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Improving pattern discovery relevancy by deriving
constraints from expert models 1

Frédéric Flouvat 2and Jérémy Sanhes2 and Claude Pasquier2, 3 and Nazha Selmaoui-Folcher2

and Jean-François Boulicaut 4

Abstract. To support knowledge discovery from data, many pattern
mining techniques have been proposed. One of the bottlenecks for
their dissemination is the number of computed patterns that appear
to be either trivial or uninteresting with respect to available knowl-
edge. Integration of domain knowledge in constraint-based data min-
ing is limited. Relevant patterns still miss because methods partly
fail in assessing their subjective interestingness. However, in prac-
tice, we often have in the literature mathematical models defined by
experts based on their domain knowledge. We propose here to ex-
ploit such models to derive constraints that can be used during the
data mining phase to improve both pattern relevancy and computa-
tional efficiency. Even though the approach is generic, it is illustrated
on pattern set discovery from real data for studying soil erosion.

1 Introduction

Experts of a broad range of scientific fields (e.g., geologists, physi-
cists or epidemiologists) often express their knowledge in the form
of models. For example, soil erosion experts developed mathemati-
cal models (functions of several variables) to assess an erosion risk
according to a set of environmental parameters (e.g., vegetation, ge-
ology, rainfalls, slope) [16, 19, 4]. Similarly, epidemiologists devel-
oped models to estimate the number of people infected by Dengue
fever, using the number of inhabitants, life cycle of mosquitoes, and
seasons [5, 8, 10]. Such models capture an important expert knowl-
edge in a given context. However, the variables used in such typical
models often represent a small part of the variables for which values
are nowadays easily collected (thanks to teledetection, remote sens-
ing, etc). Using simultaneously both expert models and available data
appears as a timely challenge.

When considering knowledge discovery from data (KDD) based
on pattern discovery, the popular framework of constraint-based min-
ing is often used. Various types of patterns have been studied, such
as itemsets, sequential patterns, episodes or sub-graphs. In such con-
texts, constraints can be used to specify a priori the objective and the
subjective interestingness of patterns [18]. Objective measures are
generally based on frequency and/or statistical properties of patterns
(e.g., giving rise to the popular minimal frequency constraint [1]),
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whereas subjective interestingness has to be specified thanks to ex-
pert’s goals or needs (see, e.g., [20, 23, 24]). Specifying subjective
interestingness by means of constraints concerns the declarative def-
inition of needed properties like, for instance, unexpectedness w.r.t.
domain knowledge or available models [21, 13]. Let us recall that
constraint-based mining enables to improve the relevancy of com-
puted patterns, but also to use theoretical properties of constraints
(e.g., monotonicity property) to perform complete though computa-
tionally efficient extractions (see, e.g., [6]).

Integrating expert knowledge in the KDD process is not new [2,
11, 3, 9]. This knowledge is usually expressed as rules/constraints
(e.g., “if... then...”) that are manually defined by experts (e.g., “if
trail and rains then erosion”). Such information is hard to obtain
and it generally covers a small part of the available domain knowl-
edge: in practice, it is often limited to few basic rules. The use of tax-
onomies or ontologies improve the definition of useful constraints
and the interpretation of extracted patterns [7, 22] even though the
bottleneck can then be on their acquisition. We can also use graphi-
cal models like bayesian networks. For example, [12] formalizes ex-
pert’s background knowledge as a bayesian network of causal rela-
tions and dependencies between attributes. This network can evolve
during the KDD process. It is possible to exploit such a model during
a pattern mining phase to extract more interesting patterns. The con-
sidered interestingness is defined here as “the divergence between
the expected frequency of patterns predicted by the model w.r.t. the
observed frequency in the data". Authors in [14] use the Maximum
Entropy principle to model statistical informations (mean, variance
and histograms) on arbitrary sets of cells as background knowledge.
Then, they propose a measure for contrasting the subjective informa-
tiveness of patterns.

