
HAL Id: hal-01151594
https://hal.science/hal-01151594v1

Submitted on 13 May 2015 (v1), last revised 15 May 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

About Probabilistic Event-B
Mohamed Amine Aouadhi, Benoit Delahaye, Arnaud Lanoix

To cite this version:
Mohamed Amine Aouadhi, Benoit Delahaye, Arnaud Lanoix. About Probabilistic Event-B. [Research
Report] LINA-University of Nantes. 2015. �hal-01151594v1�

https://hal.science/hal-01151594v1
https://hal.archives-ouvertes.fr

About Probabilistic Event-B
Aouadhi Mohamed Amine, Delahaye Benoît, Lanoix Arnaud

May 13, 2015

1 Introduction
We present in this document our investigation in the probabilistic version of Event-B. We will present
the reasons for expressing a such formalism and the modifications of the standard proof obligations or
the new proof obligations that can be generated for this Event-B version. After that, we will study the
case of refinement of a probabilistic Event-B model by another probabilistic Event-B model and express
the related new proof obligations.

2 Related Work
Many formal methods were developped for the design of complex software-intensive systems including
the Event-B method that was proposed as an extension of the B method to model parallel, distributed
and reactive systems. However, the latter systems exhibit sometimes a probabilistic behaviour and are
more appropriately modelled probabilistically. Then, many works have discussed the extension of the
semantics of Event-B to ensure the expression of probabilistic information in the systems models. Earlier
works have also focused in the same extension on the ancestor of the eventB method: the B method.
A first step allowing probabilistic programs to be written and reasonned within B was treated by Thai
Son Hoang and al is described in [21]. A study about the refinement of probabilistic program in B
was conducted by the same author, the work is described in [19]. The overall works about extending B
with probabilistic meaning are presented in [20]. All the research works undertaken to extend Event-B
of probabilistic semantics follows the earlier work in B, by transporting ideas from B to Event-B, the
purpose of these works is to describe probabilistic systems in Event-B. For probabilistic systems, some
problems can only be described in terms of numerical measures such reliability problems, performance
problems or dependability problems. In the other side, there are many probabilistic models where the
exact numerical measures are not of importance when it come to problems like modelling communication
protocols or human behaviours, the most important for these problems is to guarantee the termination
of these systems. This arises two kind of propositions for the probabilistic Event-B semantics: the qual-
itative probabilistic operator [15] and the quantitative probabilistic operator [36, 38, 37] , we describe
each one below. We state that the two propositions for the probabilistic extension does not depart from
the original structure of Event-B machines but they introduce the probabilistic choice as a replacement
for non-deterministic choices, specifically for these works in the place of non-deterministic assignements.
A non-deterministic choice in Event-B can occurs in three places:

• choice between different events,

• choice of local variables of events,

• nondeterministic assignements.

The propositions of a probabilistic Event-B reclaims also some requirements:

• the probabilistic event-B must be simple, i.e easy to understand,

1

• it should be useful, i.e solve a commonly encountered class of problems,

• it should permit efficient tool support.

We explicit below the two propositions of a probabilistic event-B:

2.1 Qualitative probabilistic Event-B
Hallerstede and al propose a variant of expressing probabilistic properties in Event-B [15]. In fact, the
standard Event-B is based on demonic non-determinism which is not sufficient for modelling some systems
that their behaviours are more appropriately modelled probabilistically. In this work, authors restrict
their attention on a qualitative aspect of probability, they do not specify the exact numerical measures
of probability, but they specify that a non-deterministic choice in the standard Event-B is replaced by
a probabilistic choice according to some unknown positive probability. Specifically, they specify that a
non-determinism assignement in an action of an event can be replaced by a probabilistic assignement.
The purpose of this kind of reasonning is to provide the concept of almost-certain convergence in Event-
B like the same reasonning introduced in B. The qualitative probabilistic reasonning is introduced into
Event-B by means of the qualitative probabilistic operator choice introduced in B described by:

S ⊕ T
S or T are chosen according to some positive probability, specially, in the case of assignement, it’s
presented as follows:

x:= a ⊕ b
A variable x take as a value a or b according to some positive unknown probability. The authos have
made some modifications to the proof obligations related to termination, more precisely for the VAR
proof obligation mentionning that the invariant is decreased by each new event introduced in refinement.
In fact, when introducing a new event, and when the action of this event is non-probabilistic, this action
must decrease the variant. Suppose we have two events ea and ec, where ea is the abstract event and
ec is an event introduced during the refinement of the abstract machine, the invariant is denoted I(v)
and the gluing invariant is denoted J(v, w).

ea = any t where G(t, v) then S(t, v)
end,
ec = any u where H(u,w) then T (u,w)
end

The proof obligation for progress (VAR) is as follows:
I(v)
J(v, w)
H(u,w)
`
(∀ w′. T (u, v, w′) =⇒ V (w′)<V (w))

The authors specifies that a probabilistic action behaves identically to a nondeterministic action, i.e
demonically and it behaves angelically when it come respect to the progress constraint. A probabilistic
action follows from the angelical interpretation from a non-deterministic action and it may decrease the
variant, so the proof obligation is modified as bellow:

I(v)
J(v, w)
H(u,w)
`
(∃ w′. T (u, v, w′) =⇒ V (w′) < V (w))

The work described in [15] has been improved by E Yilmaz in [41]. In fact, the preservation of
qualitative reasonning during refinement was not treated in this work, so that, E. Yilmaz and al describes
how to maintain qualitative probabilistic reasonning during refinement. In addition, they propose a tool
support for this kind of reasonning in Event-B: they extend the Rodin platform to support proving
almost-certain ter- mination in probabilistic Event-B by the development of a dedicated plugin.

2

2.2 Quantitative probabilistic Event-B
Event-B offers a scalable approach ensuring that a detailed specification of a system adheres to its
abstract counterpart, i.e, it guarantees that a system is functionally correct. However, it’s not sufficient to
guarantee that a system is functionally correct but also it must satisfies a number of non-functional critical
properties. Usually such properties are defined probabilistically, we mention for example properties like
reliability (the probability that a system can perform a required function under given conditions over
a given period of time) and responsiveness (the probability of the system to complete execution of a
requested service within a given time bound). These properties are defined like quantitative stochastic
measures, to enablle this kind of reasonning in Event-B, Many works [36, 38, 37] have extended Event-
B by adding a quantitative probabilistic choice operator denoted ⊕ |, which allows us to represent a
precise probabilistic information about how a choice can be made, i.e, this choice is made with a known
probability p. All the works specify that this operator is only used in the assignement, we present below
it’s syntax:

x ⊕| x1@p1; ...xn@pn, where ∀i ∈ 1..n . 0 < pi ≤ 1 and
∑i=n
i=0 pi =1

It assigns to x a new value xi with a probability pi, like the qualitative probabilistic operator, this
operator is introduced to replace a non-deterministic assignement x:∈ { xi,..,xn } where x take a value
between x1 and xn randomly.

3 Event-B Abstract machine
3.1 Event-B Basic Notations
Event-B [2] is a formal method used for the development of complex systems and presented like an
evolution of the standard classical B [3], the both was developed by Jean Raymond Abrial1. Systems are
described in Event-B by means of models. Formally, an Event-B model is expressed by M=(X, Init,
Inv, Evts) where:

• X: the set of variables of our model,

• Init: the initialization event,

• Inv: the invariant of our model,

• Evts: the set of events of our model.

An event in an Event-B model can be expressed in one of the forms presented below:

1. ea = any t where G(t, v) then S(t, v) end : t represents a parameter of the event, G(t, v) the
guard and S(t, v) the action. This is the general form of an event in Event-B, it is enabled only if
the guard G(t, v) is fufilled.

2. ea = when G(v) then S(v) end : when an event does not have a parameter t, then the guard
G(v) and the action S(v) are independent from the parameter.

3. ea = begin S(v) end : when the event does not contain any parameter or guard. This is the
simplest form of an event, the initialization event is expressed in this form.

The action of an event may contain different assignments that are executed in parallel. An assignement
can be expressed in one of the following form:

1Jean Raymond Abrial is an independent consultant and a research visitor at many academic and research units, he is
the inventor of the Z method, the B method and the Event-B method.

3

1. x:= E(t, v): a deterministic assignment, x represents some variables of our system, E(t, v) some
expressions.

2. x:∈ E(t, v) : a non-deterministic assignment, x represents a variable of our system, E(t, v) some
expressions, x take a value non-deterministically from the set of expressions E(t, v) .

3. x:| Q(t, v, x′) : a non-deterministic assignment, x represents a variable or our system, Q(t, v, x′)
represent a predicate. In this case, x take a new value x′ such that the predicate Q(t, v, x′) must
be satisfied.

When the action of an event contain some assignments of the form 2 or 3 presented above, the action
of the corresponding event is denoted by Snd(t, v). If all the assignments of an action are in the form 1
presented above, then the action is denoted by Sd(t, v).
The effect of each assignment can be described by means of a before-after predicate (BA) that describe
the relationship between the values of the variables of the system just before an assignment has occured
(represented by the variable name x) and the values of the variables of our system just after the occurence
of the assignment (represented by the variable name x′). A before-after predicate can be represented by:

• If the assignment is in the form 1 presented previously, then BA(x := E(t, v)) ∼= x′ = E(t, v).

• If the assignment is in the form 2 presented previously, then BA(x :∈ E(t, v)) ∼= x′ ∈ E(t, v).

• If the assignment is in the form 3 presented previously, then BA(x :| Q(t, v, x′)) = Q(t, v, x′).

