
HAL Id: hal-01151513
https://hal.science/hal-01151513

Submitted on 24 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Frequent Pattern Mining in Attributed trees
Claude Pasquier, Jérémy Sanhes, Frédéric Flouvat, Nazha Selmaoui-Folcher

To cite this version:
Claude Pasquier, Jérémy Sanhes, Frédéric Flouvat, Nazha Selmaoui-Folcher. Frequent Pattern Min-
ing in Attributed trees. 17th Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD’13), Apr 2013, Gold Coast, Australia. pp.26-37, �10.1007/978-3-642-37453-1_3�. �hal-
01151513�

https://hal.science/hal-01151513
https://hal.archives-ouvertes.fr


Frequent Pattern Mining in Attributed Trees

Claude Pasquier12, Jérémy Sanhes1, Frédéric Flouvat1

and Nazha Selmaoui-Folcher1

1 University of New Caledonia, PPME, BP R4, F-98851 Nouméa, New Caledonia
{jeremy.sanhes, frederic.flouvat, nazha.selmaoui}@univ-nc.nc

http://ppme.univ-nc.nc
2 Institute of Biology Valrose (IBV)

UNS - CNRS UMR7277 - INSERM U1091, F-06108 Nice cedex 2
claude.pasquier@unice.fr

http://ibv.unice.fr

Abstract. Frequent pattern mining is an important data mining task
with a broad range of applications. Initially focused on the discovery
of frequent itemsets, studies were extended to mine structural forms like
sequences, trees or graphs. In this paper, we introduce a new data mining
method that consists in mining new kind of patterns in a collection of
attributed trees (atrees). Attributed trees are trees in which vertices are
associated with itemsets. Mining this type of patterns (called asubtrees),
which combines tree mining and itemset mining, requires the exploration
of a huge search space. We present several new algorithms for attributed
trees mining and show that their implementations can efficiently list
frequent patterns in a database of several thousand of attributed trees.

Keywords: tree mining, frequent pattern mining, attributed tree

1 Introduction

Frequent pattern mining is an important problem in data mining research. Ini-
tially focused on the discovery of frequent itemsets [1], studies were extended to
mine structural forms like sequences [2], trees [7] or graphs [22]. While itemset
mining seeks frequent combinations of items in a set of transactions, structural
mining seeks frequent substructures. Most existing studies focus only on one kind
of problem (itemset mining or structural mining). However, in order to represent
richer information, it seems natural to consider itemsets that are organized in
complex structures. In this paper, we introduce the problem of mining attributed
trees that are tree structures in which each vertex is associated with an itemset.

In web log analysis, for example, it is common to represent user browsing in
tree-like data where each page is identified with an unique id. However, one can
more pertinently characterize browsed pages with lists of keywords associated
with their content. This approach allows to capture the browsing habits of users
even when the web site is reshuffled. Other applications can be imagined in vari-
ous area such as retweet trees mining, spatio-temporal data mining, phylogenetic
tree mining and XML document mining.

Published in Lecture Notes in Computer Science.
The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-642-37453-1 3



Pasquier et al. Frequent Pattern Mining in Attributed Trees

The key contributions of our work are the following: 1) We present the prob-
lem of mining ordered and unordered substructures in a collection of attributed
trees. 2) We define canonical forms for attributed trees. 3) We propose a method
for attributed trees enumeration that is based on two operations: itemset exten-
sion and tree extension. 4) We present an efficient algorithm IMIT for extracting
frequent substructures in a set of attributed trees. 5) We perform extensive ex-
periments on several synthetic datasets and a real weblogs dataset.

The rest of this paper is organised as follows. Section 2 presents basic concepts
and defines the problem. Section 3 proposes a brief overview of related works,
particularly few studies that mix itemset mining and structure mining. Section
4 describes the method including the search space exploration, the frequency
computation and the candidates pruning method. Section 5 reports several ap-
plications of the algorithms to mine both synthetic and real datasets. Finally,
section 6 concludes the paper and presents possible extensions of the current
work.