In many scientific domains, experts have formalized a part of their
domain knowledge by means of models (e.g., the so-called physi-
cal models). The originality of our contribution is to take advantage
of existing models in the literature to build new constraints that can
be integrated into a pattern discovery process. Pattern relevancy can
be improved, the computation can be more efficient, and experts
are not solicited to specify part of the useful domain knowledge
for each extraction. We focus on itemset patterns and we consider
the many models that can be expressed as a function of several at-
tributes/variables. In Section 2, we introduce several examples of lin-
ear, polynomial, and even nonlinear, models that can be used to im-
prove pattern relevancy. We highlight theoretical properties of these
model w.r.t. the itemset pattern domain that can be used to safely
prune the search space and thus to improve computational efficiency.
Our motivating example within the paper concerns expert models to
study soil erosion. In this context, our work focuses on patterns likely
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to be related to a strong erosion, while considering the influence of
other environmental parameters that are not considered by the mod-
els (e.g., parameters related to human activities). It turns out that the
constraints based on such models enable to assess or enrich expert’s
knowledge. It can also highlight contradictory relations.

Section 2 presents the soil erosion case study. Section 3 introduces
our theoretical framework. Section 4 presents our contribution to
push constraints based on expert models into a pattern mining phase.
Section 5 shows experimental results on real data. Finally, section 6
concludes and refers to a few perspectives.

2 A case study on soil erosion

Soil erosion has a deep impact on mankind all over the world. It is
worsened by anthropic activities (e.g., deforestation, industries, agri-
culture), affects environment and economy. Faced with this problem,
the scientific community (mainly geologists and geographers) has
developed mathematical models to estimate soil erosion risk. Two
model classes can be distinguished : empirical and physical models.

Empirical models are constructed empirically based on expert
knowledge and experiments. The USLE (Universal Soil Loss Equa-
tion) model [25] and the model proposed in [4] are typical examples
(the first one is a polynomial model and the second one is linear).
Physical models are quantitative models based on physical proper-
ties that are calibrated from experimental observations. For example,
WEPP (Water Erosion Prediction Project, [16]) and RMMF (Revised
Morgan-Morgan Finney, [19]) are both based on several physical
models (nonlinear and non-polynomial). RMMF divides the erosion
process in two steps: raindrop detachment (see figure 1) and runoff
detachment. Each step is based on a physical sub-model. Their re-
spective results are summed to finally assess the annual soil loss.

Parameters domain of values
Soil detachment index (in g/J) xK depends on soil type
Annual rainfall (in mm) xR [0 , 12 000]
Proportion of rain stopped by vegetation xA [0 , 1]
Canopy cover percentage xCC [0 ,1]
Rainfall intensity (in mm/h) xI {10, 25, 30} depending on the

climate of the studied area
Vegetation height (in m) xPH [ 0 , 130 ]

F (xK , xR, xA, xCC , xI , xPH) = xk × [xR × xA × (1− xCC)

× (11.9 + 8.7 log xI) + (15.8 + xPH
0.5)− 5.87]× 10−3

Figure 1. Raindrop detachment model in RMMF

3 Preliminary definitions

3.1 Expert models

Let Dmodel = {x1, x2, ..., xn} be the set of variables/attributes

of the expert model. We denote by dom(xj), domain of xj , the
set of possible values of attribute xj . A mathematical model is a
function f : dom(x1) × dom(x2) × ... × dom(xn) → R, x =
(x1, x2, . . . , xn) �→ f(x). It represents the knowledge of one or sev-
eral experts about a phenomenon, and it can be found in the literature
of the domain.

These models are numerical functions. Thus, when experts want
to integrate categorical/nominal data in such numerical models (e.g.
soil type), they have to transform these values to numbers. This map-
ping is done by experts based on their domain knowledge. It is given
with the expert model. For example, the RMMF model [19] takes in
input the soil type which is a nominal value (e.g. “sand”, “loam”).

In their paper, the experts associate each soil type to a numerical
value (called soil detachment index) based on past experiments (e.g.
“sand” is 1.2 and “loam” is 0.8). In the same way, the model pro-
posed in [4] integrates land cover data (e.g. “dense forest”, “sugar
cane farming”). The numerical value associated to each land cover
is given in the contribution. It is proportional to the impact of the
land cover on soil erosion (e.g. “dense forest” is 1 and “sugar cane
farming” is 4).

In the rest of the paper, we will use the following example :
f : [1, 16]× [0, 4π]× [1, 100] ⊂ R3 → [0, 5] ⊂ R
f(x1, x2, x3) =

√
x1 − cos(x2)/2× log(x3)

3.2 Itemset mining

We link now the itemset definition of Agrawal and Srikant [1] with
the previous models.

