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Mathematical Definition, Mapping, and Detection of (Anti)Fragility

Nassim Nicholas Taleb⇤ and Raphael Douady †

November 2013

Forthcoming, Quantitative Finance

We provide a mathematical definition of fragility and antifragility as negative or positive sensitivity to a semi-measure of
dispersion and volatility (a variant of negative or positive "vega") and examine the link to nonlinear effects. We integrate
model error (and biases) into the fragile or antifragile context. Unlike risk, which is linked to psychological notions such
as subjective preferences (hence cannot apply to a coffee cup) we offer a measure that is universal and concerns any
object that has a probability distribution (whether such distribution is known or, critically, unknown). We propose a
detection of fragility, robustness, and antifragility using a single "fast-and-frugal", model-free, probability free heuristic
that also picks up exposure to model error. The heuristic lends itself to immediate implementation, and uncovers hidden
risks related to company size, forecasting problems, and bank tail exposures (it explains the forecasting biases). While
simple to implement, it improves on stress testing and bypasses the common flaws in Value-at-Risk.

1 Introduction
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The notions of fragility and antifragility were introduced in Taleb (2012). In short, fragility is related to how a
system suffers from the variability of its environment beyond a certain preset threshold (when threshold is K, it is called
K-fragility), while antifragility refers to when it benefits from this variability —in a similar way to “vega” of an option or
a nonlinear payoff, that is, its sensitivity to volatility or some similar measure of scale of a distribution.

Simply, a coffee cup on a table suffers more from large deviations than from the cumulative effect of some shocks—
conditional on being unbroken, it has to suffer more from “tail” events than regular ones around the center of the
distribution, the “at the money” category. This is the case of elements of nature that have survived: conditional on being
in existence, then the class of events around the mean should matter considerably less than tail events, particularly
when the probabilities decline faster than the inverse of the harm, which is the case of all used monomodal probability
distributions. Further, what has exposure to tail events suffers from uncertainty; typically, when systems – a building, a
bridge, a nuclear plant, an airplane, or a bank balance sheet– are made robust to a certain level of variability and stress
⇤Former Trader, flaneur, and NYU-Poly
†Centre d’Économie de la Sorbonne
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but may fail or collapse if this level is exceeded, then they are particularly fragile to uncertainty about the distribution
of the stressor, hence to model error, as this uncertainty increases the probability of dipping below the robustness level,
bringing a higher probability of collapse. In the opposite case, the natural selection of an evolutionary process is
particularly antifragile, indeed, a more volatile environment increases the survival rate of robust species and eliminates
those whose superiority over other species is highly dependent on environmental parameters.

Figure 1 show the “tail vega” sensitivity of an object calculated discretely at two different lower absolute mean
deviations. We use for the purpose of fragility and antifragility, in place of measures in L2 such as standard deviations,
which restrict the choice of probability distributions, the broader measure of absolute deviation, cut into two parts: lower
and upper semi-deviation above the distribution center ⌦.

This article aims at providing a proper mathematical definition of fragility, robustness, and antifragility and examining
how these apply to different cases where this notion is applicable.

Intrinsic and Inherited Fragility: Our definition of fragility is two-fold. First, of concern is the intrinsic fragility,
the shape of the probability distribution of a variable and its sensitivity to s-, a parameter controlling the left side of its
own distribution. But we do not often directly observe the statistical distribution of objects, and, if we did, it would be
difficult to measure their tail-vega sensitivity. Nor do we need to specify such distribution: we can gauge the response
of a given object to the volatility of an external stressor that affects it. For instance, an option is usually analyzed with
respect to the scale of the distribution of the “underlying” security, not its own; the fragility of a coffee cup is determined
as a response to a given source of randomness or stress; that of a house with respect of, among other sources, the
distribution of earthquakes. This fragility coming from the effect of the underlying is called inherited fragility. The
transfer function, which we present next, allows us to assess the effect, increase or decrease in fragility, coming from
changes in the underlying source of stress.

Transfer Function: A nonlinear exposure to a certain source of randomness maps into tail-vega sensitivity (hence
fragility). We prove that

Inherited Fragility, Concavity in exposure on the left side of the distribution
and build H, a transfer function giving an exact mapping of tail vega sensitivity to the second derivative of a function.

The transfer function will allow us to probe parts of the distribution and generate a fragility-detection heuristic covering
both physical fragility and model error.

