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NON-EQUILIBRIUM ISOTHERMAL TRANSFORMATIONS IN A

TEMPERATURE GRADIENT FROM A MICROSCOPIC DYNAMICS

VIVIANA LETIZIA AND STEFANO OLLA

Abstract. We consider a chain of anharmonic oscillators immersed in a heat bath
with a temperature gradient and a time-varying tension applied to one end of the
chain while the other side is fixed to a point. We prove that under diffusive space-time
rescaling the volume strain distribution of the chain evolves following a non-linear
diffusive equation. The stationary states of the dynamics are of non-equilibrium and
have a positive entropy production, so the classical relative entropy methods cannot
be used. We develop new estimates based on entropic hypocoercivity, that allow to
control the distribution of the position configurations of the chain. The macroscopic
limit can be used to model isothermal thermodynamic transformations between non-
equilibrium stationary states.

1. Introduction

Macroscopic isothermal thermodynamic transformations can be modeled microscop-
ically by putting a system in contact with Langevin heat bath at a given temperature
β−1. In [9] a chain of n anharmonic oscillators is immersed in a heat bath of Langevin
thermostats acting independently on each particle. Macroscopically equivalent isother-
mal dynamics is obtained by elastic collisions with an external gas of independent
particles with maxwellian random velocities with variance β−1. The effect is to quickly
renew the velocities distribution of the particles, so that at any given time it is very
close to a maxwellian at given temperature. The chain is pinned only on one side, while
at the opposite site a force (tension) τ is acting. The equilibrium distribution is char-
acterized by the two control parameters β−1, τ (temperature and tension). The total
length and the energy of the system in equilibrium are in general non-linear functions
of these parameters given by the standard thermodynamic relations.

By changing the tension τ applied to the system, a new equilibrium state, with the
same temperature β−1, will be eventually reached. For large n, while the heat bath equi-
librates the velocities at the corresponding temperature at time of order 1, the system
converges to this global equilibrium length at a time scale of order n2t. In [9] it is proven
that the length stretch of the system evolves in a diffusive space-time scale, i.e. after
a scaling limit the empirical distribution of the interparticle distances converges to the
solution of a non-linear diffusive equation governed by the local tension. Consequently
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this diffusive equation describes the non-reversible isothermal thermodynamic transfor-
mation from one equilibrium to another with a different tension. By a further rescaling
of the time dependence of the changing tension, a so called quasi-static or reversible
isothermal transformation is obtained. Corresponding Clausius equalities/inequalities
relating work done and change in free energy can be proven.

The results of [9] summarized above concern isothermal transformations from an
equilibrium state to another, by changing the applied tension. In this article we are
interested in transformations between non-equilibrium stationary states. We now con-
sider the chain of oscillators immersed in a heat bath with a macroscopic gradient of
temperature: each particle is in contact with thermostats at a different temperature.
These temperatures slowly change from a particle to the neighboring one. A tension
τ is again applied to the chain. In the stationary state, that is now characterized by
the tension τ and the profile of temperatures β−1

1 , . . . , β−1
n , there is a continuous flow

of energy through the chain from the hot thermostats to the cold ones. Unlike the
equilibrium case, the probability distribution of the configurations of the chain in the
stationary state cannot be computed explicitly.

By changing the applied tension we can obtain transitions from a non-equilibrium
stationary state to another, that will happen in a diffusive space-time scale as in the
equilibrium case. The main result in the present article is that these transformations
are again governed by a diffusive equation that takes into account the local temperature
profile. The free energy can be computed according to the local equilibrium rule and
its changes during the transformation satisfy the Clausius inequality with respect to
the work done. This provides a mathematically precise example for understanding
non-equilibrium thermodynamics from microscopic dynamics.

The results in [9] where obtained by using the relative entropy method, first devel-
oped by H.T.Yau in [17] for the Ginzburg-Landau dynamics, which is just the over-
damped version of the bulk dynamics of the oscillators chain. The relative entropy
method is very powerful and flexible, and was already applied to interacting Ornstein-
Uhlenbeck particles in the PhD thesis of Tremoulet [14] as well as many other cases,
in particular in the hyperbolic scaling limit for Euler equation in the smooth regime
[13, 4]. This method consists in looking at the time evolution of the relative entropy of
the distribution of the particle with respect to the local Gibbs measure parametrized
by the non-constant tension profile corresponding to the solution of the macroscopic
diffusion equation. The point of the method is in proving that the time derivative of
such relative entropy is small, so that the relative entropy itself remains small with
respect to the size of the system and local equilibrium, in a weak but sufficient form,
propagates in time. In the particular applications to interacting Ornstein-Uhlenbeck
particles [14, 9], the local Gibbs measure needs to be corrected by a small recentering
of the damped velocities due to the local gradient of the tension.

The relative entropy method seems to fail when the stationary measures are not the
equilibrium Gibbs measure, like in the present case. The reason is that when taking the
time derivative of the relative entropy mentioned above, a large term, proportional to
the gradient of the temperature, appears. This term is related to the entropy produc-
tion of the stationary measure. Consequently we could not apply the relative entropy
method to the present problem.

A previous method was developed by Guo, Papanicolaou and Varadhan in [6] for over-
damped dynamics. In this approach the main step in closing the macroscopic equation
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is the direct comparison of the coarse grained empirical density in the microscopic and
macroscopic space scale. They obtain first a bound of the Dirichlet form (more precisely
called Fisher information) from the time derivative of the relative entropy with respect
to the equilibrium stationary measures. This bound implies that the system is close to
equilibrium on a local microscopic scale, and that the density on a large microscopic
interval is close to the density in a small macroscopic interval (the so called one and
two block estimates, see [7] chapter 5).

In the over-damped dynamics considered in [6], the Dirichlet form appearing in
the time derivative of the relative entropy controls the gradients of the probability
distributions with respects to the position of the particles. In the damped models,
the Dirichlet form appearing in the time derivative of the relative entropy controls
only the gradients on the velocities of the probability distribution of the particles. In
order to deal with damped models a different approach for comparing densities on the
different scales was developed in [12], after the over-damped case in [15], based on
Young measures. Unfortunately this approach requires a control of higher moments of
the density that are difficult to prove for lattice models. Consequently we could not
apply this method either in the present situation.

The main mathematical novelty in the present article is the use of entropic hypoco-
ercivity, inspired by [16]. We introduce a Fisher information form In associated to the
vector fields {∂pi + ∂qi}i=1,...,n, defined by (2.27). By computing the time derivative
of this Fisher information form on the distribution at time t of the configurations, we
obtain a uniform bound In ≤ Cn−1. This implies that, at the macroscopic diffusive
time scale, velocity gradients of the distribution are very close to positions gradients.
This allows to obtain a bound on the Fisher information on the positions from the
bound on the Fisher information on the velocities. At this point we are essentially with
the same information as in the over-damped model, and we proceed as in [6]. Observe
that the Fisher information In we introduce in (2.27) is more specific and a bit different
than the distorted Fisher information used by Villani in [16], in particular In is more
degenerate. On the other hand the calculations, that are contained in appendix D are
less miraculous than in [16], and they are stable enough to control the effect of the
boundary tension and of the gradient of temperature. This also suggests that entropic
hypocoercivity seems to be the right tool in order to obtain explicit estimates uniform
in the dimension of the system.

Adiabatic thermodynamic transformations are certainly more difficult to be obtained
from microscopic dynamics, for some preliminary results see [13, 4, 1, 10]. Equilibrium
fluctuations for the dynamics with constant temperature can be treated as in [11]. The
fluctuations in the case with a gradient of temperature are non-equilibrium fluctuation,
and we believe that can be treated with the techniques of the present article together
with those developed in the over-damped case in [5].

Large deviations for the stationary measure also require some further mathematical
investigations, but we conjecture that the corresponding quasi-potential functional ([2])
is given by the free energy associated to the local Gibbs measure, without any non-local
terms, unlike the case of the simple exclusion process.

The article is structured in the following way. In section 2 we define the dynamics and
we state the main result (Theorem 2.1). In section 3 we discuss the consequences for
the thermodynamic transformations from a stationary state to another, the Clausius
inequality and the quasi-static limit. In section 4 are obtained the bounds on the
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entropy and the various Fisher informations needed in the proof of the hydrodynamic
limit. In section 5 we show that any limit point of the distribution of the empirical
density on strain of the volume is concentrated in the weak solutions of the macroscopic
diffusion equation. The compactness, regularity and uniqueness of the corresponding
weak solution, necessary to conclude the proof, are proven in the first three appendices.
Appendix D contains the calculations and estimates for the time derivative of the Fisher
information In.