Let DDB = {d1, d2, ..., dn′} be the dimensions/attributes of the
database DB (e.g., geology, rainfall or vegetation). DDB must cover
at least one attribute of the expert model, i.e., DDB ∩Dmodel �= ∅.
The domain of dj′ in DB, written dom(dj′), is a set of categorical
values. Domains of numerical attributes are discretized (i.e., decom-
posed into disjoint intervals). For example, the domain of the “annual
rainfall” attribute xR in Figure 1 is dom(xR) = [0, 12000]. In the
database, it can be discretized as follows {“xR ∈ [0, 2000]”, “xR ∈
[2001, 3200]”, “xR ∈ [3201, 12000]”}. In the remainder of this pa-
per, we consider that each original value is transformed into a cat-
egorical value in which both the attribute and the value are repre-
sented (e.g., value “ultramafic soil" of attribute xK will be noted
“xK = ultramafic soil”). Formally, values of dom(dj′) can be
seen as pairs (attribute, value). To facilitate the interpretation of item-
sets in examples, we only integrate the name of attributes in categor-
ical values if they are related to the expert model.

Let I =
⋃

dj∈DDB
dom(dj) be the set of all values in the

database DB. A value i ∈ I is called an item. The pattern
language is L = {X ∈ 2I | �i, i′ ∈ X s.t. i, i′ ∈
dom(dj), dj ∈ DDB}. In other words, a pattern is a combina-
tion of categorical values from different attributes. A set of items
X = {i1, i2, ..., ik} ∈ L, with k ≤ n′ (the number of attributes), is
an itemset. The attributes of an itemset X over Dmodel, written
Atts(X,Dmodel), is the set of attributes of X’s items that belong
to Dmodel. For example, X = {“xK = ultramafic soil”, “xR =
[2001, 3200]”, “mine”, “trail”} is an itemset. Its attributes w.r.t.
attributes of the previous RMMF model are Atts(X,RMMF ) =
{xK , xR}.

The problem of constraint-based pattern mining is to find the
set of patterns satisfying a selection predicate q in the data (where
q can be a conjunction of primitive constraints). This set, some-
times called the theory of DB with respect to L and q, is denoted
by T h(L, DB, q) [17]. Formally, T h(L, DB, q) = {X ∈ L |
q(X,DB) is true}. In our work, the predicate q is a conjunction of
constraints based on objective and subjective measures. The first con-
straint used in this paper is the minimal frequency constraint, i.e.,
a pattern is selected iff it occurs in the database more than a user-
defined threshold (often denoted by minsup). The second constraint
is a threshold constraint w.r.t. an expert model, denoted by qf≥, i.e.,
a pattern is selected iff its value w.r.t. an expert model f is greater
than a user-defined threshold (denoted by minf ).
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4 From patterns to models

A simple approach to take advantage of domain knowledge is to de-
rive from it primitive constraints, and to use them during pattern min-
ing. We propose to use constraints that are derived from expert mod-
els instead of ad-hoc constraints manually defined by experts. These
constraints represent much more than basic “if ... then ...” rules since
a single expert model can denote a huge number of such rules.

Various types of constraints could be derived according to data, to
expert models, but also to the studied problem. In this paper, we focus
on a constraint relatively that is to the minimal frequency constraint
even if its theoretical properties are quite different.

We can define a constraint that filters patterns whose value by f
is greater or equal than a given threshold. In other words, this con-
straint keeps patterns for which values predicted by the expert model
are greater or equal than a given threshold. Depending on what f
expresses, this constraint will have different meanings. For exam-
ple, if f estimates soil loss (in kg.m−2 by year) such as in RMMF
model, this constraint will filter patterns corresponding to a poten-
tial soil loss greater than a given quantity. In the absence of “ground
truth” (i.e., data on real soil losses), this constraint will enable to
highlight if such losses are likely to be frequent in the studied area
and in which situations (thanks to the values of the other environ-
mental parameters described in the pattern). Moreover, it would en-
able to show (if the pattern is frequent) with which other factors, not
covered by the model, these soil losses are frequently related in the
data. In the presence of “ground truth”, this constraint will enable to
compare predictions of the expert model with the “truth” of collected
data. Patterns in accordance with the model are interesting because
they are validated twice: once by ground truth and once by domain
knowledge (i.e., represented by the expert model). Moreover, addi-
tional items of the extracted pattern can complement explanations
of the expert model. Patterns in contradiction with the prediction of
the expert model are also interesting, because they enable to identify
correlations not considered by the expert model used (which can be
used to improve the model).