2 Basic concepts and problem statement

In this section, we give basic definitions and concepts and then introduce the
problem of attributed tree mining.

2.1 Preliminaries

Let I = {i1, i2, .., in} be a set of items. An itemset is a set P ⊆ I. The size of an
itemset is the number of items. The set D of itemsets presents in a database is
denoted by {P1,P2, ...,Pm} where ∀P ∈ D,P ⊆ I. D is a transaction database.

A tree S = (V,E) is a directed, acyclic and connected graph where V is a set
of vertices (nodes) and E = {(u, v)|u, v ∈ V } is a set of edges. A distinguished
node r ∈ V is considered as the root, and for any other node x ∈ V , there is a
unique path from r to x. If there is a path from a vertex u to v in S = (V,E),
then u is an ancestor of v (v is a descendant of u). If (u, v) ∈ E (i.e. u is
an immediate ancestor of v), then u is the parent of v (v is a child of u). An
ordered tree has a left-to-right ordering among the siblings. In this paper, unless
otherwise specified, all trees we consider are unordered.

An attributed tree, or (atree) is a triple T = (V,E, λ) where (V,E) is
the underlying tree and λ : V → D is a function which associates an itemset
λ(u) ∈ I to each vertex u ∈ V . The size of an attributed tree is the number of
items associated with its vertices.

In this paper, we use a string representation for an atree based on that defined
for labeled trees by Zaki [24]. This representation is only intended to provide a
readable form for atrees. The string representation for an atree T is generated
by adding a representation of the nodes found in T in a depth-first preorder
traversal of T and adding a special symbol $ when a backtracking from a child
to its direct parent occurs. In the paper, for simplicity, we omit the trailing $s.
A string representation of a node is generated by listing all the items present

2



Pasquier et al. Frequent Pattern Mining in Attributed Trees

in the associated itemset in a lexicographical order. For example, the string
representation of atree T2 from Fig. 1 is ”a c $ cde ab $ a”.

Attributed trees can be understood as itemsets organized in a tree structure.
As such, attributed tree inclusion can be defined with respect to itemsets
inclusion or structural inclusion. For itemset inclusion, we say that atree T1
is contained in another atree T2 if both atrees have the same structure and
for each vertex of T1, the associated itemset is contained in the itemset of the
coresponding vertex in T2. More formally, T1 = (V1, E1, λ1) is contained in
T2 = (V2, E2, λ2), and is denoted by T1 <I T2, if V1 = V2 and E1 = E2

and ∀x ∈ V1, λ1(x) ⊆ λ2(x). Structural inclusion is represented by the classical
concept of subtree [5, 7, 12, 17, 19, 23, 24].

From the previous definition, we generalize the notion of asubtree in the
following way. T1 = (V1, E1, λ1) is a asubtree of a atree T2 = (V2, E2, λ2) and
is denoted T1 < T2 if T1 is an isomorphic asubtree of T2, i.e. there exists a
mapping ϕ : V1 → V2 such that T1 6= T2 and (u, v) ∈ E1 if (ϕ(u), ϕ(v)) ∈ E2

and ∀x ∈ V1, λ1(x) ⊆ λ2(ϕ(x)). If T1 is an asubtree of T2, we say that T2
is an asupertree of T1. T1 is called an induced asubtree of T2 iff T1 is an
isomorphic asubtree of T2 and ϕ preserves the parent-child relationships. T1 is
called an embedded asubtree of T2 iff T1 is an isomorphic asubtree of T2 and
ϕ preserves the ancestor-descendant relationships. T1 = (V1, E1, λ1) is called a
gap-i asubtree of T2 = (V2, E2, λ2) iff T1 is an isomorphic asubtree of T2 and
ϕ preserves the ancestor-descendant relationships with the following constraint:
∀u∀v ∈ E1 such that u is an ancestor of v and d(ϕ(u), ϕ(v)) = 1, d(u, v) ≤ i
where d(x, y) represents the number of edges between x and y in the atree.

Fig. 1 shows an example of an atree database composed of three different
atrees with two (incomplete) sets of common asubtrees using a maximum gap
of 0 and 1.