2. The dynamics and the results

We consider a chain of n coupled oscillators in one dimension. Each particle has
the same mass, equal to one. The configuration in the phase space is described by
{qi, pi, i = 1, . . . , n} ∈ R

2n. The interaction between two particles i and i−1 is described
by the potential energy V (qi− qi−1) of an anharmonic spring. The chain is attached on
the left to a fixed point, so we set q0 = 0, p0 = 0. We call {ri = qi − qi−1, i = 1, . . . , n}
the interparticle distance.

We assume V to be a positive smooth function, that satisfy the following assumptions:

i)

lim
|r|→∞

V (r)

|r| = ∞, (2.1)

ii) there exists a constant C2 > 0 such that:

sup
r

|V ′′(r)| ≤ C2, (2.2)

iii) there exists a constant C1 > 0 such that:

V ′(r)2 ≤ C1 (1 + V (r))). (2.3)

In particular these conditions imply |V ′(r)| ≤ C0 +C2|r| for some constant C0. Notice
that this conditions allows potentials that may grow like V (r) ∼ |r|α for large r, with
1 < α ≤ 2.

Energy is defined by the following Hamiltonian function:

H :=
n∑

i=1

(
p2i
2

+ V (ri)

)
(2.4)

The particle dynamics is subject to an interaction with an environment given by
Langevin heat bath at different temperatures β−1

i . We choose βi as slowly varying on
a macroscopic scale, i.e. βi = β(i/n) for a given smooth strictly positive function β(x),
x ∈ [0, 1] such that infy∈[0,1] β(y) ≥ β− > 0.

The equations of motion are given by




dri(t) = n2(pi(t)− pi−1(t))dt

dpi(t) = n2(V ′(ri+1(t))− V ′(ri(t))) dt− n2γpi(t)dt+ n
√

2γ
βi
dwi(t), i = 1, .., N − 1

dpn(t) = n2(τ̄(t)− V ′(rn(t))) dt− n2γpn(t) dt+ n
√

2γ
βn

dwn(t).

(2.5)
Here {wi(t)}i are n-independent Wiener processes, γ > 0 is the coupling parameter
with the Langevin thermostats. The time is rescaled according to the diffusive space-
time scaling, i.e. t is the macroscopic time. The tension τ̃ = τ̃(t) changes at the
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macroscopic time scale (i.e. very slowly in the microscopic time scale). The generator
of the diffusion is given by

Lτ̄(t)
n := n2Aτ̄(t)

n + n2γSn, (2.6)

where Aτ̄
n is the Liouville generator

Aτ̄
n =

n∑

i=1

(pi − pi−1)∂ri +
n−1∑

i=1

(V ′(ri+1)− V ′(ri))∂pi + (τ̄ − V ′(rn))∂pn (2.7)

while Sn is the operator

Sn =
n∑

i=1

(
β−1
i ∂2

pi − pi∂pi
)

(2.8)

2.1. Gibbs measures. For τ̄(t) = τ constant, and βi = β homogeneous, the sys-
tem has a unique invariant probability measure given by a product of invariant Gibbs
measures µn

τ,β:

dµn
τ,β =

n∏

i=1

e−β(Ei−τri)−G(τ,β) dridpi (2.9)

where Ei is the energy of the particle i:

Ei =
p2i
2

+ V (ri). (2.10)

The function G(τ, β) is the Gibbs potential defined as:

G(τ, β) = log

[√
2πβ−1

∫
e−β(V (r)−τr)dr

]
. (2.11)

Notice that, thanks to condition (2.1), G(τ, β) is finite for any τ ∈ R and any β > 0.
Furthermore it is strictly convex in τ .

The free energy of the equilibrium state (r, β) is given by the Legendre transform of
β−1G(τ, β):

F(r, β) = sup
τ
{τr − β−1G(τ, β)} (2.12)

The corresponding convex conjugate variables are the equilibrium average length

r(τ, β) = β−1∂τG(τ, β) (2.13)

and the tension

τ (r, β) = ∂rF(r, β). (2.14)

Observe that

Eµn
τ,β

[ri] = r(τ, β), Eµn
τ,β

[V ′(ri)] = τ. (2.15)
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2.2. The hydrodynamic limit. We assume that for a given initial profile r0(x) the
initial probability distribution satisfies:

1

n

n∑

i=1

G(i/n)ri(0) −→
n→∞

∫ 1

0
G(x)r0(x)dx in probability (2.16)

for any continuous test function G ∈ C0([0, 1]). We expect that this same convergence
happens at the macroscopic time t:

1

n

n∑

i=1

G(i/n)ri(t) −→
∫ 1

0
G(x)r(x, t)dx (2.17)

where r(x, t) satisfies the following diffusive equation




∂tr(x, t) =
1
γ ∂

2
xτ (r(x, t), β(x)) for x ∈ [0, 1]

∂xτ (r(t, x), β(x))|x=0 = 0, τ (r(t, x), β(x))|x=1 = τ̄(t), t > 0

r(0, x) = r0(x), x ∈ [0, 1]

(2.18)

We say that r(x, t) is a weak solution of (2.18) if for any smooth function G(x) on
[0, 1] such that G(1) = 0 and G′(0) = 0 we have
∫ 1

0
G(x) (r(x, t)− r0(x)) dx = γ−1

∫ t

0
ds

[∫ 1

0
G′′(x)τ(r(x, s), β(x))dx −G′(1)τ̄ (s)

]
.

(2.19)
In appendix C we prove that the weak solution is unique in the class of functions such
that: ∫ t

0
ds

∫ 1

0
(∂xτ(r(x, s), β(x)))

2 dx < +∞. (2.20)

Let νnβ·

the inhomogeneous Gibbs measure

dνnβ·
=

n∏

i=1

e−βiEi

Zβi

(2.21)

Observe that this is not the stationary measure for the dynamics defined by (2.5)
and (2.6) for τ̄ = 0.

Let fn
t the density, with respect to νnβ·

, of the probability distribution of the system
at time t, i.e. the solution of

∂tf
n
t = Lτ̄(t),∗

n fn
t , (2.22)

where Lτ̄(t),∗
n is the adjoint of Lτ̄(t)

n with respect to νnβ·

, i.e. explicitly

Lτ̄(t),∗
n = −n2Aτ(t)

n − n

n−1∑

i=1

∇nβ(i/n)piV
′(ri+1) + n2β(1)pnτ̄ + n2γSn, (2.23)

where

∇nβ(i/n) = n

(
β

(
i+ 1

n

)
− β

(
i

n

))
, i = 1, . . . , n− 1. (2.24)

Define the relative entropy of fn
t dν

n
β·

with respect to dνnβ·

as:

Hn(t) =

∫
fn
t log fn

t dν
n
β·
. (2.25)
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We assume that the initial density fn
0 satisfy the bound

Hn(0) ≤ Cn. (2.26)

We also need some regularity of fn
0 : define the hypercoercive Fisher information func-

tional:

In(t) =

n−1∑

i=1

β−1
i

∫
((∂pi + ∂qi)f

n
t )

2

fn
t

dνβ· (2.27)

where ∂qi = ∂ri − ∂ri+1 , i = 1, . . . , n− 1, and νβ· := νnβ·. We assume that

In(0) ≤ Kn (2.28)

with Kn growing less than exponentially in n. We will show in Appendix D that for
any t > 0 we have In(t) ≤ Cn−1.

Furthermore we assume that

lim
n→∞

∫ ∣∣∣∣∣
1

n

n∑

i=1

G

(
i

n

)
ri −

∫ 1

0
G(x)r0(x)dx

∣∣∣∣∣ f
n
0 dνβ· = 0 (2.29)

for any continuous test function G ∈ C0([0, 1]).
Theorem 2.1. Assume that the starting initial distribution satisfy the above conditions.
Then

lim
n→∞

∫ ∣∣∣∣∣
1

n

n∑

i=1

G

(
i

n

)
ri −

∫ 1

0
G(x)r(x, t)dx

∣∣∣∣∣ f
n
t dνβ· = 0, (2.30)

where r(x, t) is the unique weak solution of (2.18) satisfying (2.20).