Let X ∈ L be an itemset, f be a model already developed by
experts, and minf ∈ R a user-defined threshold. Our threshold con-
straint derived from expert model f is defined as:

qf≥(X) ≡ f(X) ≥ minf

4.1 Value of an itemset X by an expert model f

The previous constraint implies that we can calculate the value pre-
dicted by an expert model for a given itemset, i.e., f(X). Let us
consider the model f(x1, x2, x3) =

√
x1 − cos(x2)/2 × log(x3)

introduced in Section 3.1. If pattern X is {“x1 ∈ [3, 5]”, “x2 =
3”, “x3 = A”}, what is the value of f(X) ? In other words, what
is the prediction of the expert model f for x1 ∈ [3, 5], x2 = 3, and
x3 = A values ?

For an itemset such as {“x1=1”, “x2 = 3”, “x3=A”, “mine”}, we
only have to calculate f(1, 3, 10), if we suppose that “x3 = A” is
associated to 10 by experts. This case is simple because all the at-
tributes of the model appear in the pattern. Moreover, these attributes
are associated to a single value in each items (and not an interval of
values). Note that we do not need to consider the mine item in f
calculus, since this information is not considered by the model. Nev-
ertheless, this item is interesting because it gives an additional infor-
mation w.r.t. the knowledge captured by the model. More formally, if
Atts(X,Dmodel) = Dmodel and ∀i ∈ X , item i represents a single

value, then f ( X={i1, i2, ..., in, ..., ik}) = f (i1, i2, ..., in). However,
we have to deal with two problems in a more general case.

First, some attributes of the model may not be available in the
data (Dmodel �⊆ DDB). In the same way, some attributes of the
model may not be expressed in the pattern. Let us consider the item-
set X ′= {“x1=1”, “x3=A”, “mine”}. It does not have all the at-
tributes of the model (x2 is not expressed). We can find upper and
lower bounds for f(X ′) by considering the values of x2 for which
f is maximal/minimal. In our example, if x2 = π or 3π, then
f(1, x2, 10) = 1.5. This value of f is the greatest possible value
given x1 and x3 values. On the other hand, if x2 = 0, 2π or 4π,
then f(1, x2, 10) = 0.5. This value of f is the smallest possible
value given x1 and x3 values. We can easily deduce that 0.5 ≤
f(X ′) ≤ 1.5 even if x2 is not represented in X ′. More formally,
let X = {i1, i2, ..., in, ..., ik} be an itemset, f(x1, ..., xj , ...xn) be
an expert model. For ∀xj ∈ Dmodel, xj /∈ Atts(X,Dmodel) :

min
∀ij∈dom(xj)

f(i1, ..., ij , ...in) ≤ f(X)

f(X) ≤ max
∀ij∈dom(xj)

f(i1, ..., ij , ...in)

Next, domains of values of the model and those of itemsets may
be different. The mathematical model is based on numerical values,
whereas itemsets are based on categorical values (using a discretiza-
tion method if necessary). We often have itemsets representing a mix
of intervals, numerical values and categorical values. For example,
let us consider the itemset X ′′ = {“x1 = 4”, “x2 ∈ [0, 2π[”, “x3 =
A”}. It associates an interval of values to attribute x2. This item
“x2 ∈ [0, 2π[” comes from a data preprocessing step in which the
domain of x2 has been discretized in several (disjoint) intervals. Such
as previously, it is possible to find f(X ′′) by studying upper and
lower bounds w.r.t. x2 ∈ [0, 2π[. If we study the cosine function on
[0, 2π[, then we know that f(X ′′) is maximal when x2 = π (in this
case, f(4, π, 10) = 2.5), and minimal when x2 = 0 (in this case,
f(4, 0, 10) = 1.5). Thus, we can deduce that 1.5 ≤ f(X ′′) ≤ 2.5.
The previous formula can be generalized to any item ij ∈ X that
represents an interval [inf j , supj ] of an attribute xj of model f :

min
∀ij∈[inf j ,supj ]

f(i1, ..., ij , ...in) ≤ f(X)

f(X) ≤ max
∀ij∈[inf j ,supj ]

f(i1, ..., ij , ...in)