Input database

a

ab cde

︸ ︷︷ ︸
T1

a

c cde

ab a︸ ︷︷ ︸
T2

a

cde

abc c︸ ︷︷ ︸
T3

︸ ︷︷ ︸
T1

Common asubtrees

a

cde

a

e︸ ︷︷ ︸
gap-0 asubtrees

a

c

a

ab c

a

a︸ ︷︷ ︸
gap-1 asubtrees

Fig. 1. Example of an atrees database with some common asubtrees.

All tree mining algorithms dealing with unordered trees have to face the
isomorphism problem. To avoid the redundant generation of equivalent solutions,
one tree is chosen as the canonical form and other alternative forms are discarded
[3, 8, 17, 23, 25]. In previous works, canonical forms are based on a lexicographical
ordering on node’s labels. In our work, we define an ordering based on node’s

3



Pasquier et al. Frequent Pattern Mining in Attributed Trees

associated itemsets. Given two itemsets P and Q (P 6= Q), we say that P < Q
iff 1) ∀i ∈ [1,min(|P|, |Q|)] : Pi ≤ Qi and 2) if ∀i ∈ [1,min(|P|, |Q|)] : Pi =
Qi, then |P| > |Q|. From the definition above, an ordering, ≺, among atrees
can be defined. From this, a canonical form of isomorphic atrees is easily
determined using the method presented by Chi et al. [7].

The problem with frequent atrees mining is that the number of frequent pat-
terns is often large. In real applications, generating all solutions can be very
expensive or even impossible. Moreover, lots of these frequent atrees contain
redundant information. In Fig. 1, for example, atree ”a e” is present in all trans-
actions but the pattern is already encoded in atree ”a cde” because ”a e” is
contained in atree ”a cde”. This is the same for atree ”a a” which is an asubtree
of ”a ab $ c”.

Since the proposal of Manilla et al. [13] huge efforts have been made to design
condensed representations that are able to summarize solutions in smaller sets.
Set of closed patterns is an example of such a condensed representation [18]. We
say that an atree T is a closed atree if none of its proper asupertrees has the
same support as T . In this paper, we introduce another condensed representation
which is defined with respect to the contained in relationship only. We say that
an atree T is a c-closed atree (content closed) if it is not contained (as defined
above) in another atree with the same support as T .

2.2 Problem statement

Given a database B of atrees and an atree T , the per-tree frequency of T is
defined as the number of atrees in B for which T is an asubtree. An atree is
frequent if its per-tree support is greater than or equal to a minimum threshold
value. The problem consists in enumerating all frequent patterns in a given forest
of atrees.

3 Related works

Most of the earlier frequent tree mining algorithms are derived from the well-
known Apriori strategy [1]: a succession of candidates generation phase followed
by a support counting phase in which infrequent candidates are filtered out.
Two strategies are possible for candidate generation: extension and join. With
extension, a new candidate tree is generated by adding a node to a frequent tree
[3, 17]. With join, a new candidate is created by combining two frequent trees
[12, 25]. Combination of the two principles has also been studied [8].

Extension principle is a simple method suitable to mine implied trees because
the number of nodes that can be used to extend a given subtree is often lower
than the number of frequent subtrees.

Other tree mining algorithms are derived from FP-growth approach [11].
These algorithms, which adopt the divide-and-conquer pattern-growth princi-
ple avoid the costly process of candidate generation. However, pattern-growth
approach cannot be extended simply to tackle the frequent tree pattern mining

4



Pasquier et al. Frequent Pattern Mining in Attributed Trees

problem. Existing implementations are limited in the type of trees they can han-
dle: induced unordered trees with no duplicate labels in each node’s childs [23],
ordered trees [21] or embedded ordered trees [26] are some kind of trees that
were successfully mined with pattern-growth approach.

Finding condensed representations of frequent patterns is a natural extension
of pattern mining. For itemset mining, the notion of closure is formally defined
[18]. Several works explored this topic in the context of tree mining and proposed
mining methods as well as various implementations [9, 19, 20]. To the best of our
knowledge, no method has been proposed for the general case of attributed trees.