3.2 Proof Obligations specific to Event-B abstract machines
In Event-B modelling, proof obligations, [2, Ch5] serve to verify certain properties of a model. Let evt be
an abstract event with an invariant inv(c, v) (c represent the constants of our model and v the variables).
The guard of this event is G(t, v) while the action is expressed by means of the before-after predicate (v
:| BA(c, v, t, v′)):

evt
any
t
where
G(c, v, t)
then
v :| BA(c, v, t, v′)
end

3.2.1 Invariant preservation proof obligation rule

This proof ensures that each event in the machine preserves the different invariants. For an event evt,
this proof obligation is named: ”evt/inv/INV ”
Consider the abstract event evt, the standard form of the invariant preservation proof obligation rule is
presented below:

Axioms and theorems
Invariants and theorems
Guards of the event
Before-after predicate of the event
`
Modified specific invariant

A(c)
I(c, v)
G(c, v, t)
BA(c, v, t, v′)
`
inv(c, v′)

4

3.2.2 Feasability proof obligation rule: FIS

This proof aims to ensure that a non-deterministic action is feasible. Suppose that the action of the
event evt presented above is non-deterministic. If the action name is act then the name of this proof
obligation is ”evt/act/FIS”. This proof obligation is presented below:

Axioms and theorems
Invariants and theorems
Guards of the event
`
∃ v’. before-after predicate

A(c)
I(c, v)
G(c, v, t)
`
∃ v′. BA(c, v, t, v′)

3.2.3 Deadlock freedom rule

This rule ensures that an Event-B model is deadlock free, given a model with constants c, set of axioms
A(c), variables v and set of invariants inv(c, v), this proof obligation consists in proving that one of the
guards G1(c, v), ..., Gn(c, v) of the different events is always true. We present below the form of this
proof:

Axioms
Invariants
`
Disjunction of the guards

A(c)
I(c, v)
`
G1(c, v) ∨ ... ∨Gn(c, v)

3.3 Termination in Event-B
Termination is a crucial aspect in Event-B development, it means that a chosen set of new events intro-
duced during refinement are enabled only a finite number of time before an event that is not marked as
terminating occurs. In Event-B, the type of an event fixes its type and the proof obligations derived for
it. These proof obligations are related to the concept of termination. To support proof for termination,
a variant is proposed and all the proof obligations specific to termination act over this variant. There
are three types of events in the standard Event-B:

• Ordinary: an event is ordinary if it occurs arbitrary often and does not put any restriction upon
the variant.

• Convergent: Convergent events are considered internal and must not be executed forever, an
event is said to be convergent if it must decrease the variant every time it occurs.

• Anticipated: Anticipated events are those which will take on their roles in later refinement steps
and they might be convergent in these steps. An event is said to be anticipated if it must not
decrease the variant.

Each new event introduced during refinement must be either convergent or anticipated. To prove ter-
mination in the standard Event-B, we must prove that each convergent event must decrease the variant
and this latter has a lower bound. If the model contains only anticipated events, we create simply a
default constant variant that must not be increased by each event. Each anticipated event is refined by
only an anticipated or a convergent event, the proof of termination is delayed for the stage when all the
anticipated events are refined by convergent events.

3.3.1 Proof obligations specific to termination

Let m be an Event-B machine containing two events: evt1 a convergent event and evt2 an anticipated
event.

5

machine
m
refines
...
sees
...
variables
v
Invariant
I(c, v)
theorems
...
events
evt1, evt2
variant
n(c, v)
end

evt1
status
convergent
any
t
where
G(c, v, t)
then
v:| BA(c, v, x, v′)
end

evt2
status
anticipated
any
x
where
G(c, v, x)
then
v:| BA(c, v, x, v′)
end

We present below the proof obligations for proving termination:

The numeric variant proof obligation rule: NAT This rule ensures that under the guards of
each convergent or anticipated event, a proposed numeric variant is indeed a natural number. For a
convergent (or anticipated) event evt, the name of this rule is ”evt/NAT”.

The NAT proof obligation is as follows:

Axioms and theorems
Invariant and theorems
Event guards
`
A numeric variant is a natural number

A(c)
I(c, v)
G(c, v, x)
`
n(c, v) ∈ N

The finite set variant proof obligation rule: FIN This rule ensures that under the guards of
each convergent or anticipated event, a proposed set variant must be a finite set. For a convergent (or
anticipated) event evt, the name of this rule is ”evt/FIN”. The FIN proof obligation is as follows:

Axioms and theorems
Invariants and theorems
Event guards
`
Finiteness of set variant

A(c)
I(c, v)
G(c, v, t)
`
finite(t(s, c, v))

The variant proof obligation rule: VAR This rule ensures that each convergent event must de-
crease the variant, it ensures also that each anticipated event does not increase the variant. Let evt be
an event, the name of the rule is ”evt/V AR”. Given the convergent event evt1 presented above, if the
variant n(c, v) is numeric, then the proof obligation is as follows:

Axioms and theorems
Invariants and theorems
Guards of the event
Before-after predicate of the event
`
Modified variant smaller than variant

A(c)
I(c, v)
G(c, v, x)
BA(c, v, x, v′)
`
n(c, v′) < n(c, v)

If the variant t(c, v) is a finite set, then the proof obligation rule is as follows:

6

Axioms and theorems
Invariants and theorems
Guards of the event
Before-after predicate of the event
`
Modified variant strictly included in variant

A(c)
I(c, v)
G(c, v, x)
BA(c, v, t, v′)
`
t(c, v′) ⊂ t(c, v)

Given the anticipated event evt2, if the variant n(c, v) is numeric, then the proof obligation rule is as
follows:

Axioms and theorems
Invariants and theorems
Guards of the event
Before-after predicate of the event
`
Modified variant not greater than variant

A(c)
I(c, v)
G(c, v, x)
BA(c, v, x, v′)
`
n(c, v′) ≤ n(c, v)

If the variant t(c, v) is a finite set, then the proof obligation is as follows:

Axioms and theorems
Invariants and theorems
Guards of the event
Before-after predicate of the event
`
Modified variant in or equal to variant

A(c)
I(c, v)
G(c, v, x)
BA(c, v, x, v′)
`
t(c, v′) ⊆ t(c, v)

3.4 Refinement in Event-B
Many research works have focused in the development of the theory of refinement inducing a growing
body of experience and literature around this thematic [9, 8, 27, 39, 16, 14, 13]. It appears from the
literature that refinement is used in two related concepts in computer science, the first one considers
refinement as a top-down program development methodolgy when the system is firstly described by an
abstract specification and progressively refined by other specifications. Each abstract specification will be
more detailed and new specifications can be introduced during refinement. The second concept concerns
the preservation of correctness between abstract and refined specifications. The process of modelling
systems in Event-B is based in the theory of refinement, Event-B is a state based methodology like Z
[40], ASM [34], LOTOS [33] and Action Systems [10] where the system is described by a set of "states
plus events", the state space describes the variables of the system where the events describes the dynamic
part of a system (the actions performed on those variables), and then, refinement permit either a fine
description of the state space and the events or the introduction of extra details to the state space (data
refinement [17, 14]) or the introduction of new events. For the refinement of events in Event-B, three
properties must be satisfied:

• Consistency: The effect of the concrete event corresponds to an effect that is allowed by the abstract
event in a corresponding state.

• Restricted Consistency: In states where the abstract event is enabled in a corresponding state, the
effect of the concrete event corresponds to an effect that is allowed by the abstract event in such a
state.

• Enabledness: When events can be invoked in the abstract state, they can be invoked in the corre-
sponding concrete state as well.

Then, starting from a system described by an abstract model, Event-B refinement allows the building
of complex systems by the introduction of more details in every step, the three properties mentioned
above involve that a crucial aspect in the Event-B refinement is the maintain of correctness between the

7

abstract and the concrete model, i.e, the behaviour of the concrete model must be compatible with the
behaviour of the abstract one. This constraint is verified and maintained by some proofs obligations
dedicated to refinement.

3.4.1 Proof obligations specific to refinement

We present below the proof obligations specific to refinement:

The guard merging proof obligation rule: MRG This proof obligation ensures that the guard
of a concrete event merging two abstract events is stronger than the disjunction of the guards of the
abstract events. For a merging event evt, the name of the rule is ”evt/MRG”. Let evt01 and evt02 be
two abstract events with the same parameters and the same action and let evt be the concrete merging
event:

evt01
any
t
where
G1(c, v, t)
then
S1
end
evt02
any
t
where
G2(c, v, t)
then
S2
end

evt
refines
evt01
evt02
any
y
where
H(c, v, y)
then
T
end

The standard proof obligation is:

Axioms and theorems
Abstract invariants and theorems
Concrete event guards
`
Disjunction of abstract guards

A(c)
I(c, v)
H(c, v, y)
`
G1(c,v,t) ∨ G2(c,v,t)

Guard strengthening proof obligation rule: GRD The purpose of this rule is to ensure that
the concrete guards in a concrete event are stronger than the abstract ones in the abstract event. This
ensures that when a concrete event is enabled, so its corresponding abstract one is enabled too. Let an
abstract event evt0, the name of this proof obligation is: ”evt0/grd/GRD”. Let evt the refinement of
evt0, we present below the two events:

evt0
any
t
where
g(c, v, t)

then
...
end

evt
refines
evt0
any
y
where
H(y, c, w)
with
...
t : W (t, c, w, y)
then
...
end

8

We notice the witness predicate W (t, c, w, y) which is due to the fact that the abstract parameter t
is no more used in the concrete event and is replaced by the concrete parameter y. The proof obligation
rule is the following:

Axioms and theorems
Abstract invariants and theorems
Concrete invariants and theorems
Concrete event guards
Witness predicates for variables
`
Abstract event specific guard

A(c)
I(c, v)
J(c, v, w)
H(y, c, w)
W (t, c, w, y)
`
g(c, v, t)

Simulation proof obligation The purpose of this proof is to ensure that each action in an abstract
event is correctly simulated in the corresponding refinement. This ensure that when a concrete event is
"executed", what it does is not contradictory with what the corresponding abstract event does. For a
concrete event evt, the name of this proof obligation is ”evt/act/SIM”. Let evt0 be an event and evt
be its refinement:

evt0
any
x
where
G(c, v, x)
then
v :| BA1(c, v, x, v′)
end

evt
refines
evt0
any
y
where
H(y, c, w)
with
x : W1(x, c, w, y, w′)
v′ : W2(v′, c, w, y, w′)
then
w:| BA2(c, w, y, w′)
end

The proof obligation is as follows:

Axioms and theorems
Abstract invariants and theorems
Concrete invariants and theorems
Concrete event guards
witness predicates for parameters
witness predicates for variables
Concrete before-after predicate
`
Abstract before-after predicate

A(c)
I(c, v)
J(c, v, w)
H(y, c, w)
W1(x, c, w, y, w′)
W2(v′, c, w, y, w′)
BA2(c, w, y, w′)
`
BA1(c, v, x, v′)

4 Probabilistic Event-B: Syntax
We propose a new version of the standard Event-B entitled "Probabilistic Event-B". In this version, all
the non-deterministic choices in an Event-B model are replaced by probabilistic choices. In the standard
Event-B, a non-deterministic choice can appear in:

1. When many events are enabled in the same time, only one of these events is chosen non-deterministically
to be executed.