As a consequence, the value of an itemset X by an expert model
f can be an interval of values. The definition of our model-based
threshold constraint has to be extended in the following way:

Given f(X) = [inf X , supX ],
qf≥(X) ≡ f(X) ≥ minf ≡ inf X ≥ minf

It is now important to study the theoretical properties of this con-
straint to improve computational efficiency. It is one of the neces-
sary condition to design complete and correct patten mining algo-
rithms. For example, the frequency is a monotonic decreasing func-
tion. Thus, if an itemset is not frequent, then all its supersets are also
not frequent. This “anti-monotonic” property has been extensively
used in frequent pattern mining algorithms to provide scalability. We
now discuss properties of models that can also be used to prune the
search space well.

4.2 Theoretical properties of models w.r.t. itemsets

4.2.1 Properties between an itemset and its supersets

Let X,Y ∈ L be two itemsets such that X ⊂ Y . If X and Y have
the same attributes of the model f , then they have the same items
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for these attributes, and thus f(Y ) = f(X). In other words, Y
only differs from X because it has additional items not considered
by the model, which does not impact f(Y ) calculus. In this case, if
f(X) < minf , then f(Y ) < minf . For example, itemset X ′′ =
{“x1 = 4”, “x2 ∈ [0, 2π[”, “x3 = A”} has the same value by f
as Y ′′

1 = {“x1 = 4”, “x2 ∈ [0, 2π[”, “x3 = A”, “mine”} and
Y ′′
2 = {“x1 = 4”, “x2 ∈ [0, 2π[”, “x3 = A”, “mine”, “trail”}.

Indeed, f(4, 0, 10) ≤ f(X ′′) ≤ f(4, π, 10) such as f(Y ′′
1 ) and

f(Y ′′
2 ), since attributes x1, x2 and x3 of f have the same values. As

a consequence, if f(X ′′) < minf , then f(Y ′′
1 ) and f(Y ′′

2 ) are also
lower than minf .

Property 1. Given X ∈ L. If qf≥(X) is false then ∀Y ∈ L s.t.
X ⊂ Y and Atts(X,Dmodel) = Atts(Y,Dmodel), qf≥(Y ) is
false.

It is more complex when f attributes are not expressed in X
but are expressed in Y (the only other possibility if we consider
X ⊂ Y hypothesis). For example, let us consider itemset X =
{“x2 ∈ [0, 2π[”, “x3 = A”} and one of its supersets Y1 =
{“x1 = 16”, “x2 ∈ [0, 2π[”, “x3 = A”}. Attribute x1 is ex-
pressed in Y1 but not in X . We know that 0.5 = f(1, 0, 10) ≤
f(X) ≤ f(16, π, 10) = 4.5 since dom(x1) = [1, 16]. If the min-
imum threshold for f is 2, we may have f(X) < minf , although
f(Y1) = [3.5, 4.5] > minf . On the other hand, if minf = 5, then
we are sure that all the supersets of X satisfy f(X) < 5. For any
x1 ∈ [1, 16], minimum and maximum values of f are 0.5 and 4.5.
Thus, all supersets of X have a value by f between 0.5 and 4.5. If the
upper bound of f(X) is lower than the threshold, then all the super-
sets of X are also in such a case. This property is known as "bounds
consistency” of a constraint in the constraints community.

Property 2. Let be X ∈ L such that inf X ≤ f(X) ≤ supX . If
qf≥(X) is false and supX < minf , then ∀Y ∈ L s.t. X ⊂ Y ,
qf≥(Y ) is false.

4.2.2 Property of itemsets sharing the same attributes

The previous properties show links between an itemset and its super-
sets. These links enable to bound the values of f for the supersets
of a given itemset. Analyzing function f enables to highlight other
properties between itemsets w.r.t. the model. However, this can be
complex due to the nature of studied functions (possibly nonlinear
functions of several attributes). It is difficult to study globally the
monotonicity of a function over several attributes. Our solution con-
sists in analyzing the curve of the function w.r.t. one attribute at the
same time (the others being considered as constants). This solution
is equivalent to studying the partial derivative of f on each attribute.
Given one attribute, the main objective is to identify the intervals in
which the function is monotonic. Then, for each interval, it is possi-
ble to derive properties that enable to prune the search space.