Recently we saw growing interest in mining itemsets organized in structures.
Miyoshi et al. [14] consider labeled graphs with quantitative attributes associated
with vertices. This kind of structure allows to solve the problem by combining
a ”classical” subgraph mining algorithm for the labeled graph, and an existing
itemset mining algorithm for quantitative itemsets in each vertex. Mining at-
tributed subgraphs independently of labels of vertices is impossible with this
approach. Several studies [10, 15, 16] deal with attributed graphs but are looking
for frequent subgraphs sharing common sets of attributes. Our work differs from
these studies in the sense that itemsets associated with the vertices of a given
frequent substructures are not necessarily identical.

4 Mining frequent atrees

We are mainly interested in identifying induced ordered and unordered asub-
trees. Depending on applications, some patterns including gaps in the ancestor-
descendant relationship can also be considered. However, in order to collect only
interesting patterns, the gap used should remain small. Otherwise, the relation-
ship between a node and its descendants is not really tangible. Although we
focus on induced asubtrees, we designed a general method that is able to mine
asubtrees with any gap value, including embedded asubtrees. However, because
of the primary objective, our method works better for induced asubtree mining
and performances decrease as gap parameter increases.

4.1 Atrees enumeration

Using the operator ≺, it is possible to construct a candidate tree Q representing
the complete search space [4] in the following way. The root node of the tree is at
the top level and labeled with ∅. Recursively, for each leaf node n ∈ Q, children
n′ are added such that n ≺ n′. Children of a node n ∈ Q, are generated either
by tree extension or by itemset extension.

Tree extension For tree extension, we use a variation of the well-known right-
most path extension method [3, 17]. Let T be an atree of size k. T can be ex-
tended to generate new atrees in two different ways. In the first way, a new child
N is added to the rightmost node of T (right node extension). In the second

5



Pasquier et al. Frequent Pattern Mining in Attributed Trees

way, a new sibling N is added to a node in the rightmost path of T (right path
extension) [6].

In the classical approach, N represents every valid node from the input
database. In our approach, new nodes N are created from every valid node
Q from the input database. In fact, each node Q, associated with an itemset of
size k, generates a set of k nodes N = {N1, .., Nk} used for tree extension. Each
Ni is associated with an itemset of size 1; the only item being the ith item of
λ(Q).

For example, in Fig. 1, the nodes that can be used for right node extension
of pattern ”a cde” are ”ab”, ”a” (from atree T2), ”abc” and ”c” (from atree T3).
From node ”abc”, three extensions are generated (”a”, ”b” and ”c”) while node
”ab” generates ”a” and ”b”. Nodes ”a” and ”c” generate extensions ”a” and
”c” respectively. Three different candidates are then obtained by adding each of
these extension to the candidate pattern: ”a cde a”, ”a cde b” and ”a cde c”

For ordered trees, this method of candidate generation has been shown to be
complete as well as non-redundant [3]. However, for unordered trees, it might
generate redundant patterns in the form of isomorphic trees. Duplicate can-
didates are detected and discarded before the candidate extension process by
performing a canonical check.

Itemset extension. For itemset extension, we use a variation of the method
presented by Ayres et al. [4]. With this variation, a new item I is added to the
itemset associated with the rightmost node of the candidate atree T . Items used
for itemset extension are derived from the itemset associated with this node in
the input database. The constraint is that the new item must be greater than
any item associated with the rightmost node of T .

4.2 Frequency computation

We organize our data in a structure storing all information needed for the mining
process. Our structure is an extension of the vertical representation of trees
introduced by Zaki [24, 25]. Briefly, each candidate asubtree is associated with its
pattern and several data allowing to pinpoint all its occurrences in the database.
The first candidates, composed of a unique node associated with one item, are
generated by scanning the input database. Using only this unique structure,
it is easy to compute the number of occurrences of each pattern. In addition,
this same structure is sufficient to generate all possible extensions of a given
pattern. When a pattern of size k is processed, all occurrences are extended
with tree extension and itemset extension methods described before to generate
new (k + 1)-candidates that are themselves stored in the structure.