1.1 Fragility As Separate Risk From Psychological Preferences

Avoidance of the Psychological: We start from the definition of fragility as tail vega sensitivity, and end up with
nonlinearity as a necessary attribute of the source of such fragility in the inherited case —a cause of the disease rather
than the disease itself. However, there is a long literature by economists and decision scientists embedding risk into
psychological preferences —historically, risk has been described as derived from risk aversion as a result of the structure of
choices under uncertainty with a concavity of the muddled concept of “utility” of payoff, see Pratt (1964), Arrow (1965),
Rothchild and Stiglitz(1970,1971). But this “utility” business never led anywhere except the circularity, expressed by
Machina and Rothschild (2008), “risk is what risk-averters hate.” Indeed limiting risk to aversion to concavity of choices
is a quite unhappy result —the utility curve cannot be possibly monotone concave, but rather, like everything in nature
necessarily bounded on both sides, the left and the right, convex-concave and, as Kahneman and Tversky (1979) have
debunked, both path dependent and mixed in its nonlinearity.

Beyond Jensen’s Inequality: Furthermore, the economics and decision-theory literature reposes on the effect of
Jensen’s inequality, an analysis which requires monotone convex or concave transformations —in fact limited to the
expectation operator. The world is unfortunately more complicated in its nonlinearities. Thanks to the transfer function,
which focuses on the tails, we can accommodate situations where the source is not merely convex, but convex-concave
and any other form of mixed nonlinearities common in exposures, which includes nonlinear dose-response in biology.
For instance, the application of the transfer function to the Kahneman-Tversky value function, convex in the negative
domain and concave in the positive one, shows that its decreases fragility in the left tail (hence more robustness) and
reduces the effect of the right tail as well (also more robustness), which allows to assert that we are psychologically
“more robust” to changes in wealth than implied from the distribution of such wealth, which happens to be extremely
fat-tailed.

c�2013 N.N. Taleb and R. Douady 2 November 2013 
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Accordingly, our approach relies on nonlinearity of exposure as detection of the vega-sensitivity, not as a definition
of fragility. And nonlinearity in a source of stress is necessarily associated with fragility. Clearly, a coffee cup, a house
or a bridge don’t have psychological preferences, subjective utility, etc. Yet they are concave in their reaction to harm:
simply, taking z as a stress level and ⇧(z) the harm function, it suffices to see that, with n> 1,

⇧(nz)< n⇧(z) for all 0< nz < Z⇤

where Z⇤ is the level (not necessarily specified) at which the item is broken. Such inequality leads to ⇧(z) having a
negative second derivative at the initial value z.

So if a coffee cup is less harmed by n times a stressor of intensity Z than once a stressor of nZ, then harm (as a
negative function) needs to be concave to stressors up to the point of breaking; such stricture is imposed by the structure
of survival probabilities and the distribution of harmful events, and has nothing to do with subjective utility or some other
figments. Just as with a large stone hurting more than the equivalent weight in pebbles, if, for a human, jumping one
millimeter caused an exact linear fraction of the damage of, say, jumping to the ground from thirty feet, then the person
would be already dead from cumulative harm. Actually a simple computation shows that he would have expired within
hours from touching objects or pacing in his living room, given the multitude of such stressors and their total effect. The
fragility that comes from linearity is immediately visible, so we rule it out because the object would be already broken
and the person already dead. The relative frequency of ordinary events compared to extreme events is the determinant.
In the financial markets, there are at least ten thousand times more events of 0.1% deviations than events of 10%. There
are close to 8,000 micro-earthquakes daily on planet earth, that is, those below 2 on the Richter scale —about 3 million
a year. These are totally harmless, and, with 3 million per year, you would need them to be so. But shocks of intensity
6 and higher on the scale make the newspapers. Accordingly, we are necessarily immune to the cumulative effect of
small deviations, or shocks of very small magnitude, which implies that these affect us disproportionally less (that is,
nonlinearly less) than larger ones.

Model error is not necessarily mean preserving. s-, the lower absolute semi-deviation does not just express changes
in overall dispersion in the distribution, such as for instance the “scaling” case, but also changes in the mean, i.e. when
the upper semi-deviation from ⌦ to infinity is invariant, or even decline in a compensatory manner to make the overall
mean absolute deviation unchanged. This would be the case when we shift the distribution instead of rescaling it. Thus
the same vega-sensitivity can also express sensitivity to a stressor (dose increase) in medicine or other fields in its effect
on either tail. Thus s�(l) will allow us to express the sensitivity to the “disorder cluster” (Taleb, 2012): i) uncertainty, ii)
variability, iii) imperfect, incomplete knowledge, iv) chance, v) chaos, vi) volatility, vii) disorder, viii) entropy, ix) time,
x) the unknown, xi) randomness, xii) turmoil, xiii) stressor, xiv) error, xv) dispersion of outcomes.

DETECTION HEURISTIC

Finally, thanks to the transfer function, this paper proposes a risk heuristic that "works" in detecting fragility even if
we use the wrong model/pricing method/probability distribution. The main idea is that a wrong ruler will not measure
the height of a child; but it can certainly tell us if he is growing. Since risks in the tails map to nonlinearities (concavity
of exposure), second order effects reveal fragility, particularly in the tails where they map to large tail exposures, as
revealed through perturbation analysis. More generally every nonlinear function will produce some kind of positive or
negative exposures to volatility for some parts of the distribution.