Let us consider itemsets X={“x1=4”, “x2 ∈ [π/2, π[”,
“x3=A”} and Y ={ “x1=4”, “x2 ∈ [0, π/2[′′, “x3 =A”}. Note that
Atts(X,Dmodel) = Atts(Y,Dmodel). The analysis of function f
w.r.t. x2 shows that it is strictly increasing on [0, π] (i.e., ∂f

∂x2
> 0

on [0, π]). Since X is greater than Y w.r.t. x2 (i.e., Y ≺x2 X), we
have f(Y ) <f(X). Indeed, f(X) = [2, 2.5[ and f(Y ) = [1.5, 2[.
As a consequence, if f(X) < minf , then f(Y ) < minf (even if
X �⊂ Y ).

In the same way, let us consider Y ′′ =
{“x1 = 1”,“x2 ∈ [0, π/2[”, “x3 = A”}. We know that
f(Y ′′) < f(X) because ∂f

∂x1
> 0 on dom(x1) and Y ′′ ≺x1 X .

More formally, a total order relation, denoted by ≺xj , can be
defined for each attribute xj ∈ DDB ∩Dmodel. If i, i′ ∈ dom(xj)
represent intervals, i.e., i = “xj ∈ [a, b]” and i′ = “xj ∈ [c, d]”,
then i ≺xj i′ iff b < c. For example, “xR ∈ [0, 2000]” ≺xR

“xR ∈ [2001, 3200]” because 2000 < 2001. If i, i′ ∈ dom(xj)
are nominal values associated to numerical values numi and numi′

by experts, then i ≺xj i′ iff numi < numi′ . For example,
“xK = volcanic soil” ≺xj “xK = ultramafic soil” because
experts associate “volcanic soil” to 8 and “ultramafic soil” to 10. It
is possible to extend the order ≺xj to itemsets X,Y ∈ L. Thus, we
have a partial order relation between itemsets w.r.t an attribute xj .
The itemset X is less than Y according to xj (written X ≺xj Y )
iff i ≺xj i′ with i ∈ X , i′ ∈ Y , and i, i′ ∈ dom(xj). Thus, if
X = {“xK = ultramafic soil”, “xR = [0, 2000]”, “mine”}
and Y = {“xR = [2001, 3200]”, “mine”, “trail”}, we have
X ≺xR Y .

Based on these definitions, the previous property can be formal-
ized as follows :

Property 3. Let X,Y ∈ L be two itemsets such that
Atts(X,Dmodel) = Atts(Y,Dmodel). Let us denote by X.xj the
value of attribute xj in X . Given that for all attributes xj ∈ Dmodel

of X and Y , we have ∂f
∂xj

> 0 over [a,b] ∧ X.xj , Y.xj ∈
[a, b] ∧ Y ≺xj X OR ∂f

∂xj
< 0 over [a,b] ∧ X.xj , Y.xj ∈

[a, b] ∧ X ≺xj Y . If qf≥(X) is false, then qf≥(Y ) is false.

Note that the impact of this property depends on the dis-
cretization. We cannot deduce such a thing with itemsets X =
{“x1 = 4”,“x2 ∈ [π, 2π[”, “x3 = A”} and Y = {“x1 =
4”,“x2 ∈ [0, π[”, “x3 = A”}, because function f is increasing
in x2 on [0, π] and decreasing on [π, 2π]. Let xj be an attribute such
that its domain is discretized in intervals in which f is monotonic.
The larger the number of items in each interval is, the more effective
the previous property is.

4.3 Pushing expert models into pattern mining

The proposed constraint is relatively simple to integrate in pattern
mining algorithms, since it has similar properties to the ones clas-
sically used to extract itemsets (e.g., the minimal frequency con-
straint). Only few modifications have to be done since checking the
constraint does not access to the database or other resources. Only the
generation of candidate patterns is impacted. The interest of using
this threshold constraint based on expert models during extraction
(and not in post-processing step) is to quickly prune uninteresting
patterns, and this improves performance and scalability.