Furthermore a local equilibrium result is valid in the following sense: consider a local
function φ(r,p) such that for some positive finite constants C1, C2 we have the bound

|φ(r,p)| ≤ C1

∑

i∈Λφ

(p2i + V (ri))
α + C2, α < 1 (2.31)

where Λφ is the local support of φ. Let kφ the length of Λφ, and let θiφ be the shifted
function, well defined for kφ < i < n− kφ, and define

φ̂(r, β) = Eµ
τ(r,β),β

(φ) . (2.32)

Corollary 2.2.

lim
n→∞

∫ ∣∣∣∣∣∣
1

n

n−kφ∑

i=kφ+1

G

(
i

n

)
θiφ(r,p) −

∫ 1

0
G(x)φ̂(r(x, t), β(x))dx

∣∣∣∣∣∣
fn
t dνβ· = 0, (2.33)

3. Non-equilibrium thermodynamics

We collect in this section some interesting consequences of the main theorem for
the non-equilibrium thermodynamics of this system. All statements contained in this
section can be proven rigorously, except for one that will require more investigation
in the future. The aim is to build a non equilibrium thermodynamics in the spirit of
[3, 2]. The equilibrium version of these results has been already proven in [9].
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As we already mentioned, stationary states of our dynamics are not given by Gibbs
measures if a gradient in the temperature profile is present, but they are still char-
acterized by the tension τ̄ applied. We denote these stationary distributions as non-
equilibrium stationary states (NESS). Let us denote fn

ss,τ the density of the stationary
distribution with respect to νβ·

.
It is easy to see that

∫
V ′(ri)f

n
ss,τνβ·

= τ, i = 1, . . . , n. (3.1)

In fact, since
∫
pif

n
ss,τνβ·

= 0 and

n−2Lτ
npi = V ′(ri+1)− V ′(ri)− γpi, i = 1, . . . , n− 1,

n−2Lτ
npn = τ − V ′(rn)− γpn,

we have

0 =

∫
(V ′(ri+1)− V ′(ri))f

n
ss,τνβ·

=

∫
(τ − V ′(rn))f

n
ss,τνβ·

.

By the main theorem 2.1, there exists a stationary profile of stretch rss,τ (y) = r(τ, β(y))
(defined by (2.13)) such that for any continuous test function G:

lim
n→∞

∫ ∣∣∣∣∣
1

n

n∑

i=1

G

(
i

n

)
ri −

∫ 1

0
G(x)rss,τ (x)dx

∣∣∣∣∣ f
n
ss,τdνβ·

= 0, (3.2)

In order to study the transition from one stationary state to another with different
tension, we start the system at time 0 with a stationary state with tension τ0, and
we change tension with time, setting τ̄(t) = τ1 for t ≥ t1. The distribution of the
system will eventually converge to a stationary state with tension τ1. Let r(x, t) be
the solution of the macroscopic equation (2.19) starting with r0(x) = rss,τ0(x). Clearly
r(x, t) → r1(x) = rss,τ1(x), as t → ∞.

3.1. Excess Heat. The (normalized) total internal energy of the system is defined by

Un :=
1

n

n∑

i=1

(
p2i
2

+ V (ri)

)
(3.3)

It evolves as:

Un(t)− Un(0) = Wn(t) +Qn(t)

where

Wn(t) =

∫ t

0
τ̄(s)npn(s)ds =

∫ t

0
τ̄(s)

dqn(s)

n

is the (normalized) work done by the force τ̄(s) up to time t, while

Qn(t) = γ n
n∑

j=1

∫ t

0
ds
(
p2j (s)− β−1

j

)
+

n∑

j=1

√
2γβ−1

j

∫ t

0
pj(s)dwi(s). (3.4)

is the total flux of energy between the system and the heat bath (divided by n). As a
consequence of theorem 2.1 we have that

lim
n→∞

Wn(t) =

∫ t

0
τ̄ (s)dL(s)
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where L(t) =
∫ 1
0 r(x, t)dx, the total macroscopic length at time t. While for the energy

difference we expect that

lim
n→∞

(Un(t)− Un(0)) =

∫ 1

0
[u(τ (r(x, t), β(x)), β(x)) − u(τ0, β(x))] dx (3.5)

where u(τ, β) is the average energy for µβ,τ , i.e.

u(τ, β) =

∫
E1dµ1

τ,β =
1

2β
+

∫
V (r)e−β(V (r)−τr)−G̃(τ,β)dr

with G̃(τ, β) = log
∫
e−β(V (r)−τr)dr. Unfortunately (3.5) does not follow from (2.33),

since (2.31) is not satisfied. Consequently at the moment we do not have a rigorous
proof of (3.5). In the constant temperature profile case, treated in [9], this limit can be
computed rigorously thanks to the use on the relative entropy method [17] that gives
a better control on the local distribution of the energy.

Since τ (r(x, t), β(x)) → τ1 as t → ∞, it follows that

u(τ (r(x, t), β(x)), β(x)) → u(τ1, β(x))

and the energy change will become
∫ 1

0
(u(τ1, β(x)) − u(τ0, β(x))) dx =

∫ +∞

0
τ̄(s)dL(s)ds +Q = W +Q (3.6)

where Q is the limit of (3.4), which is called excess heat. So equation (3.6) is the
expression of the first principle of thermodynamics in this isothermal transformation
between non–equilibrium stationary states. Here isothermal means that the profile of
temperature does not change in time during the transformation.

3.2. Free energy. Define the free energy associated to the macroscopic profile r(x, t):

F̃(t) =

∫ 1

0
F(r(x, t), β(x))dx. (3.7)

Correspondingly the free energy associated to the macroscopic stationary state is:

F̃ss(τ) =

∫ 1

0
F(rss,τ (x), β(x))dx (3.8)

A straightforward calculation using (2.19) gives

F̃(t)− F̃ss(τ0) = W(t)− γ−1

∫ t

0
ds

∫ 1

0
(∂xτ (r(x, s), β(x)))

2 dx (3.9)

and after the time limit t → ∞

F̃ss(τ1)− F̃ss(τ0) = W − γ−1

∫ +∞

0
dt

∫ 1

0
(∂xτ (r(x, t), β(x)))

2 dx

≤ W
(3.10)

i.e. Clausius inequality for NESS. Notice that in the case βj constant, this is just the
usual Clausius inequality (see [9]).
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3.3. Quasi-static limit and reversible transformations. The thermodynamic trans-
formation obtained above from the stationary state at tension τ0 to the one at tension
τ1 is an irreversible transformation, where the work done on the system by the external
force is strictly bigger than the change in free energy.

In thermodynamics the quasi-static transformations are (vaguely) defined as those
processes where changes are so slow such that the system is in equilibrium at each
instant of time. In the spirit of [3] and [9], these quasi static transformations are
precisely defined as a limiting process by rescaling the time dependence of the driving
tension τ̄ by a small parameter ε, i.e. by choosing τ̄(ǫt). Of course the right time scale
at which the evolution appears is ε−1t and the rescaled solution r̃ε(x, t) = r(x, ε−1t)
satisfy the equation





∂tr̃
ε(x, t) = 1

ǫγ∂
2
xτ (r̃

ε(x, t), β(x)) for x ∈ [0, 1]

∂xτ (r̃
ε(t, x), β(x))|x=0 = 0, τ (r̃ε(t, x), β(x))|x=1 = τ̄ (t), t > 0

τ(r̃ε(0, x), β(x)) = τ0, x ∈ [0, 1]

(3.11)

By repeating the argument above, equation (3.10) became:

F̃ss(τ1)− F̃ss(τ0) = Wε − 1

ǫγ

∫ +∞

0
dt

∫ 1

0
(∂xτ (r̃

ε(x, t), β(x)))2 dx (3.12)

By the same argument used in [9] for β constant, it can be proven that the last term on
the right hand side of (3.12) converges to 0 as ε → 0, and that τ (r̃ε(x, t), β(x)) → τ̄(t)
for almost any x ∈ [0, 1] and t ≥ 0. Consequently in the quasi-static limit we have the
Clausius equality

F̃ss(τ1)− F̃ss(τ0) = W
This implies the following equality for the heat in the quasi-static limit:

Q =

∫ 1

0
β−1(x) (S(rss(x, τ1), uss(x, τ1))− S(rss(x, τ0), uss(x, τ0))) dx (3.13)

analogous of the equilibrium equality Q = T∆S.
In [8] a direct quasi-static limit is obtained form the microscopic dynamics without

passing through the macroscopic equation (2.19), by choosing a driving tension τ̄ that
changes at a slower time scale.