2. When an event contains a parameter, the value taken by this parameter is chosen non-deterministically
from the set of values such that for each value in this set, the guard of the event is fulfilled.

3. The last case is when the action of an event contains non-deterministic assignments.

9

4.1 Replacing non-deterministic choice with probabilities
In the proposed version of Event-B, we resolve the non-deterministic choice of the event to be executed
in the case when many events are enabled in the same time by modifying the structure of an event in
the standard Event-B such that each event will occur with a precise positive weight. In the case also
when the event has a parameter t, we replace the non-deterministic choice of the value taken by the
parameter by an uniform choice of this value from the subset of values in such a way that the guard of
the parameter will be satisfied. Lastly, when the action of the event contains some non-deterministic
assignments, we propose also a new probabilistic assignment to resolve the non-deterministic choice of
the assignment to be executed. We present in what follows the different cases of non-deterministic choices
and its corresponding probabilistic version.

Case 1: Annotating events with weights.
To resolve the non-deterministic choice between some enabled events, we annotate all the events by a
positive weight. In the standard Event-B, the general form of an event is:

ea = any t where G(t, v) then Sd(t, v) end

We suppose that the action of the event is deterministic, it is noted by Sd. The corresponding form of
this event in our new probabilistic version of Event-B will be:

ea = weight w any t where G(t, v) then Sd(t, v) end

The weight of a probabilistic event must be strictly greater than 0, we have not yet specified the exact
word in the syntax of the new proposition of Event-B to express the weight of an event, we mentioned
above the word weight but it is not yet confirmed. For each probabilistic event ea, we denote by W (ea)
the weight of occurence of ea.

Case 2: Some events contain a probabilistic choice of the value of the parameter.
We suppose that the parameter of an event take this value from a finite set T , the form of the event in
the standard Event-B is:

ea = begin any t where t ∈ T ∧ G(t, v) then Sd(t, v) end.

The parameter t take its value non-deterministically from the set T in such a way the guard G(t, v) must
be fulfilled. In our new version of Event-B, the value taken by the parameter t of the event is chosen
in an uniform manner from the set T . This latter must be a finite set ({t1, t2..., tn}). Specifically, this
value is chosen from a subset T ′v = {tm..., tk}1≤m≤n,1≤k≤n such that for each value t′ of the parameter
in T ′v, we have G(t = t′, v) |= true. Then we note this subset of value of parameters by T ′v= {t ∈
T\G(t, v) |= true}, the different values of the parameter in T ′v depends also in the valuation of the
different variables of our model when the guard is evaluated. We associate a probability function PT
such that for each value tz ∈ T , PT (t = tz) = PT (tz) = 1

card(T) . It’s also the case for the subset T ′v where
PT ′

v
(t = tz) = PTv′ (tz) = 1

card(T ′
v) .

Case 3: The action of the event is non-deterministic.
In the case where the action of the event is non-deterministic like presented below:

ea = any t where t ∈ T ∧ G(t, v) then Snd(t, v) end

We denote a non-deterministic action by Snd(t, v), its full syntax is presented below:

x1 :∈ {E11(t, v), E12(t, v), ..., E1m1(t, v)} (S1(t, v))
|| x2 :∈ {E21(t, v), E22(t, v), ..., E2m2(t, v)} (S2(t, v))

...
|| xk :∈ {Ek1(t, v), Ek2(t, v), ..., Ekmk

(t, v)} (Sn(t, v))

10

The action of the event ea assigns to each variable xi of our model an expression Eij (1 ≤ j ≤ mi) that is
chosen non-deterministically from a finite set of expression {Ei1(t, v), Ei2(t, v), ..., Eim1(t, v)}. mi repre-
sents the number of expressions that can be assigned to the variable xi. We propose a new probabilistic
action Sp(t, v). The syntax of this action is presented below:

x1 := E11(t, v)⊕@p11 ...E1m1(t, v)⊕@p1m1
(S1(t, v))

|| x2 := E21(t, v)⊕@p21 ...E2m2(t, v)⊕@p2m2
(S2(t, v))

...
|| xk := Ek1(t, v)⊕@pk1...Ekmk

(t, v)⊕@pkmk
(Sn(t, v))

For each variable xi of our model (1 ≤ i ≤ k), there is a positive number (mi) of expressions Ei,j
(1 ≤ j ≤ mi) that can be assigned to xi each one with probability pij (1 ≤ j ≤ mi ∧ 0 ≤ pij ≤ 1). For
each xi, we have

∑mi

j=0 pij = 1. The syntax of the new probabilistic event then will be:

ea = begin weight w any t where t ∈ T ∧ G(t, v) then Sp(t, v) end.

4.2 Proof obligations related to the new proposition
We investigate in this part the modifications that can be done in the standard proof obligations, we
express also some new proof obligations related to the new kind of events presented above.

In the following, we use the following notations. If the action of an event ea is probabilistic, then
we denote by < ea/Eij > the fact that the action of the event ea will assign the expression Eij to the
variable xi, we denote also by Pxi(< ea/Eij >) the probability that the expression Eij will be assigned
to the variable xi. If the action of the event is deterministic, then Pxi

(< ea/Eij >) is equal to 1. We
denote also by < ea/E1j1 ;E2j2 ; ...;Ekjk

> the fact that the action of the event ea will assign to each of
the variables of our model (x1, ..., xk) respectively the expressions (E1j1 ;E2j2 ; ...;Ekjk

). We denote by
γ = {j1, j2, ..., jk} the combination of expressions that will be assigned to the variables (x1, ..., xk) such
that γ(i)= ji ∀ 1 ≤ i ≤ k. The probability of this assignement is:

P (ea/γ) =
k∏
i=1

Pxi
(< ea/Eiji

>)

If the action of the event ea is deterministic (Sd instead of Sp), then:

P (ea/γ) =
k∏
i=1

Pxi(< ea/Eiji >) = 1

For the new kind of events presented in Section 4.1, the standard proof obligations have the same
form except that for the proof obligations related to termination, we add three new types of events:

• Ordinary probabilistic: this kind of event is like an ordinary event but it occurs with a positive
weight, it does not put any restriction upon the variant.

• Convergent probabilistic: this kind of event is like a convergent event but likewise, it occurs
with a positive weight, it must decrease the variant each time it’s executed.

• Anticipated probabilistic: this kind of event is like an anticipated event except that it occurs
with a positive weight, each time it’s executed, it must not increase the variant.

The proof obligations related to termination keep the same form as standard events. We now introduce
our new proof obligations.

11

4.2.1 The weight of a probabilistic event must be greater than 0

This proof aims to ensure that the weight of a probabilistic event must be strictly greater than 0. Let
evt be a probabilistic event like presented below:

evt
weight
w
any
t ∈ T
where
G(c, v, t)
then
Sp(c, v, t)
end

The new proof obligation for this event is:

`
The weight of occurence of the
event is strictly greater than 0.

`
w>0

4.2.2 Finiteness of the set of values of the parameter of an event

Another proof obligation that is derived for our probabilistic event mention that the set T of values that
can be taken by the parameter must be finite:

`
The set of values taken by the
parameter must be finite.

`
finite(T)

4.2.3 Finiteness of the set of expressions that can be assigned to a variable

The last new proof obligation concerns the probabilistic action (Sp(t, v)) of the probabilistic event:

x1 := E11(t, v)⊕p11 ...⊕p1m1
E1m1(t, v) (S1(t, v))

x2 := E21(t, v)⊕p21 ...⊕p2m2
E2m2(t, v) (S2(t, v))

...
xk := Ek1(t, v)⊕

pk1 ...⊕pkmk
Ekmk

(t, v) (Sn(t, v))

Like mentionned in the previous section, each variable xi of our model (1 ≤ i ≤ k) can take one of the
expressions Eij ((1 ≤ j ≤ mi) each one with a probability pij . This proof ensure that the sum of the
probabilities of the expressions that can be assigned to each variable xi must be equal to one:

∀xi, 1 ≤ i ≤ k,
mi∑
j=0

pij = 1

Then for the event presented above, we have:

`
∀xi,

∑mi

j=0 Pxi
(< evt/Eij >) = 1

5 Probabilistic Event-B: Semantics
We present in this section the semantics of a probabilistic Event-B model.

12

5.1 Background
We give in the following some basic definitions:

Definition 1 (Probabilistic Event-B model)
A probabilistic Event-B model is a tuple M=(X, Init, Inv, Evts) where:

• X = (x1, x2...., xk) : the variables of the Event-B model, these variables take their values from the
set D = D1 ×D2 ××Dk and must satisfy the invariant Inv.

• Init: the initialization event,

• Inv: the invariant of our model that must be satisfied by the different valuations of the variables
of our model.

• Evts: the events of our model, each event occurs with a positive weight w. Each event occurs if
its guard is enabled, we denote the guard of each event ea in our model by grd(ea). We denote by
α(M) the set of event names in M (suppose M contains two events named respectively ea1 and
ea2, then α(M)={ea1, ea2}). The general form of an event in Evts is:

ea = weight w any t where t ∈ T ∧G(t, v) then Sp(t, v) end

An event can be written in one of the following forms:

1. the intialization event:

ea1= weight w Sd(v) end

2. when the event does not have a parameter and its action is deterministic:

ea2 = weight w when G(v) then Sd(v) end

3. when the event does not have a parameter and its action is probabilistic:

ea3 = weight w when G(v) then Sp(v) end

4. when the event has a parameter and its action is deterministic:

ea4 = weight w any t where t ∈ T ∧G(t, v) then Sd(t, v) end

Definition 2 (discrete-time Markov chain)
We define (discrete-time) Markov chain as a tupleM=(S, P , s0, AP , L, Acts) where:

• S is a countable, nonempty set of states,

• Acts is a set of actions ,

• P: S × Acts × S → [0,1] is the transition probability function such that for all states s:

∑
s′∈S,a∈Acts P (s, a, s′) = 1

• s0 : the initial state,

• AP is a set of atomic propositions and L: S → 2AP a labeling function.

Definition 3 (Semantics of a Probabilistic Event-B model)
We generate from the Event-B model M presented above a discrete time markov chain [[M]]= (S, P ,
linit, AP , L, Acts) where:

13

• S the set of states of the Markov chain, they are formed accordingly to the different valuations
of the variables of the model M , the semantic interpretation of a state over X is defined by the
labeling function L that associate for a given state s, for each variable xi ∈ X, a value vi ∈ Di.
We denote by L(si, xj) the current value of the variable xj in the state si.