As an example, we have integrated in our experiments such con-
straint in the algorithm Close-By-One [15]. Initially developed for
formal concept analysis, this algorithm is used in our context to ex-
tract closed frequent itemsets. The principle of this algorithm is to
perform a depth-first search in the lattice to compute closed patterns.
At each step, the algorithm extends currently generated patterns by
adding one item and then processes its closure. A canonicity test is
also done to avoid redundancy. This algorithm assumes that there is
a linear order on the sets of attributes and items. In our context, at-
tributes of the model are enumerated in lexicographic order first, fol-
lowed by the other attributes of the database (also in in lexicographic
order). For each attribute, items are ordered by their value.

Algorithms 1 and 2 describe this approach. Parameter (X,T ) of
Algorithm 2 represents the current closed pattern X (to extend) and
the set of transactions T in which it appears. Parameter A is the item-
set used to generate the current pattern X . Parameter i is the last item
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added in pattern X , and parameter B is the set of attributes that can
be used for extension. Line 1 is the canonicity test used to avoid gen-
erating the same pattern twice. Line 5 saves the current pattern in the
solutions (with its frequency |T |). Lines 8 and 10 enumerate each
item that can be used to extend X . Line 9 processes the possible at-
tributes for next extensions. Lines 11-14 calculate the closure of the
extensions of X , their transactions and run the next iterations. The
notation “cl( )" in Lines 12-13 represents the closure operator. The
closure of a set of items is the set of transactions in which the set of
items appears (Line 12). The closure of a set of transactions is the set
of items that are common to all input transactions (Line 13).

The only difference between this algorithm and the original one
in [15] relies in Lines 2-4, and 7. Line 2 checks the frequency con-
straint. Line 3 represents Property 2 of our model-based constraint,
i.e., if the upper bound of f(X) (or its value if it is not associated to
an interval) is lower than minf , then all its supersets can be pruned.
Lines 4 and 7 represent Property 1 of our model-based constraint,
i.e., if the extension of X is false w.r.t the model threshold constraint,
then all supersets sharing the same attributes w.r.t. Dmodel can be
pruned.

Algorithm 1: CBOwithModelConstrainst(DB, minsup, f )
Output: The set of closed frequent itemsets Closed whose

values by the model f are greater than minf (with their
frequency)

1 Closed ← ∅
2 foreach dk ∈ DDB do

3 B ← {dl ∈ DDB | dk < dl}
4 foreach i ∈ dom(dk) do
5 Process( (cl(cl({i})), cl({i})) , {i}, i, B, Closed )

6 return Closed

Algorithm 2: Process( (X,T), A, i, B, Closed )

1 if {h | h ∈ X\A and h ≺ i} = ∅ then

2 if |T | ≥ minsup then

3 if supX( f(X) ) < minf then break
4 if f(X) ≥ minf then

5 Closed ← Closed ∪ {(X, |T |)}
6 Btmp ← B

7 else Btmp ← B\{d ∈ DDB | d /∈ Dmodel}
8 foreach dk ∈ Btmp do

9 B ← B\{dl ∈ DDB | dl ≤ dk}
10 foreach j ∈ {h | h ∈ dom(dk) and i ≺ h} do

11 Z ← X ∪ {j}
12 U ← T ∩ cl({j})
13 Y ← cl(U)
14 Process( (Y, U), Z, j, B,Closed )

Our approach is totally generic. Most pattern mining algorithms
(s.t. Apriori, FP-growth, Eclat) could have been used instead of
Close-By-One. However, depending on the algorithm strategy, ex-
ploiting some of these properties to prune the search space may not
be easy. For example it is difficult to take advantage of property 3
in Close-By-One (due to its candidate generation strategy based on
closure), while it is easier for algorithms s.t. Apriori, FP-growth, or
Eclat (since itemsets are extended by one item at a time).

5 Experimentations

In our experiment, we have considered a conjunction of two con-
straints: the minimal frequency constraint and our constraint based
on the expert model of Atherton [4]. This constraint has been inte-
grated in the algorithm Close-By-One [15].