1.2 Fragility and Model Error

As we saw this definition of fragility extends to model error, as some models produce negative sensitivity to uncertainty,
in addition to effects and biases under variability. So, beyond physical fragility, the same approach measures model
fragility, based on the difference between a point estimate and stochastic value (i.e., full distribution). Increasing the
variability (say, variance) of the estimated value (but not the mean), may lead to one-sided effect on the model —just as
an increase of volatility causes porcelain cups to break. Hence sensitivity to the volatility of such value, the “vega” of the
model with respect to such value is no different from the vega of other payoffs. For instance, the misuse of thin-tailed
distributions (say Gaussian) appears immediately through perturbation of the standard deviation, no longer used as
point estimate, but as a distribution with its own variance. For instance, it can be shown how fat-tailed (e.g. power-law
tailed) probability distributions can be expressed by simple nested perturbation and mixing of Gaussian ones. Such a

c�2013 N.N. Taleb and R. Douady 3 November 2013 
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Figure 1: Disproportionate effect of tail events on nonlinear exposures, illustrating the necessary character of the nonlinearity of the harm
function and showing how we can extrapolate outside the model to probe unseen fragility.

representation pinpoints the fragility of a wrong probability model and its consequences in terms of underestimation of
risks, stress tests and similar matters.

1.3 Antifragility

It is not quite the mirror image of fragility, as it implies positive vega above some threshold in the positive tail of the
distribution and absence of fragility in the left tail, which leads to a distribution that is skewed right.

Fragility and Transfer Theorems
Table 1 introduces the Exhaustive Taxonomy of all Possible Payoffs y=f(x)

The central Table, Table 1 introduces the exhaustive map of possible outcomes, with 4 mutually exclusive categories
of payoffs. Our steps in the rest of the paper are as follows: a. We provide a mathematical definition of fragility,
robustness and antifragility. b. We present the problem of measuring tail risks and show the presence of severe biases
attending the estimation of small probability and its nonlinearity (convexity) to parametric (and other) perturbations.
c. We express the concept of model fragility in terms of left tail exposure, and show correspondence to the concavity of
the payoff from a random variable. d. Finally, we present our simple heuristic to detect the possibility of both fragility
and model error across a broad range of probabilistic estimations.

Conceptually, fragility resides in the fact that a small – or at least reasonable – uncertainty on the macro-parameter
of a distribution may have dramatic consequences on the result of a given stress test, or on some measure that depends
on the left tail of the distribution, such as an out-of-the-money option. This hypersensitivity of what we like to call an
“out of the money put price” to the macro-parameter, which is some measure of the volatility of the distribution of the
underlying source of randomness.

Formally, fragility is defined as the sensitivity of the left-tail shortfall (non-conditioned by probability) below a certain
threshold K to the overall left semi-deviation of the distribution.

Examples

i- A porcelain coffee cup subjected to random daily stressors from use.

c�2013 N.N. Taleb and R. Douady 4 November 2013 
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Table 1: Payoffs and Mixed Nonlinearities

Type Condition Left Tail
(Loss
Domain)

Right Tail
(Gain Do-
main)

Nonlinear
Payoff Func-
tion y = f (x)
"derivative"
where x is a
random vari-
able

Derivatives
Equivalent
(Taleb, 1997)

Effect of fa-
tailedness of
f (x) compared
to primitive x.

Type
1

Fragile
(type 1)

Fat (reg-
ular or
absorbing
barrier)

Fat Mixed concave
left, convex right
(fence)

Long up-vega,
short down-vega

More fragility
if absorbing
barrier, neutral
otherwise

Type
2

Fragile
(type 2)

Thin Thin Concave Short vega More fragility

Type
3

Robust Thin Thin Mixed convex
left, concave
right (digital,
sigmoid)

Short up - vega,
long down - vega

No effect

Type
4

Antifragile Thin Fat
(thicker
than left)

Convex Long vega More an-
tifragility

ii- Tail distribution in the function of the arrival time of an aircraft.

iii- Hidden risks of famine to a population subjected to monoculture —or, more generally, fragilizing errors in the
application of Ricardo’s comparative advantage without taking into account second order effects.

iv- Hidden tail exposures to budget deficits’ nonlinearities to unemployment.

v- Hidden tail exposure from dependence on a source of energy, etc. (“squeezability argument”).

1.4 Tail Vega Sensitivity

We construct a measure of “vega” in the tails of the distribution that depends on the variations of s, the semi-deviation
below a certain level W , chosen in the L1 norm in order to ensure its existence under “fat tailed” distributions with finite
first semi-moment. In fact s would exist as a measure even in the case of infinite moments to the right side of W .