4. Entropy and hypercoercive bounds

In this section we prove the bounds on the relative entropy and the different Fisher
informations that we need in the proof of the hydrodynamic limit in section section 5.
These bounds provide a quantitative information on the closeness of the local distribu-
tions of the particles to some equilibrium measure.

In order to shorten formulas, we introduce here some vectorial notation. Given two
vectors u = (u1, . . . , un), v = (v1, . . . , vn), define

u⊙v =

n∑

i=1

β−1
i uivi, u⊙̃v =

n−1∑

i=1

β−1
i uivi, |u|2⊙ = u⊙u, |u|2⊙̃ = u⊙̃u.

We also use the notations

∂p = (∂p1 , . . . , ∂pn) ∂∗
p = (∂∗

p1 , . . . , ∂
∗
pn), ∂∗

pi = βipi − ∂pi

∂q = (∂q1 , . . . , ∂qn), ∂qi = ∂ri − ∂ri+1 , ∂qn = ∂rn .
(4.1)
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Observe that with this notations we can write

Sn = −∂∗
p ⊙ ∂p, Aτ

n = p · ∂q − ∂qV · ∂p + τ∂pn (4.2)

where V =
∑

i V (ri) and the · denotes the usual scalar product in R
n. Then we define

the following Fisher informations forms on a probability density distribution (with
respect to νβ·):

Dp
n(f) =

∫ |∂pf |2⊙
f

dνβ·, D̃p
n(f) =

∫ |∂pf |2⊙̃
f

dνβ·

Dr
n(f) =

∫ |∂qf |2⊙̃
f

dνβ·

In(f) =

∫ |∂pf + ∂qf |2⊙̃
f

dνβ· = D̃p
n(f) +Dr

n(f) + 2

∫
∂qf⊙̃∂pf

f
dνβ· ≥ 0

(4.3)

Proposition 4.1. Let fn
t the solution of the forward equation (2.22). Then there exist

a constant C such that

Hn(t) ≤ Cn,

∫ t

0
Dp

n(f
n
s )ds ≤

C

n
,

∫ t

0
Dr

n(f
n
s )ds ≤ C

n
. (4.4)

Proof. Taking the time derivative of the entropy we obtain:

d

dt
Hn(t) =

∫
(Lτ̄(t)

n )∗fn
t log fn

t dνβ·
(4.5)

So that, using (2.23), we have

d

dt
Hn(t) =

∫
fn
t Lτ̄(t)

n log fn
t dνβ·

=

∫
n2Aτ̄(t)

n fdνβ·
− γn2Dp

n(f
n
t )

= −n
n−1∑

i=1

∇nβ(i/n)

∫
V ′(ri+1)pif

n
t dνβ·

+ n2βnτ̄(t)

∫
pnf

n
t dνβ·

− γn2Dp
n(f

n
t )

(4.6)

Recall that qn =
∑n

i=1 ri, then the time integral of the second term on the RHS of (4.6)
gives

n2βn

∫ t

0
ds τ̄(s)

∫
pnf

n
s dνβ·

= βn

∫ t

0
ds τ̄(s)

∫
Lτ̄(s)
n qnf

n
s dνβ·

= βnτ̄(t)

∫
qnf

n
t dνβ·

− βnτ̄(0)

∫
qnf

n
0 dνβ·

− βn

∫ t

0
ds τ̄ ′(s)

∫
qnf

n
s dνβ·

(4.7)

By the entropy inequality, for any a1 > 0, using the first of the conditions (2.1),

∫
|qn|fn

s dνβ·
≤ 1

a1
log

∫
ea1|qn|dνβ·

+
1

a1
Hn(s) ≤

1

a1
log

∫ n∏

i=1

ea1|ri|dνβ·
+

1

a1
Hn(s)

≤ 1

a1

n∑

i=1

log

∫ (
ea1ri + e−a1ri

)
dνβ·

+
1

a1
Hn(s)

=
1

a1

n∑

i=1

(G(a1, βi) + G(−a1, βi)− 2G(0, βi)) +
1

a1
Hn(s) ≤ nC(a1, β·) +

1

a1
Hn(s)

(4.8)
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We apply (4.8) to the three terms of the RHS of (4.7). So after this time integration
we can estimate, for any a1 > 0,

n2β(1)

∣∣∣∣
∫ t

0
ds τ̄(t)

∫
pnf

n
t dνβ·

∣∣∣∣ ≤
β(1)Kτ̄

a1

(
Hn(t) +Hn(0) +

∫ t

0
Hn(s)ds

)

+n(2 + t)β(1)Kτ̄C(a1, β·)

(4.9)

where Kτ̄ = sups>0 (|τ̄(s)|+ |τ̄ ′(s)|).
By integration by part and Schwarz inequality, for any a2 > 0 we have
∣∣∣∣∣n

n−1∑

i=1

∇nβ(i/n)

∫
V ′(ri+1)pif

n
t dνβ·

∣∣∣∣∣ =
∣∣∣∣∣n

n−1∑

i=1

∇nβ(i/n)

β(i/n)

∫
V ′(ri+1)∂pif

n
t dνβ·

∣∣∣∣∣

≤ 1

2a2

n−1∑

i=1

(∇nβ(i/n))
2

βi

∫
V ′(ri+1)

2fn
t dνβ·

+
a2n

2

2
D̃p

n(f
n
t )

By our assumptions on β(·) and assumption (2.3) on V , we have that for some
constant Cβ·

> 0 depending on β(·) and V ,

n−1∑

i=1

(∇nβ(i/n))
2

βi
V ′(ri+1)

2 ≤ Cβ·

n−1∑

i=1

V ′(ri+1)
2 ≤ Cβ·

C1

n∑

i=1

(V (ri) + 1) (4.10)

By the entropy inequality, for any δ such that 0 < δ < infy β(y), there exists a finite
constant Cδ,β·

depending on V, δ and β(·) such that:

n∑

i=1

∫
V (ri)f

n
t dνβ·

≤ 1

δ
log

∫
eδ

∑n
i=1

∫
V (ri)dνβ·

+
1

δ
Hn(t)

=
1

δ

n∑

i=1

(G(0, βi − δ) − G(0, βi)) +
1

δ
Hn(t) ≤ Cδ,β·

n+
1

δ
Hn(t)

(4.11)

At this point we have obtained the following inequality, for some constant C not
depending on n,

Hn(t)−Hn(0) ≤ −n2
(
γ − a2

2

)∫ t

0
Dp

n(f
n
s )ds +

(
Cβ·

2a2δ
+

β(1)Kτ̄

a1

)∫ t

0
Hn(s)ds

+
β(1)Kτ̄

a1
(Hn(t) +Hn(0)) + nc(a1, a2, δ, τ̄ , β·)

(4.12)

consequently, choosing a2 = γ and a1 = 2β(1)Kτ̄ , we have

Hn(t) ≤ 3Hn(0) + C ′

∫ t

0
Hn(s)ds + cn− n2γ

∫ t

0
Dp

n(f
n
s )ds (4.13)

where C ′ and c are constants independent of n. Given the initial bound on Hn(0) ≤ cn,
by Gronwall inequality we have for some c′′ independent on n:

Hn(t) ≤ c′′eC
′tn. (4.14)

Inserting this in (4.13) we obtain, for some C̃ independent of n,

γ

∫ t

0
Dp

n(f
n
s )ds ≤ C̃

n
(4.15)
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The bound (4.15) gives only informations about the distribution of the velocities,
but we actually need a corresponding bound of the distribution of the positions.