Our dataset is based on a satellite image of more than 8 millions
of pixels (a 500 Mb SPOT image). The satellite image has been
transformed into a transactional database in which each transaction
represents informations of one pixel. The attributes of the database
correspond to the radiometric properties of pixels (red, green, blue,
Brightness Soil Index and Normalized Difference Vegetation Index)
that have been discretized. We also add other attributes such as trails,
slope, soil type and soil occupation. These last attributes are the ones
used by the Atherton model. At the end, we have a dataset with 74
different items and 8 millions of transactions (each transaction being
composed of 7 items). Experiments have been done on a PC with 8
Gb of RAM and a 3.20 GHz processor.

In these experiments, we study execution time and number of solu-
tions extracted for different frequency thresholds (x axis), and for dif-
ferent model thresholds (minf ). Altogether, 16 minimum frequency
thresholds have been tested w.r.t. 5 different model thresholds. The
experiments with "no model constraint" represent the performance of
the state-of-the-art Close-By-One algorithm with the frequency con-
straint only. Note that 1.5 is the lowest value for the model and 17
is the highest. Thus, minf = 3 represents a low threshold. It means
that we prune patterns that are not related at all to soil erosion. On
the other hand, minf = 15 is a very high threshold. It means that, in
these experiments, we prune all patterns that are not associated to a
strong soil erosion risk by the model.
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Figure 2. Number of extracted patterns and execution time

The plot at the top of Figure 2 presents the number of extracted
patterns for these experiments. Without our model-based constraints,
the number of solutions can exceeds 1000 itemsets, for a frequency
threshold of 10%. With our model-based constraint, no more than 10
patterns are extracted with the lowest model threshold (minf = 3).

F. Flouvat et al. / Improving Pattern Discovery Relevancy by Deriving Constraints from Expert Models 331



These results show that, thanks to expert models, we can easily prune
lot of patterns not related at all to the studied phenomenon. Thus,
experts have a limited number of patterns related to their problematic
to analyze. Note that below 10%, the number of patterns quickly
explodes in all cases (even if an important difference remains).
The plot at the bottom presents execution time for the previous ex-
periments. As shown by this figure, for lower frequency thresholds,
execution time can exceed 6000 seconds without our model-based
constraint (in this case, only the frequency constraint is used). If the
model-based constraint is used, then execution time never exceeds
2000 seconds. As expected, the model constraint reduces the number
of solutions which accelerates pattern extraction. It also shows that
the cost of processing the model does not exceed its benefits from a
performance point of view.

Thanks to this constraint, a frequent itemset related to a strong
soil erosion risk (minf = 15) has been extracted. This itemset is
{“Geology=Serpentinites", “LandCover=ultramafic soil on volcano-
sedimentary substrat", “Slope=[61,100]", “Red=(14.2,28.4]",
“Green=[0.0,36.1]", “NDVI=(-0.071,0.115]", “Blue=[0.0,24.5]"}.
This pattern shows that less than 1% of the studied area is associated
to a strong soil erosion risk. These high risk areas are characterized
by serpentinite soils covered by volcano-sedimentary substrat and
have an important slope. Radiometric attributes (not considered
by the expert model) confirm this information. Their value shows
that we are in presence of low green and NDVI indices, typical of
a sparse vegetation. Radiometric attributes have an other interest.
These values can be used on other satellite images to identify
high risk areas, even if we do not have the geology and the land
cover (i.e., input data of the model) on these images. Another
example of pattern is {“Geology=Thick laterites on peridotites",
“LandCover=Ligno-herbaceous scrub", “Slope=[3.6;30] "}. This
pattern is associated by the model to a moderate soil erosion
risk (minf = 6). Its frequency shows that 4-5% of the area is
characterized by such erosion risk.

6 Conclusion and perspectives

This paper highlights the interest of using domain models in KDD.
These models represent a synthesis of the knowledge of a given field
and are much richer than basic “if ... then ..." rules. In our work,
we pushed these models as constraints during pattern mining. They
allow a finer analysis while improving performances thanks to some
of their properties. Hence, we obtain more relevant patterns that can
extend or contradict previous knowledge of studied phenomena.

The perspectives of this work are numerous. A first perspective
is to combine several models, each one being weighted by experts
depending on application context. Another perspective would be to
compare more globally knowledge of one or several models with
knowledge extracted using data mining. Finally, it would be inter-
esting to combine, synthesize, knowledge derived from several mod-
els. Thus, expert models would become input data for data mining.
This kind of approach would allow to extract correlations that are
frequently expressed in models of a given field.
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