92
3500× 3500 4301.11 350.00
4000× 4000 7517.75 596.34

Figure 6. Average speedup.

up 12.5 and processing time > 11hours have been tested
without exceeding the memory capacity of the GPU card.
For small size problems e.g. 500 × 500, the speedup is
relatively small (average speedup = 2.66) since the real
power of the GPU is slightly exploited in this case. We
note that parallel implementation of Simplex algorithm on
GPU permits one to solve efficiently larger problems within
small processing time. Finally we note that our experimental
results can hardly be compared with the one in [10] since this
reference deals with the solution of sparse LP problems via
the revised Simplex method and computations are performed
in single precision in [10].

V. CONCLUSION AND FUTURE WORK

In this article we have proposed a parallel implementation
of the Simplex method for solving linear programming
problems on CPU-GPU system with CUDA. The parallel
implementation has been performed by optimizing the
different steps of the Simplex algorithm. Computational
results show that our implementation in double precision
on CPU-GPU system is efficient since for large non-sparse
linear programming problems, we have obtained stable
speedups around 12.5. Our approach permits one also to
solve problems of size 8000 × 8000 without exceeding the
memory capacity of the GPU.

In future work, we plan to test larger LP problems on
multi GPU architecture. We plan also to implement the
revised Simplex algorithm on GPU without using CUBLAS
or LAPACK libraries in order to go on further in the
optimization of the parallel implementation.

ACKNOWLEDGMENT

Dr Didier El Baz thanks NVIDIA for support through
Academic Partnership.

REFERENCES

[1] V. Boyer, D. El Baz, M. Elkihel, “Dense dynamic programming
on multi GPU,” in Proc. of the 19th International Conference
on Parallel Distributed and networked-based Processing, PDP
2011, Ayia Napa, Cyprus, 545–551, February 2011.

[2] E. B. Ford, “Parallel algorithm for solving Keplers equation on
graphics processing units: application to analysis of Doppler
exoplanet searches,” New Astronomy, 14:406-412, 2009.

[3] Y. Zhang, J. Cohen, J. D. Owens, “Fast tridiagonal solvers on
the GPU,” in Proc. of the 15th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, (PPoPP
2010):127–136, Bangalore, India, January 2010.

[4] V. Vineet, P. J. Narayanan, “CUDA cuts: fast graph cuts on
the GPU,” in Workshop on Visual Computer Vision on GPU’s,
2008.

[5] D. P. O’Leary, J. H. Jung, “Implementing an interior point
method for linear programs on a CPU-GPU system,” Electronic
Transactions on Numerical Analysis, 28:879–899, May 2008.

[6] NETLIB, http://www.netlib.org/

[7] D. G. Spampinato, A. C. Elster, “Linear optimization on mod-
ern GPUs,” in Proc. of the 23rd IEEE International Parallel
and Distributed Processing Symposium, (IPDPS 2009), Rome,
Italy, May 2009.

[8] CUDA - CUBLAS Library 2.0, NVIDIA Corporation,

[9] LAPACK Library, http://www.culatools.com/

[10] J. Bieling, P. Peschlow, P. Martini, “An efficient GPU im-
plementation of the revised Simplex method,” in Proc. of the
24th IEEE International Parallel and Distributed Processing
Symposium, (IPDPS 2010), Atlanta, USA, April 2010.

[11] G. B. Dantzig, Linear Programming and Extensions, Prince-
ton University Press and the RAND Corporation, 1963.

[12] G. B. Dantzig, M. N. Thapa, Linear Programming 2: Theory
and Extensions, Springer-Verlag, 2003.

[13] S. S. Morgan, A Comparison of Simplex Method Algorithms,
Master’s thesis, Univ. of Florida, Jan. 1997.

[14] G. Yarmish, “The simplex method applied to wavelet decom-
position,” in Proc. of the International Conference on Applied
Mathematics, Dallas, USA, 226–228, November 2006.

200420002000

[15] J. Eckstein, I. Bodurglu, L. Polymenakos, and D. Goldfarb,
“Data-Parallel Implementations of Dense Simplex Methods on
the Connection Machine CM-2,” ORSA Journal on Comput-
ing,vol. 7,4:434–449, 2010.

[16] S. P. Bradley, U. M. Fayyad, and O. L. Mangasarian, “Math-
ematical Programming for Data Mining: Formulations and
Challenges,” INFORMS Journal on Computing, vol. 11,3:217–
238, 1999.

[17] V. Boyer, D. El Baz, M. Elkihel, “Solution of multidi-
mensional knapsack problems via cooperation of dynamic
programming and branch and bound,” European J. Industrial
Engineering, 4,4:434–449, 2010.

[18] NVIDIA, Cuda 2.0 programming guide, http:// devel-
oper.download.nvidia.com/compute/cuda/2 0/docs/NVIDIA
CUDA Programming Guide 2.0.pdf (2009)

[19] R. S. Garfinkel, D. L. Nemhauser, Integer Programming,
Wiley-Interscience, 1972.

200520012001