4.3 Search space exploration

Several techniques can be used to prune the search tree.

6



Pasquier et al. Frequent Pattern Mining in Attributed Trees

Candidate pruning. The same rules specified by Agrawal and Srikant twenty
years ago [1], can be applied to the case of atrees: i) any sub-pattern of a frequent
pattern is frequent, and ii) any super-pattern of a non frequent pattern is non
frequent. As the frequency count is an anti-monotonic function (extending a
pattern cannot lead to a new pattern with a greater frequency), is it possible
to stop the exploration of a branch when the frequency of a candidate is less
than the minimum support. For example, in Fig. 1, during the mining of atrees,
when we examine pattern ”a c a” and found that its frequency is lower than the
minimum support, we do not generate candidates obtained by extending ”a c a”
(e.g. ”a c ab”, ”a c a $ b”, ”a c a $ $ c”).

In addition, in the case of unordered tree mining, extension of a candidate is
stopped if it is not in canonical form.

C-closed atrees enumeration. By enumerating only atrees that are not con-
tained in another atree with the same support, the search space can be consider-
ably reduced. Enumerating c-closed atrees involves the storage of every frequent
pattern found with their associated per-tree frequency and their total number
of occurrences in the database (the occurrence-match frequency).

Let T be a candidate atree currently processed, T be the set of all previously
identified frequent atrees and X be the set of candidates generated by extension
of T . We distinguish two subsets of X . XI is the set of atrees generated by
itemset extension of T and XT is composed of tree extensions of T . We define
two functions: ft which gives the per-tree frequency of an atree and fo which
returns its occurence-match frequency.

We say that T is a c-closed atree if 6 ∃T ′ ∈ T UXI such that T <I T
′ and

ft(T
′) = ft(T ). However, finding an itemset extension of T with the same per-

tree frequency as T does not allows to stop the exploration of other candidates
in X . The following additional conditions must also be satisfied: ∃T ′ ∈ T UXI :
T <I T

′ and fo(T ′) = fo(T ).

In Fig. 1, for example, the first candidate to be examined is ”a” with a
per-tree frequency of 3. By itemset extension, we build XI = {”ab”, ”ac”}.
Candidate ”ab” has a per-tree frequency of 3, therefore, candidate ”a” is not
c-closed as ”a” <I ”ab”. However, pattern ”a” appears 7 times in the database
while the total occurrence of candidate ”ab” is 3. The 4 times where ”a” occurs
in an itemset which does not contain ”b” may lead to the generation of other
patterns that are c-closed. This is the case in Fig. 1 where a right node extension
of pattern ”a” generates candidate ”a e” with a per-tree frequency of 3.

Closed atrees enumeration We say that T is a a closed atree if 6 ∃T ′ ∈ T UX
such that T < T ′ and ft(T

′) = ft(T ). The extension of T can be stopped if
∃T ′ ∈ T UX : T < T ′ and fo(T ′) = fo(T ). In addition, one has also to remove
non closed trees from T , i.e. all atrees that are asubtrees of T with a same
per-tree frequency. The check for closure requires to perform several subtree
isomorphism checks that are costly operations.

7



Pasquier et al. Frequent Pattern Mining in Attributed Trees

4.4 Mining algorithms

Fig. 2 shows the high level structure of the IMIT algorithm. First, a set with all
asubtree of size 1 is built by scanning the input database. Then, a loop allows
to process every candidate in the set. The function GetF irst return the smallest
candidate in the set according to the ≺ operator. The processing involves a
canonical test and a frequency test. A frequent candidate which is in canonical
form is added to the list of solutions and all of its extensions are added to the
list of candidates. The processing of a candidate finishes by removing it from the
candidates’ list.