In appendix D we prove that, as a consequence of (4.15), we have

In(t) ≤
C

n
∀t > 0. (4.16)

Consequently

Dr
n(f

n
t ) = In(f

n
t )− D̃p

n(f
n
t )− 2

∫
∂qf

n
t ⊙̃∂pf

n
t

fn
t

dνβ·

≤ C

n
− D̃p

n(f
n
t )− 2

∫
∂qf

n
t ⊙̃∂pf

n
t

fn
t

dνβ·

≤ C

n
− D̃p

n(f
n
t ) + 2D̃p

n(f
n
t ) +

1

2
Dr

n(f
n
t )

that gives

Dr
n(f

n
t ) ≤ 2D̃p

n(f
n
t ) +

2C

n

Since we have already the bound (4.15), (4.4) follows. �

5. Characterization of the limit points

Define the empirical measure

πn
t (dx) :=

1

n

n∑

i=1

ri(t)δi/n(dx).

and we use the notation, for a given smooth function G : [0, 1] → R,

〈πn
t , G〉 := 1

n

n∑

i=1

G

(
i

n

)
ri(t)

Computing the time derivative we have:

〈πn
t , G〉 − 〈πn

0 , G〉 =
∫ t

0

1

n

n∑

i=1

G

(
i

n

)
Lτ̃(t)
n ri(t) (5.1)

Since

Lτ̃(t)
n ri = n2(pi − pi−1), i = 1, . . . , n, p0 = 0,

after performing a summation by parts, we obtain

Lτ̄(t)
n 〈πn

t , G〉 = −
n−1∑

i=1

∇nG

(
i

n

)
pi(t) + npn(t)G(1). (5.2)

where ∇nG is defined by (2.24). We define also

∇∗
nG

(
i

n

)
= n

[
G

(
i− 1

n

)
−G

(
i

n

)]
i = 2, . . . , n.
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Now observe that

Lτ̄(t)
n

[
1

n2

n−1∑

i=1

∇nG

(
i

n

)
pi −

1

n
pnG(1)

]
= −γ

n−1∑

i=1

∇nG

(
i

n

)
pi + γnpnG(1)

+
n−1∑

i=1

∇nG

(
i

n

)
(V ′(ri+1)− V ′(ri))− nG (1) (τ̄(t)− V ′(rn))

=− γ
n−1∑

i=1

∇nG

(
i

n

)
pi + γnpnG(1)

+
1

n

n−1∑

i=2

∇∗
n∇nG

(
i

n

)
V ′(ri+1) +∇nG

(
n− 1

n

)
V ′(rn)−∇nG

(
1

n

)
V ′(r1)

− nG (1) (τ̄ (t)− V ′(rn))
(5.3)

Recall that, by the weak formulation of the macroscopic equation, cf. (2.19), it is
enough to consider test functions G such that G(1) = 0 and G′(0) = 0. This takes care
of the last term on the RHS of the above expression and in (5.2), and putting these
two expression together and dividing by γ, we obtain

Lτ̄(t)
n 〈πn, G〉 = 1

γn

n−1∑

i=2

(−∇∗
n∇n)G

(
i

n

)
V ′(ri+1)− γ−1∇nG

(
n− 1

n

)
V ′(rn)

+γ−1∇nG

(
1

n

)
V ′(r1) + Lτ̄(t)

n

1

γn2

n−1∑

i=1

∇nG

(
i

n

)
pi

(5.4)

It is easy to show, by using the entropy inequality, that the last two terms are negligible.
In fact, since G′(0) = 0 we have that |∇nG

(
1
n

)
| ≤ CGn

−1. Furthermore
∫

eα|V
′(r)|−β1V (r)dr < +∞ ∀α > 0.

Then, using the entropy inequality we have for any α > 0:
∫ ∣∣∣∣γ

−1∇nG

(
1

n

)
V ′(r1)

∣∣∣∣ f
n
s dνβ·

≤ CG

nγ

∫
|V ′(r1)|fn

s dνβ·

≤ CG

nγα

∫
eα|V

′(r1)|dνnβ·
+

CG

nγα
Hn(s) ≤

C(α)

n
+

C ′

α

(5.5)

that goes to 0 after taking the limit as n → ∞ then α → ∞. About the last term of
the RHS in (5.4), after time integration we have to estimate

∫
1

γn2

n−1∑

i=1

∣∣∣∣∇nG

(
i

n

)∣∣∣∣ |pi|fn
s dνβ·

for s = 0, t. By similar use of the entropy inequality it follows that also this term
disappear when n → ∞.

To deal with the second term of the RHS of (5.4), we need the following lemma:

Lemma 5.1.

lim
n→∞

E

(∣∣∣∣
∫ t

0

∫ (
V ′(rn(s))− τ̄(s)

)
ds

∣∣∣∣
)

= 0 (5.6)
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Proof. Observe that

V ′(rn)− τ̄(s) = − 1

n2
Lτ̄(s)pn − γpn = − 1

n2
Lτ̄(s)(pn + γqn). (5.7)

Then after time integration:
∫ t

0

(
V ′(rn(s))− τ̄(s)

)
ds =

1

n2
(pn(0) − pn(t))−

γ

n2
(qn(t)− qn(0)) +

√
2γβn
n

wn(t).

It is easy to show that, using similar estimate as (4.7) and (4.8), the expectation
of the absolute value of the right hand side of the above expression converges to 0 as
n → ∞. �

It follows that

lim
n→∞

E

(∣∣∣∣
∫ t

0

(
∇nG

(
n− 1

n

)
V ′(rn(s))−G′(1)τ̄ (s)

)
ds

∣∣∣∣
)

= 0. (5.8)

We are finally left to deal with the first term of the RHS of (5.4). We will proceed
as in [6]. For any ε > 0 define

r̄i,ε =
1

2nε+ 1

∑

|j−i|≤nε

rj , nε < i < n(1− ε). (5.9)

We first prove that the boundary terms are negligible:

Lemma 5.2.

lim
ε→0

lim
n→∞

∫ t

0

∫ ∣∣∣∣∣∣
1

γn




[nε]∑

i=2

+

[n−1]∑

i=[n(1−ε)]+1


 (−∇∗

n∇n)G

(
i

n

)
V ′(ri+1)

∣∣∣∣∣∣
fn
s dνβ·

ds = 0

(5.10)

Proof. For simplicity of notation let us estimate just one side. Since our conditions on
V imply that |V ′(r)| ≤ C2|r|+ C0, we only need to prove that for any t ≥ 0:

lim
ε→0

lim
n→∞

∫
1

n

[nε]∑

i=2

|ri| fn
t dνβ·

= 0 (5.11)

By the entropy inequality we have:

∫
1

n

[nε]∑

i=2

|ri| fn
t dνβ·

≤ 1

nα
log

∫ [nε]∏

i=2

eα|ri|dνβ·
+

Hn(t)

αn

≤ 1

nα

[nε]∑

i=2

(G(α, βi) + G(−α, βi)− 2G(0, βi)) +
C

α

Since G(α, βi) + G(−α, βi)− 2G(0, βi) ≤ C ′α2, for a constant C ′ independent on i, we
have

∫
1

n

[nε]∑

i=2

|ri| fn
t dνβ·

≤ C ′εα+
C

α
,

and by choosing α = ε−1/2 (5.11) follows. �



16 VIVIANA LETIZIA AND STEFANO OLLA

We are only left to show that

lim
ε→0

lim
n→∞

∫ t

0

∫ ∣∣∣∣∣∣
1

γn

[n(1−ε)]∑

i=[nε]+1

(−∇∗
n∇n)G

(
i

n

)(
V ′(ri+1)− τ (r̄i,ε, βi)

)
∣∣∣∣∣∣
fn
s dν· ds = 0

(5.12)

Thanks to the bound (4.4), we are now in the same position as in the proof of the
over-damped dynamics, as considered in [6], and by using similar argument as used
there (the so called one-block/two blocks) (5.12) follows. A slight difference is due to
the dependence of τ on βi, but since this changes very slowly and smoothly in space it
is easy to consider microscopic blocks of size k with constant temperature inside.

At this point the proof of theorem 2.1 follows by standard arguments. Let Qn

the probability distribution of πn
· on C([0, T ],M([0, 1]), where M([0, 1]) are the signed

measures on [0, 1]. In appendix B we prove that the sequence Qn is compact. Then,
by the above results any limit point Q of Qn is concentrated on absolutely continuous
measures with densities r̄(y, t) such that for any 0 ≤ t ≤ T ,

E
Q
∣∣∣
∫ 1

0
G(y) (r̄(y, t)− r̄(y, 0)) dy

− γ−1

∫ t

0
ds

[∫ 1

0
G′′(y)τ (r̄(y, s), β(y))dy −G′(1)τ̄ (s)

] ∣∣∣ = 0

(5.13)

Furthermore in appendix A we prove that Q is concentrated on densities that satisfy
the regularity condition to have uniqueness of the solution of the equation.