• linit is the initial distribution such that
∑
s∈S linit(s) = 1 . The initial state of the Markov chain is

obtained after the execution of the Init event, and L(s0) ={ xj 7→ vj |< Init > (xj = vj)} ∀j ∈ 1..k.

• AP represents the different assignments to the different variables of our model, these assign-
ments must satisfy the invariant Inv of the Event-B model. AP = {xi 7→ dj |(xi 7→ dj) |= Inv}
∀xi ∈ X ∧ dj ∈ Di.

• Acts is the alphabet of events of the Event-B model M .

• P : S × Acts × S → [0,1] is the transition probability function such that for all state s:∑
s′∈S,e′∈Acts

P (s, e′, s′) = 1

. A transition in this markov chain corresponds to an occurence of an event in the Event-B model
M . Given a state s of M , we denote the set of actions (events) enabled in this state by

Acts(s) = {Ej/[L(s)]grd(Ej) |= true}

The state destination of a transition (s, ea, s′) performed by an event ea is labelled by:

Ł(s′) = {xj → v′j |[L(s)](< ea(xj = v′j) >)}∀j ∈ 1..k

If the action of the event ea is probabilistic:

Sp(t, v) '

x1 := E11(t, v)⊕@p11 ...E1m1(t, v) ⊕@p1m1
(S1(t, v))

x2 := E21(t, v)⊕@p21 ...E2m2(t, v) ⊕@p2m2
(S2(t, v))

...
xk := Ek1(t, v)⊕@

pk1 ...Ekmk
(t, v) ⊕@pkmk

(Sn(t, v))

then we denote a combination of expressions that can be assigned to the variables xi (1 ≤ i ≤ k)
by the action of the event ea taking the system to a state s′ by :

γsea
(s′) = {γ = (j1, ..., jk)|L(s′) = {xi → Eiγ(i)|[L(s)](ea(xi = Eiγ(i)))}}∀i ∈ 1..k

From the state s, if there are many combinations of expressions that can be assigned to the variables
xi (1 ≤ i ≤ k) taking the system to the same state s′, then we denote these combinations by:

βsea
(s′) = {β = (γ1, ..., γt)|∀γz ∈ β, L(s′) = {xi → Eiγz(i)|[L(s)](ea(xi = Eiγz(i)))}}∀i ∈ 1..k

The probability of occurence of the event ea in the state s taking the system to the state s′ is:

P (s, ea, s′) = W (ea)∑
Ej∈Acts(s)W (Ej)

×
∑
tz∈T ′

v

PT ′
v
(tz)×

∑
γ∈βs

ea
(s′)

k∏
i=1

Pxi
(ea/Eiγ(i)(tz, v))

Many cases can be derived from this formula:

14

1. If the event ea does not have a parameter t and its action is probabilistic, then the probability
of the transition from s to s′ is:

P (s, ea, s′) = W (ea)∑
Ej∈Acts(s)W (Ej)

×
∑

β∈βs
ea

(s′)

k∏
i=1

Pxi
(ea/Eiβ(i)(v))

2. If the event ea does not have a parameter t and its action is deterministic, then the probability
of the transition from s to s′ is:

P (s, ea, s′) = W (ea)∑
Ej∈Acts(s)W (Ej)

3. If the event ea have a parameter t and its action is deterministic, then the probability of the
transition from s to s′ is:

P (s, ea, s′) = W (ea)∑
Ej∈Acts(s)W (Ej)

×
∑
tz∈T ′

v

PT ′
v
(tz)

Proof. [[[M]] is a discrete-time Markov chain]
We prove in this section that [[M]] is a discrete-time Markov chain. we must prove then that for each
state s in [[M]], the sum of probabilities of transitions enbaled in s is equal to 1:∑

s′∈S,e∈Acts(s)

P (s, e, s′) = 1

Let s be a state of [[M]] and let ea an event enabled in s, the action of ea is presented below:

x1 := E11(t, v)⊕@p11 ...E1m1(t, v) ⊕@p1m1
x2 := E21(t, v)⊕@p21 ...E2m2(t, v) ⊕@p2m2
...
xk := Ek1(t, v)⊕@

pk1 ...Ekmk
(t, v) ⊕@pkmk

There are c =
∏k
i=1mi combinations of expressions that can be assigned to the variables xi (1 ≤ i ≤ k).

Each combination take the system to a state s′, many combinations can take the system to the same
state s′.

The probability of a transition (s, ea, s′) is:

P (s, ea, s′) = W (ea)∑
Ej∈Acts(s)W (Ej)

×
∑
tz∈T ′

v

PT ′
v
(tz)×

∑
γ∈βs

ea
(s′)

k∏
i=1

Pxi
(ea/Eiγ(i)(tz, v))

The sum of probabilities of transitions performed by the event(action) ea is:

∑
s′∈S

P (s, ea, s′) =
∑
s′∈S

W (ea)∑
Ej∈Acts(s)W (Ej)

×
∑
tz∈T ′

v

PT ′
v
(tz)×

∑
γ∈βs

ea
(s′)

k∏
i=1

Pxi(ea/Eiγ(i)(tz, v))

= W (ea)∑
Ej∈Acts(s)W (Ej)

×
∑
tz∈T ′

v

PT ′
v
(tz)

∑
s′∈S

∑
γ∈βs

ea
(s′)

k∏
i=1

Pxi
(ea/Eiγ(i)(tz, v))

= W (ea)∑
Ej ∈Acts(s)

W (Ej)
×
∑
tz∈T ′

v
PT ′

v
(tz)×

∏k
i=1
∑mi

j=1 Pxi
(ea/Eij)

15

or ∀xi,
∑mi

j=1 Pxi
(ea/Eij) = 1, then

∏k
i=1
∑mi

j=1 Pxi
(ea/Eij) = 1

and we have
∑
tz∈T ′

v
PT ′

v(tz) = 1 then:

∑
s′∈S

P (s, ea, s′) = W (ea)∑
Ej∈Acts(s)W (Ej)

×
∑
tz∈T ′

v

PT ′
v
(tz)×

k∏
i=1

mi∑
j=1

Pxi
(ea/Eij)

= W (ea)∑
Ej∈Acts(s)W (Ej)

Then, the sum of probabilities of transitions enabled in the state s is:∑
s′∈S,e∈Acts(s)

P (s, e, s′) =
∑

e∈Acts(s)

W (e)∑
e∈Acts(s)W (e) =

∑
e∈Acts(s)

W (e). 1∑
e∈Acts(s)W (e) = 1

and then: ∑
s′∈S,e∈Acts(s)

P (s, e, s′) = 1

�

Example 1 (Example 1: Markov chains semantics of a probabilistic Event-B model)
We present below an example of transformation of a probabilistic Event-B model to its corresponding
discrete-time Markov chain. We begin firstly by presenting the probabilistic Event-B model, after that we
present the corresponding discrete-time Markov chain.

Probabilistic Event-B model.
We present below the probabilistic Event-B model, we note that the guards of the first event are indepen-
dent from the parameter.

Model example 1
Variables x, y
Invariant x, y ∈ N
Events

evt1 ∼= weight 4 any t where (t = 0 @ 1
2 , t = 1 @ 1

2) ∧ (x < 1 ∧ y < 1) then

x := x+ t 1/3⊕ x+ 2t (S11)
y := y + t 1/4⊕ y + 2t (S22)

end

evt2 ∼= weight 3 when (x < 1 ∧ y < 1) then

x := x 2/5⊕ x+ 1 (S21)
y := y 1/7⊕ y + 1 (S22)

end

Operational semantics.
We present below the corresponding discrete-time Markov chain of the Event-B model presented above:

16

0,0 1,11,2

2,1

0,1

2,2 1,0

evt1 2/7

evt2 6/245
evt1 1/42

evt2 54/245evt1 1/21

evt2 36/245

evt1 3/42

evt1 1/7

evt2 9/245

Example 2 (Example 2: Markov chains semantics of a probabilistic Event-B model)
We present below an example of transformation of a probabilistic Event-B model to its corresponding
discrete-time Markov chain. We begin firstly by presenting the probabilistic Event-B model after that we
present the corresponding discrete-time Markov chain.

Probabilistic Event-B model.
We present below the probabilistic Event-B model, the only difference with the previous example is that
the guards of the first event of this example depends on the value taken by the parameter of the event:

Model example2
Variables x,y
Invariant x,y ∈ N
Events
evt1 ∼= weight 4 any t where (t = 0 @ 1

2 , t = 1 @ 1
2) ∧ (x+ t < 2 ∧ y + t < 2) then

x := x+ t 1/3⊕ x+ 2t (S11)
y := y + t 1/4⊕ y + 2t (S22)

end

evt2 ∼= weight 3 when (x < 1 ∧ y < 2) then

x := x 2/5⊕ x+ 1 (S21)
y := y 1/7⊕ y + 1 (S22)

end

Operational semantics.
We present below the corresponding discrete-time Markov chain of the Event-B model presented above,
the only difference from the Markov chain derived from the Event-B model presented above is the fact
that in the state (0, 1), the event evt1 is enabled (guard fulfilled) only if the parameter t take the value
0, so that, the subset of values for the parameter t in this state is the singleton {0} and the parameter
take this value with probability 1.

17

0,0

0,1 0,2

1,11,0

1,2

2,1

evt1 6/21 evt2 6/245

evt2 36/245

evt1 1/42

evt2 54/245

evt2 9/245

evt1 1/21

evt1 12/21

evt2 6/245
evt2 36/245

evt2 9/245

evt2 54/245

evt2 9/42

6 Probabilistic Simulation
Based in the theory of probabilistic simulation and bissimulation, we have proposed a new theorem for
the refinement between discrete-time Markov chains. We begin firstly by presenting some basic defintions
about Probabilistic systems. After that, we present our new theorem and its corresponding proof.

6.1 Probabilistic Systems
We outline our theoreom in this section, beginning with some basic definitions about probabilistic sys-
tems.

Definition 4 (Probability Space)
A probability space is a triplet (Ω,F,P) where Ω is a set, F is a collection of subsets of Ω that is closed
under complement and countable union and P is a function from F to [0,1] such that P[Ω]=1 and for
any collection {Ci} of at most countably many stepwise disjoint elements of F, P[∪iCi]=

∑
i P[Ci]. A

probability space (Ω,F,P) is discrete if F= 2Ω and for each C ⊆ Ω , P[C] =
∑
x∈C P[x].