IMIT (D,minSup)

1: C ← {all asubtrees of size 1 in D}
2: while C 6= ∅ do
3: T ← getF irst(C)
4: if isCanonical(T ) and ft(T ) ≥ minSup then
5: T ← T ∪ {T}
6: C ← C ∪ X
7: end if
8: C ← C \ {T}
9: end while

10: printSolutions(T )

Fig. 2. IMIT Algorithm

This algorithm is sufficient to enumerate all solutions but it has a huge
search space. To limit the redundancies in the set of solutions, we developed
IMIT CLOSED, an algorithm extracting closed asubtrees (Fig. 3). As illus-
trated in section 5, the algorithm is costly and is not usable to mine large input
databases.

We designed IMIT CONTENT CLOSED, a third algorithm extracting c-
closed asubtrees. This new algorithm (not shown in this paper) can be easily
deduced from the IMIT CLOSED algorithm (Fig. 3) by replacing < by <I ,
replacing X by XI in line 5 and removing line 11 to 13. The use of <I instead
of < allows to only perform itemsets inclusion tests that are less costly than
subtree isomorphism checks. Lines 11 to 13 remove from the set of solutions
those that are asubtree of the current candidate. This test is not needed for the
extraction of c-closed patterns. Experiments show that this third algorithm is
the best compromise between non redundancy of solutions and execution time.

5 Experimental results

All algorithms are implemented in C++ using STL. Experiments were performed
on a computer running Ubuntu 12.04 LTS and based on a Intel c©CoreTMi5-2400
@ 3.10GHz with 8 Gb main memory. All timings are based on total execution
time, including all preprocessing and results output.

8



Pasquier et al. Frequent Pattern Mining in Attributed Trees

IMIT CLOSED(D,minSup)

1: C ← {all asubtrees of size 1 in D}
2: while C 6= ∅ do
3: T ← getF irst(C)
4: if isCanonical(T ) and ft(T ) ≥ minSup then
5: if 6 ∃T ′ ∈ T ∪ X : T < T ′ and ft(T

′) = ft(T ) then
6: T ← T ∪ {T}
7: end if
8: if 6 ∃T ′ ∈ T : T < T ′ and fo(T ′) = fo(T ) then
9: C ← C ∪ X

10: end if
11: for all T ′ ∈ T such that T ′ < T and fo(T ′) = fo(T ′) do
12: T ← T \ {T ′}
13: end for
14: end if
15: C ← C \ {T}
16: end while
17: printSolutions(T )

Fig. 3. IMIT CLOSED Algorithm

5.1 Synthetic datasets

We modified the synthetic data generation program proposed by Zaki [24] in
order to be able to generate atrees with different size of itemsets. We added
two new parameters controlling the minimum and maximum itemset’s size. This
allows to generate atree with fixed itemset’s size or with a size randomly chosen
in a range.

We used the default parameters as in [24] except for the number of subtrees
T that is set to 10,000. We build five datasets by varying the size of itemsets. In
T10K, all vertices are associated with itemsets of size 1. This allows us to com-
pare our implementation with SLEUTH [25]. In T10K-3 and T10K-5, vertices
are associated with itemsets of size 3 and 5 respectively. In T10K-1/10, vertices
are associated with itemsets of size randomly selected between 1 and 10, while
in T10K-1/20, itemsets’ size vary from 1 to 20.

5.2 Web logs datasets

We built a dataset on logs given by our university following the method described
By Zaki [24]. However, instead of labeling nodes with URLs of the browsed pages,
we associated them with itemsets representing keywords of their content. The
dataset is composed of 126,396 attributed trees with itemsets of size 10 (10
keywords by page).

5.3 performance evaluation

Fig. 4 shows the execution time for mining c-closed sets of induced unordered
patterns using IMIT CONTENT CLOSED on our five synthetic datasets. For

9



Pasquier et al. Frequent Pattern Mining in Attributed Trees
Feuille1

Page 1

10 5 1 0.5 0.1 0.05 0.01
0

0

1

10

100

1,000

10,000

100,000

T10K-3
T10K-5
T10K-1/10
T10K-1/20
T10K
T10K (SLEUTH)

support (%)

e
xe

cu
tio

n
 ti

m
e

 (
se

c)

Fig. 4. Execution time of IMIT CONTENT CLOSED for mining c-closed sets of in-
duced unordered patterns on 5 synthetic datasets

comparison, we added in the figure the execution time of SLEUTH, a refer-
ence implementation of equivalence class extension paradigm [25], on the T10K
dataset. IMIT CONTENT CLOSED is about two times slower than SLEUTH
for all support values except the smallest ones where SLEUTH is penalized by
the cost of joining millions of frequent patterns.