6. Appendix A: Proof of the regularity bound 2.20

Proposition 6.1. There exists a finite constant C such that for any limit point distri-
bution Q we have the bound:

E
Q

(∫ t

0
ds

∫ 1

0
dx (∂xτ (r̄(s, x), β(x)))

2

)
< C. (6.1)

Proof. It is enough to prove that for any function F ∈ C1([0, 1]) such that F (0) = 0 the
following inequality holds:

E
Q

(∫ t

0
ds

[∫ 1

0
dxF ′(x)τ (r̄(s, x), β(x)) − F (1)τ̄ (s)

])
≤ C

(∫ 1

0
F (x)2dx

)1/2

. (6.2)

In fact by a duality argument, since τ (r̄(s, 1), β(1)) = τ̄(s), we have:

∫ 1

0
dx (∂xτ (r̄(s, x), β(x)))

2 = sup
F∈C1([0,1])

∫ 1
0 dxF ′(x)τ (r̄(s, x), β(x)) − F (1)τ̄ (s)

∫ 1
0 F (x)2dx

.
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Observe that (6.2) corresponds to a choice of test functions G(x) in (2.19) such that
G′ = F . In order to obtain (6.2), compute

1

n2
Lτ̄
n

n∑

i=1

F (i/n)(pi + γqi) =
n∑

i=1

F (i/n)Aτ̄
npi

=
n−1∑

i=1

F (i/n)
(
V ′(ri+1)− V ′(ri)

)
+ F (1)

(
τ̄ − V ′(rn)

)

=
1

n

n∑

i=2

∇∗
nF (i/n)V ′(ri) + F (1)τ̄ − F (1/n)V ′(r1)

and after time integration and averaging over trajectories we have

1

n2

∫ n∑

i=1

F (i/n)(pi + γqi)(f
n
t − fn

0 )dνβ·

=

∫ t

0
ds

∫
1

n

n∑

i=2

∇∗
nF (i/n)V ′(ri)f

n
s dνβ·

+ F (1)

∫ t

0
τ̄(s) ds

−F (1/n)

∫ t

0
ds

∫
V ′(r1)f

n
s dνβ·

.

(6.3)

It is easy to see that, since F (0) = 0 and differentiable, the last term of the right hand
side is negligible as n → ∞, by the same argument used in (5.5).

About the first term on the RHS of (6.3), by the results of section 5, it converges,
through subsequences, to

−E
Q

(∫ t

0
ds

∫ 1

0
dxF ′(x)τ (r̄(s, x), β(x))

)
.

About the left hand side of (6.3), one can see easily that

1

n2

∫ n∑

i=1

F (i/n)pi(f
n
t − fn

0 )dνβ·
−→
n→∞

0.

Using the inequality
∑

i q
2
i ≤ n2

∑
i r

2
i , we can bound the other term of the LHS of

(6.3) by observing that, for s = 0, t,
∣∣∣∣∣
γ

n

∫ n∑

i=1

F (i/n)
qi
n
fn
s dνβ·

∣∣∣∣∣ ≤ γ

(
1

n

n∑

i=1

F (i/n)2

)1/2(∫
1

n

n∑

i=1

q2i
n2

fn
s dνβ·

)1/2

≤ γ

(
1

n

n∑

i=1

F (i/n)2

)1/2(∫
1

n

n∑

i=1

r2i f
n
s dνβ·

)1/2

≤ Cγ

(
1

n

n∑

i=1

F (i/n)2

)1/2

.

Since F is a continuous function on [0, 1] the rhs of the above expression is bounded in
n and converges to the L2 norm of F as n → ∞. Thus (6.2) follows. �

7. Appendix B: Compactness

We prove in this section that the sequence of probability distributionsQn on C([0, t],M)
induced by πn is tight. Here M is the space of the signed measures on [0, 1] endowed
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by the weak convergence topology. This tightness is consequence of the following state-
ment.

Proposition 7.1. For any function G ∈ C1([0, 1]) such that G(1) = 0, G′(0) = 0 and
any ε > 0 we have

lim
δ→0

lim sup
n→∞

P
µ0

[
sup

0≤s<t≤T,|s−t|<δ
|< πn(t), G > − < πn(s), G >| ≥ ε

]
= 0 (7.1)

Proof. By doing similar calculations as done in section 5 (see (5.2) and following ones)

< πn(t), G > − < πn(s), G >= −
∫ t

s
du

n−1∑

i=1

∇nG

(
i

n

)
pi(u)

=

∫ t

s
du

1

γn

n−1∑

i=2

(−∇∗
n∇n)G

(
1

n

)
V ′(ri+1(u)) −

∫ t

s
du

1

γ
∇nG

(
n− 1

n

)
V ′(rn(u))

+

∫ t

s
du

1

γ
∇nG

(
1

n

)
V ′(r1(u)) +

1

γn2

n−1∑

i=2

∇nG

(
i

n

)
(pi(t)− pi(s))

+
1

n

n∑

i

√
2γβ−1

j ∇nG

(
i

n

)
(wi(t)− wi(s))

:= I1(s, t) + I2(s, t) + I3(s, t) + I4(s, t) + I5(s, t)

We treat the corresponding 5 terms separately. The term I3 =
∫ t
s du

1
γ∇nG

(
1
n

)
V ′(r1(u))

is the easiest to estimate, since G′(0) = 0, and using Schwarz inequality we have

sup
0≤s<t≤T,|s−t|<δ

|I3(s, t)| ≤ sup
0≤s<t≤T,|s−t|<δ

C

nγ

∫ t

s
|V ′(r1(u))|du

≤ sup
0≤s<t≤T,|s−t|<δ

C

nγ
|t− s|1/2

(∫ t

s
|V ′(r1(u))|2du

)1/2

≤ Cδ1/2

nγ

(∫ T

0
|V ′(r1(u))|2du

)1/2

.

Since, by entropy inequality,

E

[(∫ T

0
|V ′(r1(u))|2du

)1/2
]
≤
[∫ T

0
E
(
|V ′(r1(u))|2

)
du

]1/2

≤ C

[∫ T

0
E

(
n∑

i=1

(V (ri(u)) + 1)

)
du

]1/2
≤ CT 1/2n1/2

so that

E

[
sup

0≤s<t≤T,|s−t|<δ
|I3(s, t)|

]
≤ Cδ1/2T 1/2

γn1/2
−→
n→∞

0.

About I2, this is equal to

− 1

γ
∇nG

(
n− 1

n

)∫ t

s
du
(
V ′(rn(u)) − τ̄(u)

)
− 1

γ
∇nG

(
n− 1

n

)∫ t

s
duτ̄ (u) (7.2)
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The second term of the above expression is trivially bounded by Cδ since |t − s| ≤ δ.
For the first term on the right hand side of (7.2), by (5.7), we have

∫ t

s
du
(
V ′(rn(u))− τ̄(u)

)
=

pn(s)− pn(t)

n2
− γ

∫ t

s
pn(u)du+

√
2γβ−1

n

n
(wn(t)− wn(s))

The last term of the right hand side of the above is estimated by the standard modulus
of continuity of the Wiener process wn. For the second term of the right hand side,
this is bounded by

E

[
sup

0≤s<t≤T,|s−t|<δ
γ

∣∣∣∣
∫ t

s
pn(u)du

∣∣∣∣

]
≤ γδ1/2E

[(∫ T

0
p2n(u)du

)1/2
]

≤ γδ1/2
[∫ T

0
E(p2n(u))du

]1/2
= γδ1/2

[∫ T

0
E(p2n(u)− β−1

n )du+ Tβ−1
n

]1/2

≤ Cγδ1/2
[∫ T

0

∫
pn∂pnf

n
u dνβ·

du+ Tβ−1
n

]1/2

≤ Cγδ1/2

[(∫ T

0

∫
p2nf

n
u dνβ·

du

)1/2(∫ T

0

∫
(∂pnf

n
u )

2

fn
u

dνβ·
du

)1/2

+ Tβ−1
n

]1/2

≤ C ′γδ1/2

where the last inequality is justified by the inequalities:
∫

p2nf
n
u dν· ≤ Cn

∫ T

0

∫
(∂pnf

n
u )

2

fn
u

dν·du ≤ C

n

To deal with the first term we have to prove that

lim
n→∞

E

(
sup

0≤t≤T

1

n2
|pn(t)|

)
= 0 (7.3)

Since

pn(t)

n2
=

1

n2
pn(0)e

−γn2t +

∫ t

0
e−γn2(t−u)

[
τ̄(u)− V ′(rn(u))

]
du

+

√
2γβ−1

n
1

n

∫ t

0
e−γn2(t−u)dwn(u)

(7.4)

The stochastic integral is easy to estimate by Doob’s inequality:

E

(
sup

0≤t≤T

∣∣∣∣
√

2γβ−1
n

1

n

∫ t

0
e−γn2(t−u)dwn(u)

∣∣∣∣
2
)

≤ CT

n2

About the second term, by Schwarz inequality we have that

E sup
0≤t≤T

∣∣∣∣
∫ t

0
e−γn2(t−u)

[
τ̄(u)− V ′(rn(u))

]
du

∣∣∣∣

≤ 1

n
√
2γ

(∫ T

0
E

([
τ̄(u)− V ′(rn(u))

]2)
du

)1/2
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and by the entropy bound we have

E

([
τ̄(u)− V ′(rn(u))

]2) ≤ Cn

so that this term goes to zero like n−1/2. The first term in (7.4) is trivial to estimate.
This conclude the estimate of I2.