Definition 5 (Automata)
Formally, an automata A is composed of:

• a set S of states,

• a subset S0 of initial states,

• a set of actions Acts= {ext(A), int(A)} where ext(A) denotes the set of external actions and
int(A) denotes the set of internal actions,

• a set of transitions trans(A) ⊆ S × Acts × S that describes the different behaviours of the system
describes by this automata.

Definition 6 (Probabilistic Automata [35])
A Probabilistic Automata M is an automata where transition relations trans(A) is a subset of S(a) ×
Probs(acts(A)×S(A)∪δ) where Probs(X) is the set of discrete probability space (Ω,F,P) where Ω ⊆ X.

A Probabilistic Automata M is simple if for each transition trans(s, (Ω,F, P)) ∈ trans(M) there
is an action a ∈ acts(M) such that Ω ⊆ a ×S(A), in this case, a transition can be represented as (s,
a, (Ω,F,P)) where Probs(A) ∈ Probs(S(A)) and is called a simple transition with action a and then
the action is the same but it take the system to different states when the choice between this different
states is done probalistically. A Probabilistic automata is fully probabilistic if it has a unique start state

18

and from each state, there is at most one step enabled. Thus a probabilistic automata differs from an
automata in that the action and the next state of a given transition are chosen probabilistically. The
symbol δ represents the situation when the system deadlocks, it’s then possible that from a state s , a
probabilistic automata performs some action with probability p and deadlock with probability 1− p.

Definition 7 (Equivalence Relation [35])
Let R be an equivalence relation over a set X. Two probability spaces (Ω1,F1, P1) and (Ω2,F2, P2) of
Probs(X) are R_equivalent written (Ω1,F1, P1) ≡ R (Ω2,F2, P2) if for each [x1]R ∈ Ω1/R there exists
an [x2]R ∈ Ω2/R such that x1 R x2, for each [x2]R ∈ Ω2/R there exists an [x1]R ∈ Ω1/R such that x2 R
x1, and for each [x1]R ∈ Ω1/R[x2]R ∈ Ω2/R such that x1Rx2,

∑
x∈Ω1∩[x1]R P [x]=

∑
x∈Ω2∩[x2]R P [x]. In

other worlds (Ω1,F1, P1) and (Ω2,F2, P2) are R_equivalent if they assign the same probability measure
to each equivalence class of R.

Definition 8 (Weight function [35])
Let R ⊆ X×Y be a relation between two set X,Y , and let (Ω1,F1,P1) and (Ω2,F2,P2) be two probability
spaces of Probs(X) and Probs(Y), respectively. Then (Ω1,F1,P1) and (Ω2,F2,P2) are in relation ⊆R ,
written (Ω1,F1,P1) ⊆R (Ω2,F2,P2) if there exists a weight function w : X × Y → [0, 1] such that:

• for each x ∈ X,
∑
y∈Y w(x, y) = P1[x],

• for each y ∈ Y,
∑
x∈X w(x, y) = P2[y],

• for each (x, y) ∈ X × Y, ifw(x, y) > 0 then xRy.

Simulation and Bissimulation between probabilistic automata
Simulation (�) and bisimulation relations (∼) have been widely used for the comparison of the stepwise
behaviour of states in labeled transition systems [12, Ch2]. Bisimulation relation [29, 28, 31] requires that
two bisimilar states exhibit an identical stepwise behaviour whereas Simulation relations [1, 18, 22, 26, 31]
are preorders over the state space requiring that whenever s � s′ (s′ simulate s), state s′ can emerge
all the stepwise behaviour of s, the converse s′ � s is not guaranteed and then state s′ can perform
some steps that cannot be matched by s. Simulation and bisimulation relations was also extended to
the case of probabilistic systems and several studies has been also carried out to define probabilistic
simulation and Bissimulation relations, for a more details about these works, see the research papers
[23, 25, 7, 24, 11, 32, 35].

Definition 9 (Strong Probabilistic Simulation [35])
A strong probabilistic simulation between two simple probabilistic automata M1,M2, is a relation ⊆
states(M1) × states(M2) such that:

• each start state of M1 is related to at least one start state of M2,

• for each s1Rs2 and each step s1
a→ (Ω1,F1,P1)ofM1, there exists a step s2

a→ (Ω2,F2,P2) of M2
such that (Ω1,F1,P1) ⊆R (Ω2,F2,P2),

• for each s1Rs2, if s2
a→, then s1

a→.

The strong probabilistic simulation relation presented above concerns simple probabilistic automata
when the probabilistic choice concerns the choice of the next state from a set of states by executing the
same action a. Based on this defintion and the defintion of probabilistic bisimulation for probabilistic
automata, we will define a new relation for probabilistic simulation between two discrete-time Markov
chains.

Definition 10 ((discrete-time) Markov chain)
We define (discrete-time) Markov chain as a tupleM=(S, P , s0, AP , L, Acts) where:

• S is a countable, nonempty set of states,

19

• Acts is a set of actions ,

• P: S × Acts × S → [0,1] is the transition probability function such that for all states s:

∑
s′∈S,a∈Acts P (s, a, s′) = 1

• s0 : the initial state,

• AP is a set of atomic propositions and L: S → 2AP a labeling function.

Definition 11 (Equivalence Class)
Let S be a set of states and R an equivalence relation on S. For s ∈ S, [s]R denotes the equivalence class
of state s under R, i.e, [s]R = {s′ ∈ S|(s, s′) ∈ R}. Note that for s′ ∈ [s]R, we have [s′]R = [s]R. The
set [s]R is often referred to as the R-equivalence class of s. The quotient space of S under R, denoted by
S/R= {[s]R|s ∈ S} is the set consisting of all R-equivalence classes.

Theorem 1 (Discrete-time Markov chains refinement)
We define in this section a new relation for the refinement between discrete-time Markov chains. Let
Ma=(Sa, Pa, s0, APa, La, Actsa) and Mc=(Sc, Pc, t0, APc, Lc, Actsc) be two discrete-time Markov
chains.
Given a relation Leq between the set of states Sa and Sc of the two Markov chains:

Leq ⊆ Sa × Sc

For each two states sa, sc of Ma and Mc respectively, if the valuations of sa and sc agree, then (sa, sc)
∈ Leq.
Given a relation Eeq between the actions of the two Markov chains

Eeq ⊆ Actsa ×Actsc

The relation Eeq specifies for two actions ec and ea of Mc and Ma respectively if ec refine ea and then
(ec, ea) ∈ Eeq.
A relation Rr ⊆ Sc × Sa is a refinement relation between Mc and Ma if whenever t Rr s where t ∈ Sc
and s ∈ Sa we have:

1. t Leq s ⇐⇒ (t, s) ∈ Leq

2. there exists a function δ : (Actsc × Sc)→ ((Actsa × Sa)→ [0, 1]) such that:

a. for all ec ∈ Actsc, t′ ∈ Sc such that Pc(t, ec, t′) > 0, δ(ec, t′) is a distribution on (Evtsa×Sa)
b. ∀ s′, ea ∈ Sa ×Actsa we have:∑

t′∈Sc,ec∈Actsc

Pc(t, ec, t′).δ(ec, t′)(ea, s′) = Pa(s, ea, s′)

c. ∀ t′, s′, ec, ea ∈ Sc × Sa ×Actsc ×Actsa, if δ(ec, t′)(ea, s′) > 0 then (t′, s′) ∈ Rr

We say that Mc refine Ma if there exits a refinement relation Rr such that t0Rrs0.

Definition 12 (Restatement of Strong probabilistic simulation)
We reformulate the strong probabilistic simulation relation by Segala in [35]. Given two probabilistic
automata M1 and M2, we define two probability spaces (Ω1,F1,P1) on Acts(M1) × states(M1) and
(Ω2,F2,P2) on Acts(M2) × states(M2). A strong probabilistic simulation relation between M1, M2 is a
relation Rs ⊆ states(M1) × states(M2) where:

1. each start state of M1 is related to at least one start state of M2,

20

2. for each s1 Rs s2 and each step s1 → (Ω1,F1,P1) of M1, there exists a step s2 → (Ω2,F2,P2) of
M2 such that (Ω1,F1,P1) ⊆R (Ω2,F2,P2), i.e, there exists a weight function w: Ω1 × Ω2 → [0, 1]
such that:

a. for each x ∈ Ω1,
∑
y∈Ω2

w(x, y) = P1[x],
b. for each y ∈ Ω2,

∑
x∈Ω1

w(x, y) = P2[y],
c. for each (x, y) ∈ Ω1 × Ω2 where x = (ec, sc) and y = (ea, sa), if w(x, y) > 0 then sc Rs sa.

Proof. [Proof of equivalence of the relations Rr and Rs]
We want to prove that the discrete-time Markov chains refinement relation Rr is equivalent to the
rewritten strong probabilistic simulation Rs (Rr ⇐⇒ Rs).
⇒ : we begin by proving that the relation Rr implies the relation Rs. Suppose that we have two
discrete-time Markov chains Ma and Mc such that Mc refines Ma (Mc Rr Ma). We want to prove that
Ma simulate Mc (Mc Rs Ma) like defined in Section 12, we prove then the different items of Rs:

1. each start state of Ma is related to at least one start state of Mc:

We have Mc refine Ma, then there exist a refinement relation between the initial states of Mc

and Ma (given an initial state t0 of Mc and an initial state s0 of Ma, then t0 Rr s0) then each start
state of Ma is related to at least one start state of Mc.