Although IMIT CONTENT CLOSED is slower than SLEUTH, these results
are satisfactory because our algorithm is designed to mine attributed trees. As
such, it is normal to perform worst on mining labeled trees than dedicated im-
plementations. The memory footprint of our algorithm is twice as SLEUTH’s
one.

Feuille5

Page 1

10 5 1 0.5 0.1 0.05
1

10

100

1,000

10,000

100,000

1,000,000

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

nb of closed patterns

nb of c-closed patterns

nb of patterns

time for closed patterns

time for c-closed patterns

time for all patterns

support (%)

tim
e

 (
se

c)

n
u

m
b

e
r 

o
f p

a
tte

rn
s

Fig. 5. Induced unordered mining with 3 versions of IMIT on T10K-3 dataset

The figure also shows that mining attributed trees is extremely more comput-
ing intensive than mining labeled trees; and the difference is largely underesti-
mated because only c-closed patterns were mined. Mining all patterns generates
a huge number of solutions and takes a long time. To give an idea, mining the
T10K-3 dataset with a minimum support of 1% outputs 12 millions patterns in
15 hours (Fig. 5). Mining c-closed atrees allows to reduce both the number of
patterns and the execution time. Thus, at 1% minimum support, 200 c-closed
patterns are found in 4 seconds.

10



Pasquier et al. Frequent Pattern Mining in Attributed Trees

As shown in the same figure, the search for closed patterns allows to re-
duce further the number of patterns. At 1% minimum support, for example, the
number of patterns drops to 103. However, because of the costly subtree isomor-
phism checks, in return, performances collapse when patterns become numerous.
The result is that the difference in computation time increases as the minimum
support decreases.

Fig. 6 show the execution time and number of c-closed patterns in the weblogs
dataset. This dataset is much larger than synthetic datasets used before and its
mining cannot be performed with a minimum support of less than 10% in a
reasonable amount of time. Mining the weblog dataset with a minimum support
of 6% lasts 6 hours and returns 360 patterns.

Feuille1

Page 1

50 45 40 35 30 25 20 15 10 9 8 7 6
0

5000

10000

15000

20000

25000

0
50
100
150
200
250
300
350
400

number of c-closed patterns

time

support (%)

e
xe

cu
tio

n
 ti

m
e

 (
se

c)

n
u

m
b

e
r 

o
f p

a
tte

rn
s

Fig. 6. Performances of IMIT CONTENT CLOSED for mining c-closed sets of induced
unordered patterns on weblogs datasets

6 Conclusion and perspectives

In this paper, we introduce the problem of mining attributed trees. We investi-
gate methods enumerating all frequent patterns or only closed ones, but these
methods proved inefficient because of, in the first case, the huge number of pat-
terns returned, and in the second case, the cost of subtree isomorphism checks.
Finally, we propose a condensed representation of frequent atrees that is de-
fined with respect to itemset inclusion. This representation allows to drastically
reduce both the number of patterns and the execution time. We evaluate the ef-
ficiency of the proposed algorithm, IMIT CONTENT CLOSED, and show that
it successfully extract frequent patterns in large datasets.

One future work is to extend the proposed algorithm to effectively mine fre-
quent closed patterns. Another future work consists in developing similar meth-
ods for mining more complex structures such as attributed graphs.