The estimation of I4 is similar to the proof of (7.3), but require a little extra work.
We need to prove that

lim
n→∞

E sup
0≤t≤T

∣∣∣∣∣
1

n2

n−1∑

i=2

∇nG

(
i

n

)
pi(t)

∣∣∣∣∣ = 0. (7.5)

By the evolution equations we have

1

n2

n−1∑

i=2

∇nG

(
i

n

)
pi(t) =

1

n2

n−1∑

i=2

∇nG

(
i

n

)
pi(0)e

−γn2t

+

∫ t

0
ds e−γn2(t−s) 1

n

n−1∑

i=3

∇∗
n∇nG

(
i

n

)
V ′(ri(s))

+

∫ t

0
ds e−γn2(t−s)

(
∇nG (1)V ′(rn(s))−∇nG

(
2

n

)
V ′(r2(s))

)

and all these terms can be estimated as in the proof of (7.3), so that (7.5) follows.
Also I5 can be easily estimated by Doob inequality and using the independence of

wi(t).
Finally estimating I1, notice that since G is a smooth function, it can be bounded

by

sup
0≤s<t≤T,|s−t|<δ

|I1(s, t)| ≤
C

γn
sup

0≤s<t≤T,|s−t|<δ

∫ t

s
du

n−1∑

i=2

|V ′(ri+1(u))|

≤ Cδ1/2

γ

(∫ T

0

1

n

n−1∑

i=2

|V ′(ri+1(u))|2du
)1/2 (7.6)

and, by entropy inequality

E



(∫ T

0

1

n

n−1∑

i=2

|V ′(ri+1(u))|2du
)1/2


 ≤

[∫ T

0

1

n

n−1∑

i=2

E
(
|V ′(ri+1(u))|2

)
du

]1/2
≤ C,

so that the expression in (7.6) is negligible after δ → 0. �

8. Appendix C: Uniqueness of weak solutions

Proposition 8.1. The weak solution of (2.19) is unique in the class of function such
that ∫ t

0
ds

∫ 1

0
(∂xτ(r(x, s), β(x)))

2 dx < +∞ (8.1)
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Proof. Let g(x) ≥ 0 a smooth function with compact support contained in [−1/4, 1/4]
such that

∫
R
g(y)dy = 1. Then for λ > 0 large enough, define the function

Gλ(y, x) = 1−
∫ y

−∞
λg(λ(z − x))dz

Then for 1/(4λ) < x < 1 − 1/(4λ), we have Gλ(0, x) = 0 and ∂yGλ(1, x) = 0, and it
can be used as test function in (2.19). So if r(x, t) is a solution in the given class, we
have
∫ 1

0
Gλ(y, x) (r(y, t)− r0(y)) dx = γ−1

∫ t

0
ds

[∫ 1

0
λg(λ(y − x))∂yτ(r(y, s), β(y))dy

]
.

Letting λ → +∞ we obtain:
∫ x

0
(r(y, t)− r0(y)) dx = γ−1

∫ t

0
ds∂yτ(r(x, s), β(x)), ∀x ∈ (0, 1).

Let r1(x, t), r2(x, t) two solutions in the class considered, and define

Rj(x, t) =

∫ x

0
rj(y, t)dy, j = 1, 2.

By the approximation argument done at the beginning of the proof, we have that

∂tRj(x, t) = γ−1∂xτ(rj(x, s), β(x))

for every x ∈ (0, 1) and t > 0.
Since τ(rj(1, t), β(1)) = τ̄(t), and since τ(r, β) is a strictly increasing function of r,

d

dt

∫ 1

0
(R1(x, t)−R2(x, t))

2 dx

= 2γ−1

∫ 1

0
(R1(x, t)−R2(x, t)) ∂x (τ(r1(x, t), β(x)) − τ(r2(x, t), β(x))) dx

= −2γ−1

∫ 1

0
(r1(x, t) − r2(x, t)) (τ(r1(x, t), β(x)) − τ(r2(x, t), β(x))) dx ≤ 0.

�

9. Appendix D: proof of the entropic hypocoercive bound (4.16)

We will prove in this appendix that there exists constants λ > 0 and C > 0 indepen-
dent of n such that

d

dt
In(f) ≤ −λn2In(f) + Cn. (9.1)

We will use the following commutation relations:

[∂pi , β
−1
j ∂∗

pj ] = δi,j , [∂pi ,Aτ
n] = ∂qi , [∂qi ,Aτ

n] = −(∂2
qV ∂p)i (9.2)

where ∂2
qV is the corresponding hessian matrix of V =

∑n
i=1 V (rn).

Denote gt =
√

fn
t and observe that

In(g
2
t ) = 4

∫ (
|∂pgt|2⊙̃ + |∂qgt|2⊙̃ + 2 ∂qgt⊙̃∂pgt

)
dνβ· (9.3)

Recall that

n2Aτ,∗
n = −n2Aτ

n +Bτ
n (9.4)
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where

Bτ
n = −n

n−1∑

i=1

∇nβ(i/n)piV
′(ri+1) + n2β(1)pnτ

Consequently gt solves the equation:

∂tg = −n2Aτ̄(t)
n gt + n2γSngt + n2γ

|∂pgt|2⊙
gt

+
1

2
B τ̄(t)

n gt

We then compute the time derivative of In(g
2
t ) by considering the three terms sepa-

rately. The first one gives:

d

dt

∫
|∂pgt|2⊙̃ dνβ· =− 2n2

∫
∂pgt⊙̃∂p(Aτ̄(t)gt) dνβ·

− 2n2γ

∫
∂pgt⊙̃∂p(∂

∗
p ⊙ ∂pgt) dνβ·

+ 2n2γ

∫
∂pgt⊙̃∂p

( |∂pgt|2⊙
gt

)
dνβ·

+

∫
∂pgt⊙̃∂p(B

τ̄(t)
n gt) dνβ·.

(9.5)

By the commutation relations (9.2), and using (9.4), the first term on the RHS of (9.5)
is equal to

−2n2

∫
∂pgt⊙̃∂qgt dνβ· − 2n2

∫
∂pgt⊙̃Aτ̄(t)∂pgt dνβ·

= −2n2

∫
∂pgt⊙̃∂qgt dνβ· −

∫
∂pgt⊙̃B τ̄(t)

n ∂pgt dνβ·

Then the RHS of (9.5) is equal to

− 2n2

∫
∂pgt⊙̃∂qgt dνβ· − 2n2γ

∫
∂pgt⊙̃∂p(∂

∗
p ⊙ ∂pgt) dνβ·

+ 2n2γ

∫
∂pgt⊙̃∂p

( |∂pgt|2⊙
gt

)
dνβ· +

∫
gt∂pgt⊙̃∂pB

τ̄(t)
n dνβ·.

The last term of the above equation is equal to

∫
gt∂pgt⊙̃∂pBn dνβ· = −n

∫
gt

n−1∑

i=1

β−1
i ∇nβ(

i

n
)V ′(ri+1)∂pigt dνβ· (9.6)

Notice that the term involving n2τpn does not appear in the above expression, because
the particular definition of ⊙̃. For any α1 > 0, using Schwarz inequality, (4.10) and
(4.11), (9.6) is bounded by

1

2α1

∫
g2t

n−1∑

i=1

(∇nβ(
i
n))

2

βi
V ′(ri+1)

2 dνβ· +
α1n

2

2

∫
|∂pgt|2⊙̃ dνβ·

≤ Cn

α1
+

α1n
2

2

∫
|∂pgt|2⊙̃ dνβ·

for a constant C depending on β· and the initial entropy, but independent of n.
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Computing the second term of the RHS of (9.5) we have:

∫
∂pgt⊙̃∂p(∂

∗
p ⊙ ∂pgt) dνβ· =

∫ n−1∑

j=1

β−1
j |∂p∂pjg|2⊙ dνβ· +

∫
|∂pg|2⊙̃ dνβ·

=

∫ n∑

i=1

n−1∑

j=1

β−1
j β−1

i (∂pi∂pjg)
2 dνβ· +

∫
|∂pg|2⊙̃ dνβ·

About the third term on the RHS:

∂pgt⊙̃∂p

( |∂pgt|2⊙
gt

)
=

2
∑n−1

j=1

∑n
i=1 β

−1
j β−1

i ∂pjgt ∂pigt ∂pi∂pjgt

gt
−

|∂pg|2⊙|∂pg|2⊙̃
g2t

Summing all together we have obtained

d

dt

∫
|∂pgt|2⊙̃ dνβ· = −2n2

∫
∂pgt⊙̃∂qgt dνβ· − n2

(
2γ − α1

2

)∫
|∂pgt|2⊙̃ dνβ·

−2n2γ

∫ n−1∑

j=1

n∑

i=1

β−1
j β−1

j

(
∂pi∂pjgt − g−1

t ∂pigt∂pjgt
)2

dνβ· +
Cn

α1
.