2. for each two states t and s ofMc andMa respectively such that t Rs s, for each step t→ (Ω1,F1,P1)
of Mc, there exists a step s→ (Ω2,F2,P2) of Ma such that there exist a weight function w: Ω1 ×
Ω2 → [0, 1] such that:

a. for each x ∈ Ω1
∑
y∈Ω2

w(x, y)=P1[x] (x = (ec, t′) represents an action ec enabled in the state
t and take the system to a state t′ where y = (ea, s′) represents an action ea enabled in the
state s and take the system to a state s′)

Let w(x, y) = P1[x].δ(x)(y),∑
y∈Ω2

w(x, y) =
∑
y∈Ω2

P1[x].δ(x)(y) = P1[x].
∑
y∈Ω2

δ(x)(y)

Or from 2.a in Section 1, we have δ(ec, t′) is a distribution on Actsa × Sa, i.e:∑
e∈Actsa,sa∈Sa

δ(ec, t′)(e, sa) =
∑
y∈Ω2

δ(x)(y) = 1

then: ∑
y∈Ω2

P1[x].δ(x)(y) = P1[x].
∑
y∈Ω2

δ(x)(y) = P1[x].1 = P1[x]

b. for each y ∈ Ω2
∑
x∈Ω1

w(x, y)=P2[y]:

Let w(x, y) = P1[x].δ(x)(y), or from 2.b in 1, we have that ∀ s′, ea ∈ Sa × Actsa:∑
t′∈Sc,ec∈Actsc

Pc(t, ec, t′).δ(ec, t′)(ea, s′) = Pa(s, ea, s′)

i.e,
∑
x∈Ω1

P1[x].δ(x)(y) = P2[y] then:∑
x∈Ω1

w(x, y) = P2[y]

c. ∀x, y ∈ Ω1 × Ω2 if w(x, y) > 0 where x = (ec, sc) and y = (ea, sa), then scRssa

If w(x, y) > 0, then P1[x].δ(x)(y) > 0 or P1[x] is strictly greater than 0, then δ(x)(y) > 0 ,i.e,
x Rr y =⇒ x Rs y.

21

⇐ : we prove now that Rs corresponds to Rr.
Suppose that we have two discrete-time Markov chains Ma and Mc such that Ma simulate Mc (Mc Rs
Ma), suppose that we have two states t and s of Mc and Ma respectively such that t Rs s, we want to
prove that t Rr s, we must then prove the different items of Rr:

1. (t, s) ∈ Leq
we have t Rs s =⇒ t Rr s and then (t, s) ∈ Leq.

2. there exits a function δ: (Actsc × Sc) → ((Actsa × Sa)→ [0, 1]) such that:

a. ∀ ec, t′ ∈ Actsc × Sc such that Pc(t, ec, t′) > 0, δ(ec, t′) is a distribution on (Actsa×Sa), i.e,∑
ea∈Actsa,s′∈Sa

δ(ec, t′)(ea, s′) = 1

we denote by x = (ec, t′) an action ec enabled in the state t that take the system to a state t′
and by y = (ea, s′) an action ea enabled in s that take the system to a state s′, we want to
prove then that

∑
y∈Ω2

δ(x)(y) = 1.

Let δ(x)(y) =
{

w(x,y)
P1[x] if P1[x] 6= 0

0 if P1[x] = 0∑
y∈Ω2

δ(x)(y) =
∑
y∈Ω2

w(x, y)
P1[x] = 1

P1[x] ×
∑
y∈Ω2

w(x, y)

or from 2.a in 12, ∀x ∈ Ω1,
∑
y∈Ω2

w(x, y) = P1[x], then:∑
y∈Ω2

δ(x)(y) = 1

Then, δ(x) is a distribution on Actsa × Sa, i.e, a distribution on Ω2.
b. ∀ s′, ea ∈ Sa ×Actsa we have:∑

t′∈T,ec∈Actsc

Pc(t, ec, t′).δ(ec, t′)(ea, s′) = Pa(s, ea, s′)

By analogy with Rs, this sum can be rewritten as:∑
x∈Ω1

P1[x].δ(x)(y) =
∑
x∈Ω1

P1[x].w(x, y)
P1[x] =

∑
x∈Ω1

w(x, y) = P2[y]

Then we obtain: ∑
t′∈T,ec∈Actsc

Pc(t, ec, t′).δ(ec, t′).(ea, s′) = Pa(s, ea, s′)

c. ∀t′, s′, ec, ea ∈ Sc × Sa ×Actsc ×Actsa, if δ(ec, t′)(ea, s′) > 0 then (t′, s′) ∈ Rr
We denote (ec, t′) by x and (ea, s′) by y. we have taken previously δ(x, y) = w(x,y)

P1[x] , we have
δ(x, y) > 0, then w(x,y)

P1[x] > 0 or P1[x] > 0, then w(x, y) > 0 and then t′Rss′, then t′ Rr s′.

�

7 Refinement of a Probabilistic Event-B model
We present here our proposition of refinement between two probabilistic Event-B models. We provide
in what follows the abstract and the concrete models, after that, we present the new proof obligations
related to this notion of refinement.

22

Abstract Probabilistic Event-B model. Ma=(Xa, Inita, Inva, Evtsa) is an abstract probabilistic
Event-B model where:

• Xa = (x1, x2, ..., xk) : the variables of Ma, these variables take their values from the set D =
D1 ×D2 ××Dk and must satisfy the invariant Inva.

• Inita: the abstract initialization event,

• Inva: the invariant of our model that must be satisfied by the different valuations of the variables
of Ma.

• Evtsa: the abstract events of Ma, each event occurs with a positive weight wa, we denote by
αa(Ma) the set of events names in Ma.

Concrete Probabilistic Event-B model. Mc=(Xc, Initc, Invc, Evtsc) is the concrete probabilistic
Event-B model where:

• Xc = (x1, x2, ..., xk, ..., xn) : the variables of Mc, these variables take their values from the set D
= D1 ×D2 × ...×Dk ×Dn and must satisfy the invariant Invc.

• Initc: the abstract initialization event,

• Invc: the gluing invariant that relate the variables of Ma to the variables of Mc.

• Evtsc: the concrete events ofMc, we do not allow the introduction of new events in Evtsc (αc(Mc)=
αMa). Each probabilistic event in the abstract model is refined by only one probabilistic event.

7.1 Refinement in Probabilistic Event-B
We introduce a new notion of refinement for probabilistic Event-B models. In the proposed notion, we
do not allow the introduction of new events during refinement, only the introduction of new variables in
the concrete model and the modification of events actions are permitted. The classical proof obligations
remain applicable and unchanged for the refinement of probabilistic events. In addition, we propose
some new proof obligations dedicated to this refinement. We note that the syntax of our proposition for
probabilistic Event-B models is not yet complete and we have not yet define an operator for expressing the
probability of an event in Event-B, so we express at the moment the new proofs using their corresponding
Markov chains semantics.

7.1.1 New proof obligations related to refinement

We present in this section the new proof obligations that must be verified in the case of the refinement
of a probabilistic Event-B model by another probabilistic Event-B model. These proofs are expressed on
the Markov chain semantics of both the concrete and the abstract models. Given two states sa of sc and
sc of [[Ma]] and [[Mc]] respectively. we say that sa is equivalent to sc only if the valuations of sa and sc,
i.e, these valuations statisfies the gluing variant invc of the concrete Event-B model. We use the relation
Leq defined in theorem 1 to express that two states are equivalent.

Proof 1: Relation between the probability of occurence of an abstract event and that of its
refined event.
This proof express the relation between the probability of occurence of an abstract event and the prob-
ability of occurence of its refined concrete event. Given an abstract probabilistic event ea that is refined
by a concrete probabilistic event ec like presented below:

23

ea
weight
wa
any
t
where
t ⊕ | T ∧ G(t, v)
then
Sp(t, v)
end

ec
weight
wc
any
u
where
u ⊕ | U ∧ H(u, v′)
then
Tp(u, v′)
end

In the corresponding Markov chain semantics ofMa andMc, suppose that the corresponding action of the
event ea is enabled in a state sa of [[Ma]] and take [[Ma]] to a state s′a. Suppose also that the corresponding
action of the event ec is enabled in a state sc of [[Mc]] and take the system to a state s′c such that (sa, sc)
∈ Leq and (s′a, s′c) ∈ Leq. This proof obligation mention that the probability of occurence of the concrete
event ec in the state sc taking the system to the state s′c is equal to the probability of occurence of the
abstract event ea in the state sa taking the system to the state s′a:

Pa(sa, ea, s′a) = Pc(sc, ec, s′c)

The state sa is equivalent to the state sc
The state s′a is equivalent to the state s′c
`
The probability of occurence of the event
ea in the state sa taking the system to the
state s′a is equal to the probability of oc-
curence of the concrete event ec in the state
sc to the state s′c

(sa, sc) ∈ Leq
(s′a, s′c) ∈ Leq
`
Pa(sa, ea, s′a) = Pc(sc, ec, s′c)

Proof 2: Merging of two probabilistic events by a probabilistic event.
This proof is related to the case of merging of two abstract probabilistic events by a concrete probabilistic
event. Suppose we have two abstract probabilistic events ea1 and ea2 that are merged by an event ec1

like presented below:

ea1

weight
wa1

any
t1
where
t1 ∈ T1 ∧ G1(t1, v)
then
Sp1

end
ea2

weight
wa2

any
t2
where
t2 ∈ T2 ∧ G2(t2, v)
then
Sp2

end

ec
refines
ea1

ea2

weight
wc1

any
u
where
u ∈ U ∧ H(u,w)
then
T
end

In the corresponding Markov chain semantics of Ma and Mc, suppose that the abstract event ea1 is

24

enabled in an abstract state sa1 and the abstract event ea2 is enabled in an abstract state sa2 while the
concrete event ec is enabled in a concrete state sc. We have three possibilities in this kind of refinement:

• If the state sc is equivalent only to the state sa1 but not to the state sa2 , then the probability of
occurence of the concrete event ec in the state sc taking the system to the state s′c is equal to the
probability of occurence of the abstract event ea1 in the state sa1 taking the system s′a1

:

The state sc is equivalent to the state sa1

The state sc is not equivalent to the state
sa2

`
The probability of occurence of the event
ec in the state sc taking the system to the
state s′c is equal to the probability of oc-
curence of the abstract event ea1 in the
state sa1 to the state s′a1

(sc, sa1) ∈ Leq
(sc, sa2) 6∈ Leq
`
Pc(sc, ec, s′c) = Pa(sa1 , ea1 , s

′
a1

)

• If the state sc is equivalent only to the state sa2 but not to the state sa1 , then the probability of
occurence of the concrete event ec in the state sc taking the system to the state s′c is equal to the
probability of occurence of the abstract event ea2 in the state sa2 taking the system s′a2

:

The state sc is equivalent to the state sa2

The state sc is not equivalent to the state
sa1

`
The probability of occurence of the event
ec in the state sc taking the system to the
state s′c is equal to the probability of oc-
curence of the occurence of the abstract
event ea2 in the state sa2 to the state s′a2

(sc, sa2) ∈ Leq
(sc, sa1) 6∈ Leq
`
Pc(sc, ec, s′c) = Pa(sa2 , ea2 , s

′
a2

)