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. SIGMOD Rec. 22(2), 207–216 (Jun 1993)

11



Pasquier et al. Frequent Pattern Mining in Attributed Trees

2. Agrawal, R., Srikant, R.: Mining sequential patterns. In: ICDE. pp. 3–14. 95 (1995)
3. Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., Arikawa, S.: Efficient

substructure discovery from large semi-structured data. In: SDM (2002)
4. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a

bitmap representation. In: KDD. pp. 429–435 (2002)
5. Balcázar, J.L., Bifet, A., Lozano, A.: Mining frequent closed rooted trees. Mach.

Learn. 78(1-2), 1–33 (2010)
6. Chehreghani, M.H.: Efficiently mining unordered trees. In: ICDM. pp. 111–120

(2011)
7. Chi, Y., Muntz, R.R., Nijssen, S., Kok, J.N.: Frequent subtree mining - an overview.

Fundam. Inf. 66(1-2), 161–198 (2004)
8. Chi, Y., Yang, Y., Muntz, R.R.: Hybridtreeminer: An efficient algorithm for mining

frequent rooted trees and free trees using canonical form. In: SSDBM. pp. 11–20
(2004)

9. Chi, Y., Yang, Y., Xia, Y., Muntz, R.R.: Cmtreeminer: Mining both closed and
maximal frequent subtrees. In: PAKDD. pp. 63–73 (2004)

10. Fukuzaki, M., Seki, M., Kashima, H., Sese, J.: Finding itemset-sharing patterns in
a large itemset-associated graph. In: PAKDD. pp. 147–159 (2010)

11. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
SIGMOD Rec. 29(2), 1–12 (2000)

12. Hido, S., Kawano, H.: Amiot: Induced ordered tree mining in tree-structured
databases. In: ICDM. pp. 170–177 (2005)

13. Mannila, H., Toivonen, H.: Multiple uses of frequent sets and condensed represen-
tations. In: KDD. pp. 189–194 (2005)

14. Miyoshi, Y., Ozaki, T., Ohkawa, T.: Frequent pattern discovery from a single graph
with quantitative itemsets. In: ICDM Workshops. pp. 527–532 (2009)

15. Moser, F., Colak, R., Rafiey, A., Ester, M.: Mining cohesive patterns from graphs
with feature vectors. In: SDM. pp. 593–604 (2009)

16. Mougel, P.N., Rigotti, C., Gandrillon, O.: Finding collections of k -clique percolated
components in attributed graphs. In: PAKDD. pp. 181–192 (2012)

17. Nijssen, S., Kok, J.N.: Efficient discovery of frequent unordered trees. In: First
International Workshop on Mining Graphs, Trees and Sequences (MGTS) (2003)

18. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed item-
sets for association rules. In: ICDT. pp. 398–416 (1999)

19. Termier, A., Rousset, M.C., Sebag, M.: Dryade: A new approach for discover-
ing closed frequent trees in heterogeneous tree databases. In: ICDM. pp. 543–546
(2004)

20. Termier, A., Rousset, M.C., Sebag, M., Ohara, K., Washio, T., Motoda, H.: Dryade-
parent, an efficient and robust closed attribute tree mining algorithm. IEEE Trans.
on Knowl. and Data Eng. 20(3), 300–320 (2008)

21. Wang, C., Hong, M., Pei, J., Zhou, H., Wang, W., Shi, B.: Efficient pattern-growth
methods for frequent tree pattern mining. In: PAKDD. pp. 441–451 (2004)

22. Washio, T., Motoda, H.: State of the art of graph-based data mining. SIGKDD
Explor. Newsl. 5(1), 59–68 (2003)

23. Xiao, Y., Yao, J.F., Li, Z., Dunham, M.H.: Efficient data mining for maximal
frequent subtrees. In: ICDM. pp. 379–386 (2003)

24. Zaki, M.J.: Efficiently mining frequent trees in a forest. In: KDD. pp. 71–80 (2002)
25. Zaki, M.J.: Efficiently mining frequent embedded unordered trees. Fundam. Inf.

66(1-2), 33–52 (2004)
26. Zou, L., Lu, Y., Zhang, H., Hu, R.: Prefixtreeespan: a pattern growth algorithm

for mining embedded subtrees. In: WISE. pp. 499–505 (2006)

12