(9.7)

Now we deal with the derivative of the second term:

d

dt

∫
|∂qgt|2⊙̃ dνβ· = −2n2

∫
∂qgt⊙̃∂q(Aτ̄(t)gt) dνβ· − 2n2γ

∫
∂qgt⊙̃∂q(∂

∗
p ⊙ ∂pgt) dνβ·

+2n2γ

∫
∂qgt⊙̃∂q

( |∂pgt|2⊙
gt

)
dνβ· +

∫
∂qgt⊙̃∂q(Bngt) dνβ·

= −2n2

∫
∂qgt⊙̃∂q(Aτ̄(t)gt) dνβ· − 2n2γ

∫ n−1∑

j=1

n∑

i=1

β−1
i β−1

j

(
∂pi∂qjg − g−1

t ∂pig∂qjg
)2

dνβ·

+

∫
∂qgt⊙̃∂q(Bngt) dνβ·.

(9.8)

The first and the last term give:

−2n2

∫
∂qgt⊙̃∂q(Aτ̄(t)gt) dνβ· +

∫
∂qgt⊙̃∂q(Bngt) dνβ·

= 2n2

∫
∂qgt⊙̃(∂2

qV∂p)gt dνβ· +
∫

gt∂qgt⊙̃∂qBn dνβ·

The last term on the RHS of the above expression is equal to

∫
gt∂qgt⊙̃∂qBn dνβ·

=n

n−1∑

i=2

∫
β−1
i gt(∂qigt)

[
∇nβ

(
i

n

)
V ′′(ri+1)pi −∇nβ

(
i− 1

n

)
V ′′(ri)pi−1

]
dνβ·

+ n

∫
β−1
1 gt(∂q1gt)∇nβ

(
1

n

)
V ′′(r2)p1.
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Since V ′′ and ∇nβ are bounded and β(·) is positive bounded away from 0, this last
quantity is bounded for any α2 > 0 by

n2α2

∫
|∂qgt|2⊙̃dνβ· +Cα−1

2

∫ n−1∑

i=1

p2i g
2
t dνβ· ≤ n2α2

∫
|∂qgt|2⊙̃dνβ· + C ′α−1

2 n.

Since V ′′ is bounded, for any α3 > 0 we have

2n2

∫
∂qgt⊙̃(∂2

qV∂p)gt dνβ· ≤ α3n
2

∫
|∂qgt|2⊙̃ dνβ· +

|V ′′|2∞n2

α3

∫
|∂pgt|2⊙̃ dνβ·

Putting all the terms together, the time derivative of the second term is bounded by

d

dt

∫
|∂qgt|2⊙̃ dνβ· ≤ (α2 + α3)n

2

∫
|∂qgt|2⊙̃ dνβ· +

Cn2

α3

∫
|∂pgt|2⊙̃ dνβ·

− 2n2γ

∫ n−1∑

j=1

n∑

i=1

β−1
i β−1

j

(
∂pi∂qjg − g−1

t ∂pig∂qjg
)2

dνβ· +C ′α−1
2 n

(9.9)

About the derivative of the third term, using the third of the commutation relations
(9.2), gives

d

dt
2

∫
∂qgt⊙̃∂pgtdνβ· = −2n2

∫ [
∂q(Aτ(t)gt)⊙̃∂pgt + ∂qgt⊙̃∂p(Aτ(t)gt)

]
dνβ·

+

∫ [
∂q(Bngt)⊙̃∂pgt + ∂qgt⊙̃∂p(Bngt)

]
dνβ·

−2n2γ

∫ [
∂qgt⊙̃∂p(∂

∗
p ⊙ ∂pgt) + ∂q(∂

∗
p ⊙ ∂pgt)⊙̃∂pgt

]
dνβ·

+2n2γ

∫ [
∂qgt⊙̃∂p

( |∂pgt|2⊙
gt

)
+ ∂q

( |∂pgt|2⊙
gt

)
⊙̃∂pgt

]
dνβ·

= 2n2

∫
(∂2

qV∂p)gt⊙̃∂pgtdνβ· − 2n2

∫
|∂qgt|2⊙̃dνβ·

+
1

2

∫
gt
[
∂qBn⊙̃∂pgt + ∂qgt⊙̃∂pBn

]
dνβ·

−4n2γ

∫ n−1∑

j=1

n∑

i=1

β−1
i β−1

j

[(
∂pi∂qjg

) (
∂pi∂pjg

)]
dνβ·

+2n2γ

∫ n−1∑

j=1

n∑

i=1

2β−1
i β−1

j g−1
t

[
(∂pi∂pjg)(∂pigt)(∂qjgt) + (∂qj∂pig)(∂pjgt)(∂pigt)

]
dνβ·

−4n2γ

∫ n−1∑

j=1

n∑

i=1

β−1
i β−1

j g−2(∂pigt)
2(∂qjgt)(∂pjgt)dνβ·

(9.10)

The last three terms of the RHS of the (9.10) can be written as

−4n2γ

∫ n−1∑

j=1

n∑

i=1

β−1
i β−1

j

[(
∂pi∂qjgt − g−1

t ∂pigt∂qjgt
) (

∂pi∂pjgt − g−1
t ∂pigt∂pjgt

)]
dνβ·
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so they combine with the corresponding terms coming from the time derivative of the
first two terms of In giving an exact square.

The second term of (9.10), by the same arguments used before, can be bounded by

n2α4

∫
|∂qgt|2⊙̃dνβ· + n2α5

∫
|∂pgt|2⊙̃dνβ· +Cn(α−1

4 + α−1
5 )

About the first term of (9.10), since V ′′ is bounded, it is bounded by V ′′
∞n2

∫
|∂pgt|2⊙̃dνβ·.

Putting all these bounds together we obtain that

d

dt
In(ft) ≤ −n2κp

∫
|∂pgt|2⊙̃dνβ· − n2κq

∫
|∂qgt|2⊙̃dνβ· − 2n2

∫
∂pgt⊙̃∂qgtdνβ· + Cn

−2N2γ

∫ n−1∑

j=1

n∑

i=1

β−1
i β−1

j

[(
∂pi∂qjgt − g−1

t ∂pigt∂qjgt
)
+
(
∂pi∂pjgt − g−1

t ∂pigt∂pjgt
)]2

dνβ·

with

κp = 2γ − α1

2
− C

α3
− α5 − V ′′

∞

κq = 2− α2 − α3 − α4

By choosing α2 + α3 + α4 ≤ 1 we have obtained that for some constants C1, C2 > 0
independent of n

d

dt
In(ft) ≤ −n2In(ft) + C1n+ C2

∫
|∂pgt|2⊙̃dνβ·.

By recalling that ∫ t

0
ds

∫
|∂pgs|2⊙̃dνβ· ≤

C ′

n

after time integration we have for some constant C3:

In(ft) ≤ e−n2tIn(f0) +
C3

n
(1− e−n2t)

that implies

In(ft) ≤
C4

n
(9.11)

for any reasonable initial conditions such that In(f0) is finite and not growing too fast
with n.

Remark 9.1. An important example for understanding the meaning of a density with
small In functional, consider the inhomogeneous Gibbs density:

f = exp

(
n∑

i=1

βiτiri +

n−1∑

i=1

1

n
∇n(βiτi)pi

)
/N (9.12)

where N is a normalization constant. In the case of constant temperature these densities
play an important role in the relative entropy method (cf [14, 9]), as to a non-constant
profile of tension corresponds a profile of small damped velocities averages. Computing
In on f we have

In(f) =
n−1∑

i=1

[
βiτi − βi+1τi+1 +

1

n
∇n(βiτi)

]
= 0.
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