• If the state sc is equivalent to both the states sa1 and sa2 , then the probability of occurence of the
concrete event ec in the state sc taking the system to the state s′c is equal to the sum of probabilities
of occurence of the abstract events ea1 in the state sa1 taking the system to the state s′a1

and ea2

in the state sa2 taking the system s′a2
:

The state sc is equivalent to the state sa1

The state sc is equivalent to the state sa2

`
The probability of occurence of the event
ec in the state sc taking the system to the
state s′c is equal to the sum of probabili-
ties of occurence of the abstract events ea1

in the state sa1 taking the system to the
state s′a1

and ea2 in the state sa2 taking
the system s′a2

(sc, sa1) ∈ Leq
(sc, sa2) ∈ Leq
`

Pa(sa1 , ea1 , s
′
a1

)+Pa(sa2 , ea2 , s
′
a2

) = Pc(sc, ec, s′c)

Proof 3: Splitting of an abstract probabilistic event by two concrete probabilistic events.
This proof is related to the case of splitting of a probabilistic event ea by two others probabilistic events
ec1 and ec2 like presented below:

25

ea
weight
wa
any
t1
where
t1 ∈ T1 ∧ G1(t1, v)
then
Sp1(t1, v)
end

ec1

weight
wc1

refines
ea1

any
u1
where
u1 ∈ U1 ∧ H1(u1, w)
then
Tp1(u1, w)
end
ec2

weight
wc2

refines
ea1

any
u2
where
u2 ∈ U2 ∧ H2(u2, w)
then
Tp2(u2, w)
end

In the corresponding Markov chain semantics of Ma and Mc, suppose that the abstract event ea is
enabled in an abstract state sa and the concrete event ec1 is enabled in a concrete state sc1 while the
concrete event ec2 is enabled in a concrete state sc2 . We have three possibilities in this kind of refinement:

• If the state sa is equivalent only to the state sc1 but not to the state sc2 , then the probability of
occurence of the concrete event ec1 in the state sc1 taking the system to the state s′c1

is equal to
the probability of occurence of the abstract event ea in the state sa taking the system to the state s′a:

The state sa is equivalent to the state sc1

The state sa is not equivalent to the state
sc2

`
The probability of occurence of the event
ec1 in the state sc1 taking the system to
the state s′c1

is equal to the probability of
occurence of the occurence of the abstract
event ea in the state sa to the state s′a

(sc1 , sa) ∈ Leq
(sc2 , sa) 6∈ Leq
`
Pc(sc1 , ec1 , s

′
c1

) = Pa(sa, ea, s′a)

• If the state sa is equivalent only to the state sc2 but not to the state sc1 , then the probability of
occurence of the concrete event ec2 in the state sc2 taking the system to the state s′c2

is equal to
the probability of occurence of the abstract event ea in the state sa taking the system s′a:

The state sa is equivalent to the state sc2

The state sa is not equivalent to the state
sc1

`
The probability of occurence of the event
ec2 in the state sc2 taking the system to
the state s′c2

is equal to the probability of
occurence of the occurence of the abstract
event ea in the state sa to the state s′a

(sc2 , sa) ∈ Leq
(sc1 , sa) 6∈ Leq
`
Pc(sc2 , ec2 , s

′
c2

) = Pa(sa, ea, s′a)

26

• If the state sa is equivalent to both the states sc1 and sc2 , then the probability of occurence of
the abstract event ea in the state sa taking the system to the state s′a is equal to the sum of
probabilities of occurence of the abstract events ec1 in the state sc1 taking the system to the state
s′c1

and and ec2 in the state sc2 taking the system s′c2
:

The state sa is equivalent to the state sc1

The state sa is equivalent to the state sc2

`
The probability of occurence of the ab-
stract event ea in the state sa taking the
system to the state s′a is equal to the sum
of probabilities of occurence of the concrete
events ec1 in the state sc1 taking the sys-
tem to the state s′c1

and and ec2 in the state
sc2 taking the system s′c2

(sc1 , sa) ∈ Leq
(sc2 , sa) ∈ Leq
`

Pa(sa, ea, s′a) = Pc(sc1 , ec1 , s
′
c1

)+Pc(sc2 , ec2 , s
′
c2

)

7.2 Equivalence to Markov Chain refinement
We propose in this section a new theorem expressing the relation between the refinement relation be-
tween probabilistic Event-B models and the refinement relation between their corresponding Markov
chains semantics. We denote the refinement relation between probabilistic Event-B models by pebR.

Theorem 2 The refinement relation pebR between two probabilistic Event-B modelsMa andMc is equiv-
alent to the refinement relation between their corresponding discrete-time Markov chains [[Ma]] and [[Mc]]
(pebR ⇐⇒ Rr). If we have Mc pebR Ma, then [[Mc]] Rr [[Ma]].

Proof. Let Ma and Mc be two probabilistic Event-B models such that Mc refines Ma and let [[Ma]]
and [[Mc]] the corresponding discrete-time Markov chains:

We must prove that the relation pebR is equivalent to Rr (pebR ⇐⇒ Rs).
⇒ : We begin by proving that the relation pebR implies the relation Rr. We have McpebRMa, we want
to prove that [[Mc]] Rr [[Ma]].

The states Sa and Sc of the two Markov chains corresponds respectively to the different valuations of
the variables ofMa andMc. The equivalence relation Leq between the set of states Sa and Sc corresponds
to the gluing invariant Invc, two states sa and sc are equivalent if their valuations satisfies the invariant
Invc. The actions of each Markov chain corresponds to the names of the events in the corresponding
Event-B model, then Actsa= αa(Ma) and Actsc = αc(Mc). The equivalence relation between actions
Eeq specifies if an event refines another one, if a concrete event named ec refine an abstract event named
ea then we have ec Eeq ea.
The relation Rr ⊆ Sc×Sa is a refinement relation between [[Mc]] and [[Ma]] if whenever tRrs where t ∈ Sc
and s ∈ Sa we have:

1. t Leq s ⇐⇒ (t, s) ∈ Leq

2. there exists a function δ : (Actsc × Sc)→ ((Actsa × Sa)→ [0, 1]) such that:

a. for all ec ∈ Actsc, t′ ∈ Sc such that Pc(t, ec, t′) > 0, δ(ec, t′) is a distribution on (Evtsa × Sa)
b. ∀ s′, ea ∈ Sa ×Actsa we have:∑

t′∈Sc,ec∈Actsc

Pc(t, ec, t′).δ(ec, t′)(ea, s′) = Pa(s, ea, s′)

c. ∀t′, s′, ec, ea ∈ Sc × Sa ×Actsc ×Actsa, if δ(ec, t′)(ea, s′) > 0 then (t′, s′) ∈ Rr

27

From the condition 2.b of Rr we have:
∀s′, ea ∈ Sa ×Actsa : ∑

t′∈Sc,ec∈Actsc

Pc(t, ec, t′).δ(ec, t′)(ea, s′) = Pa(s, ea, s′)

this formula can be rewritten as:
∀s′, ea ∈ Sa ×Actsa : ∑

t′∈{t1|(t1,s′)∈Leq},ec∈{e|e∈Actsc∧(e,ea)∈Eeq}

Pc(t, ec, t′).δ(ec, t′)(ea, s′) = Pa(s, ea, s′)

Many cases can be deduced from this condition:

Case1:

{
card({t1|t1 ∈ Sc ∧ (t1, s′) ∈ Leq}) = 1

card({e|e ∈ Evtsc ∧ (e, ea) ∈ Eeq}) = 1

{
card({s′|s′ ∈ Sa ∧ (s′, t′) ∈ Leq}) = 1

card({e|e ∈ Evtsa ∧ (e, ec) ∈ Eeq}) = 1

t t′

s s′

ec

ea

δ(ec, t′)(ea, s′)

In this case, the action ea is refined by the action ec, i.e the corresponding event named ea in Ma is
refined by the event named ec in Mc, the condition 2.b of the relation Rr can be rewritten as:

Pc(t, ec, t′).δ(ec, t′)(ea, s′) = Pa(s, ea, s′)

or from the condition 2.a of Rr, δ(ec, t′) is a distribution on (Evtsa × Sa), then δ(ec, t′)(ea, s′)= 1, we
deduce then that:

Pc(t, ec, t′) = Pa(s, ea, s′)

Case2:

{
card({t1|t1 ∈ Sc ∧ (t1, s′) ∈ Leq}) = m > 1

card({e|e ∈ Evtsc ∧ (e, ea) ∈ Eeq}) = m > 1

{
card({s′|s′ ∈ Sa ∧ (s′, t′) ∈ Leq}) = 1

card({e|e ∈ Evtsa ∧ (e, ec) ∈ Eeq}) = 1

28

t

t1

t2

tm

ss′

ec1

ec2

ecm

ea

δ(ec, t1)(ea, s′)

δ(ec, t2)(ea, s′)

δ(ec, tm)(ea, s′)

In this case, the action ea is refined by the actions ec1 , ec2 ,...,ecm
, i.e, the corresponding event named ea

in Ma is splitted into the events named ec1 , ec2 ,...,ecm in Mc. The condition 2.b of Rr can be rewritten
as:

m∑
i=1

Pc(t, eci
, ti).δ(eci

, ti)(ea, s′) = Pa(s, ea, s′)

or from the condition 2.a of Rr, δ(eci
, ti) (1 ≤ i ≤ m) is a distribution on (Evtsa × Sa), then ∀ i,

δ(eci
, ti)(ea, s′)= 1 and then:

m∑
i=1

Pc(t, eci
, ti) = Pa(s, ea, s′)

Case3:

{
card({t1|t1 ∈ Sc ∧ (t1, s′) ∈ Leq}) = 1

card({e|e ∈ Evtsc ∧ (e, ea) ∈ Eeq}) = 1

{
card({s′|s′ ∈ Sa ∧ (s′, t′) ∈ Leq}) = m > 1

card({e|e ∈ Evtsa ∧ (e, ec) ∈ Eeq}) = m > 1

t t′ s

s1

s2

sm

ea1

ea2

ea3

ec

δ(ec, t1)(ea, s1)

δ(ec, t1)(ea, s2)

δ(ec, t1)(ea, sm)

In this case, the actions ea1 , ea2 , ..., eam
are refined by the action ec, i.e, the corresponding events named

ea1 , ea2 , ..., eam inMa are merged by the event named ec inMc. The condition 2.b of Rr can be rewritten
as:

∀i(1 ≤ i ≤ m), Pc(t, ec, t′).δ(ec, t′)(eai
, si) = Pa(s, eai

, si)

29

=⇒
m∑
i=1

Pc(t, ec, t′).δ(ec, t′)(eai
, si) =

m∑
i=1

Pa(s, eai
, si)

=⇒

Pc(t, ec, t′).
m∑
i=1

δ(ec, t′)(eai , si) =
m∑
i=1

Pa(s, eai , si)

or from the condition 2.a of Rr, we have δ(ec, t′) is a distribution on Evtsa × Sa (
∑m
i=1 δ(ec, t′)(eai

, si)=1)
then:

Pc(t, ec, t′) =
m∑
i=1

Pa(s, eai
, si)

Case4:

{
card({t1|t1 ∈ Sc ∧ (t1, s′) ∈ Leq}) = m > 1

card({e|e ∈ Evtsc ∧ (e, ea) ∈ Eeq}) = m > 1

{
card({s′|s′ ∈ Sa ∧ (s′, t′) ∈ Leq}) = m > 1

card({e|e ∈ Evtsa ∧ (e, ec) ∈ Eeq}) = m > 1

This case corresponds both to the case where some action ec1 refine many actions ea1 , ea2 , ..., eam and
one of the abstract action ea1 for example refine many actions ec1 , ec2 , ..., ecm

, we have then:

Pc(t, eci , ti) =
m∑
i=1

Pa(s, eai , si)

and
m∑
i=1

Pc(t, eci
, ti) = Pa(s, eai

, si)

∀ 1 ≤ i ≤ m, Pc(t, eci , ti)= Pa(s, eai , si)=0 and we deduce then that it is impossible to obtain this
case, an event cannot be splitted by many events and merged by one of these events at the same time.
�

8 Conclusion and Future work
In this document, we have presented our proposition for introducing probabilities in Event-B. For now,
we only propose a way to model purely probabilistic systems where all originally non-deterministic
choices have been replaced with probabilistic choices in our new model. We also introduce a notion
of refinement between two event-B models. In our proposition this notion of refinement mixes classical
Event-B proof obligations with semantics-based new proof obligations. In the future, we plan on providing
purely syntactical proof obligation in order to prove refinement between two Event-B models. Our last
contribution is to show that this new notion of refinement between two Event-B models coincides with
refinement of their Markov Chain semantics.

In this document, we have not defined a complete syntax for probabilistic Event-B models as well as
the form of proof obligations specific to the introduced notion of refinement, future work will concetrate
on overcoming these lacks. We present in the following some other perspectives that we would like to
treat in the future:

30

• Providing the syntax and the semantics of Event-B models containing both probabilistic and stan-
dard events and derive the dedicated proof obligations.

• Providing the syntax and the semantics of Event-B models wehre the events are annotated by a
probability range instead of a discrete probability and derive the proof obligations dedicated to
refinement of these events.

• Providing a methodology for expressing and verifying some probabilistic properties expressed in
several probabilistic logics(PCTL, PLTL, PCTL*, PLTL*).

• Providing a solution for the composition/Decomposition of probabilistic Event-B models.

• Providing some design patterns in Event-B for modeling probabilistic systems.

• Developping a dedicated Plugin in Rodin of the probabilistic version of Event-B.

References
[1] Martín Abadi and Leslie Lamport. The existence of refinement mappings. Theoretical Computer

Science, 82(2):253–284, 1991.

[2] Jean-Raymond Abrial. Modeling in Event-B: system and software engineering. Cambridge Univer-
sity Press, 2010.

[3] Jean-Raymond Abrial and Jean-Raymond Abrial. The B-Book: Assigning programs to meanings.
Cambridge University Press, 2005.

[4] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang, Farhad Mehta, and
Laurent Voisin. Rodin: an open toolset for modelling and reasoning in event-b. International
journal on software tools for technology transfer, 12(6):447–466, 2010.

[5] Jean-Raymond Abrial, Dominique Cansell, and Dominique Méry. A mechanically proved and incre-
mental development of ieee 1394 tree identify protocol. Formal aspects of computing, 14(3):215–227,
2003.

[6] Jean-Raymond Abrial and Stefan Hallerstede. Refinement, decomposition, and instantiation of
discrete models: Application to event-b. Fundamenta Informaticae, 77(1):1–28, 2007.

[7] Suzana Andova and Jos CM Baeten. Abstraction in probabilistic process algebra. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 204–219. Springer, 2001.

[8] Ralph-JR Back. Refinement calculus, part ii: Parallel and reactive programs. In Stepwise Refinement
of Distributed Systems Models, Formalisms, Correctness, pages 67–93. Springer, 1990.

[9] Ralph JR Back and Joakim von Wright. Refinement calculus, part i: Sequential nondeterministic
programs. In Stepwise refinement of distributed systems models, formalisms, correctness, pages
42–66. Springer, 1990.

[10] RJR Back and Kaisa Sere. Stepwise refinement of action systems. In Mathematics of Program
Construction, pages 115–138. Springer, 1989.

[11] Christel Baier and Holger Hermanns. Weak bisimulation for fully probabilistic processes. In Com-
puter Aided Verification, pages 119–130. Springer, 1997.

[12] Christel Baier, Joost-Pieter Katoen, et al. Principles of model checking, volume 26202649. MIT
press Cambridge, 2008.

[13] Eerke Boiten, John Derrick, and Gerhard Schellhorn. Relational concurrent refinement part ii:
Internal operations and outputs. Formal Aspects of Computing, 21(1-2):65–102, 2009.

[14] Willem-Paul De Roever, Kai Engelhardt, and Karl-Heinz Buth. Data refinement: model-oriented
proof methods and their comparison, volume 47. Cambridge University Press, 1998.

31

[15] Stefan Hallerstede and Thai Son Hoang. Qualitative probabilistic modelling in event-b. In Integrated
Formal Methods, pages 293–312. Springer, 2007.

[16] Jifeng He, CAR Hoare, and Jeff W Sanders. Data refinement refined resume. In ESOP 86, pages
187–196. Springer, 1986.

[17] Jifeng He, CAR Hoare, and Jeff W Sanders. Data refinement refined resume. In ESOP 86, pages
187–196. Springer, 1986.

[18] Monika Rauch Henzinger, Thomas A Henzinger, and Peter W Kopke. Computing simulations on
finite and infinite graphs. In Foundations of Computer Science, 1995. Proceedings., 36th Annual
Symposium on, pages 453–462. IEEE, 1995.

[19] Thai Son Hoang. The development of a probabilistic B-method and a supporting toolkit. PhD thesis,
The University of New South Wales, 2005.

[20] Thai Son Hoang. The development of a probabilistic B-method and a supporting toolkit. PhD thesis,
The University of New South Wales, 2005.

[21] Thai Son Hoang, Zhendong Jin, Ken Robinson, Annabelle McIver, and Carroll Morgan. Probabilistic
invariants for probabilistic machines. In ZB 2003: Formal Specification and Development in Z and
B, pages 240–259. Springer, 2003.

[22] Bengt Jonsson. Simulations between specifications of distributed systems. In CONCUR’91, pages
346–360. Springer, 1991.

[23] Bengt Jonsson and Kim Guldstrand Larsen. Specification and refinement of probabilistic processes.
In Logic in Computer Science, 1991. LICS’91., Proceedings of Sixth Annual IEEE Symposium on,
pages 266–277. IEEE, 1991.

[24] Chi-Chang Jou and Scott A Smolka. Equivalences, congruences, and complete axiomatizations for
probabilistic processes. In CONCUR’90 Theories of Concurrency: Unification and Extension, pages
367–383. Springer, 1990.

[25] Kim G Larsen and Arne Skou. Bisimulation through probabilistic testing (preliminary report). In
Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 344–352. ACM, 1989.

[26] Nancy Lynch and Frits Vaandrager. Forward and backward simulations. Information and Compu-
tation, 121(2):214–233, 1995.

[27] Annabelle McIver and Charles Carroll Morgan. Abstraction, refinement and proof for probabilistic
systems. Springer Science & Business Media, 2006.

[28] Robin Milner. Communication and concurrency, volume 84. Prentice hall New York etc., 1989.

[29] Robin Milner, Robin Milner, Robin Milner, and Robin Milner. A calculus of communicating systems,
volume 92. springer-Verlag Berlin, 1980.

[30] Carroll Morgan, Thai Son Hoang, and Jean-Raymond Abrial. The challenge of probabilistic event
b—extended abstract—. In ZB 2005: Formal Specification and Development in Z and B, pages
162–171. Springer, 2005.

[31] David Park. Concurrency and automata on infinite sequences. Springer, 1981.

[32] Anna Philippou, Insup Lee, and Oleg Sokolsky. Weak bisimulation for probabilistic systems. In
CONCUR 2000—Concurrency Theory, pages 334–349. Springer, 2000.

[33] Luis Ferreira Pires and Wanderley Lopes de Souza. Step-wise refinement design example using lotos.
In FORTE, volume 90, pages 255–262, 1990.

[34] Gerhard Schellhorn. Asm refinement and generalizations of forward simulation in data refinement:
a comparison. Theoretical Computer Science, 336(2):403–435, 2005.

32

[35] Roberto Segala and Nancy Lynch. Probabilistic simulations for probabilistic processes. Nordic
Journal of Computing, 2(2):250–273, 1995.

[36] Anton Tarasyuk, Elena Troubitsyna, and Linas Laibinis. Reliability assessment in event-b develop-
ment. NODES 09, page 11, 2009.

[37] Anton Tarasyuk, Elena Troubitsyna, and Linas Laibinis. Towards probabilistic modelling in event-b.
In Proceedings of the 8th International Conference on Integrated Formal Methods, IFM’10, pages
275–289, Berlin, Heidelberg, 2010. Springer-Verlag.

[38] Anton Tarasyuk, Elena Troubitsyna, and Linas Laibinis. Integrating stochastic reasoning into event-
b development. Formal Aspects of Computing, 27(1):53–77, 2015.

[39] Niklaus Wirth. Program development by stepwise refinement. Communications of the ACM,
14(4):221–227, 1971.

[40] Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and Proof. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1996.

[41] Emre Yilmaz. Tool support for qualitative reasoning in Event-B. PhD thesis, Master Thesis ETH
Zürich, 2010, 2010.

33