Let X be a random variable, the distribution of which is one among a one-parameter family of pdf f�,� 2 I ⇢ R. We
consider a fixed reference value ⌦ and, from this reference, the left-semi-absolute deviation:

s�(�) =
Z ⌦

�1
(⌦� x) f�(x)dx

We assume that �! s–(�) is continuous, strictly increasing and spans the whole range R+ = [0, +1), so that we may
use the left-semi-absolute deviation s– as a parameter by considering the inverse function �(s) : R+ ! I , defined by
s� (�(s)) = s for s 2 R+.

This condition is for instance satisfied if, for any given x < ⌦, the probability is a continuous and increasing function
of �. Indeed, denoting

F�(x) = Pf�(X < x) =
Z x

�1
f�(t)dt,

an integration by part yields:

s�(�) =
Z ⌦

�1
F�(x)dx

c�2013 N.N. Taleb and R. Douady 5 November 2013 
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This is the case when � is a scaling parameter, i.e., X ⇠ ⌦+�(X1 �⌦) indeed one has in this case

F�(x) = F1

Å
⌦+

x �⌦
�

ã
,

@ F�
@ � (x) =

⌦�x
�2 f�(x) and s�(�) = � s�(1).

It is also the case when � is a shifting parameter, i.e. X ⇠ X0 � � , indeed, in this case F�(x) = F0(x + �) and
@ s�
@ � (x) = F�(⌦).

For K < ⌦ and s 2 R+, let:

⇠(K , s�) =
Z K

�1
(⌦� x) f�(s�)(x)dx

In particular, ⇠(⌦, s–) = s–. We assume, in a first step, that the function ⇠(K,s–) is differentiable on (�1, ⌦] ⇥ R+.
The K-left-tail-vega sensitivity of X at stress level K < ⌦ and deviation level s� > 0 for the pdf f� is:

V (X , f�, K , s�) =
@ ⇠

@ s�
(K , s�) =

ÇZ ⌦

�1
(⌦� x)

@ f�)
@ �

dx

åÅ
ds�

d�

ã�1

(1)

As the in many practical instances where threshold effects are involved, it may occur that ⇠ does not depend smoothly
on s–. We therefore also define a finite difference version of the vega-sensitivity as follows:

V (X , f�, K , s�) =
1

2�s

�
⇠(K , s� +�s)� ⇠(K , s� ��s)

�

=
Z K

�1
(⌦� x)

f�(s� +�s)(x)� f�(s� ��s)(x)
2� s

dx

Hence omitting the input �s implicitly assumes that �s! 0.
Note that ⇠(K , s�) = �E(X |X < K) P f�(X < K). It can be decomposed into two parts:

⇠
�
K , s�(�)
�
= ( ⌦� K)F�(K) + P�(K)

P�(K) =
Z K

�1
(K � x) f�(x)dx

Where the first part (⌦�K)F�(K) is proportional to the probability of the variable being below the stress level K and the
second part P�(K) is the expectation of the amount by which X is below K (counting 0 when it is not). Making a parallel
with financial options, while s–(�) is a “put at-the-money”, ⇠(K,s–) is the sum of a put struck at K and a digital put also
struck at K with amount ⌦ – K; it can equivalently be seen as a put struck at ⌦ with a down-and-in European barrier at
K.

Letting � = �(s–) and integrating by part yields

⇠
�
K , s�(�)
�
= ( ⌦� K)F�(K) +

Z K

�1
F�(x)dx =
Z ⌦

�1
F K
� (x)dx (2)

Where F K
� (x) = F� (min(x , K)) =min (F�(x), F�(K)), so that

V (X , f�, K , s�) =
@ ⇠

@ s
(K , s�) =

R ⌦
�1

@ F K
�

@ � (x)dx
R ⌦
�1

@ F�
@ � (x)dx

(3)

For finite differences

V (X , f�, K , s�,�s) =
1

2� s

Z ⌦

�1
�F K

�,�s(x)dx

c�2013 N.N. Taleb and R. Douady 6 November 2013 
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Where �+s and ��s are such that s(�+s�) = s� +�s, s(��s�) = s� ��s and �F K
�,�s(x) = F K

�s+
(x)� F K

�s�
(x).

2 Mathematical Expression of Fragility

In essence, fragility is the sensitivity of a given risk measure to an error in the estimation of the (possibly one-sided)
deviation parameter of a distribution, especially due to the fact that the risk measure involves parts of the distribution
– tails – that are away from the portion used for estimation. The risk measure then assumes certain extrapolation rules
that have first order consequences. These consequences are even more amplified when the risk measure applies to a
variable that is derived from that used for estimation, when the relation between the two variables is strongly nonlinear,
as is often the case.

2.1 Definition of Fragility: The Intrinsic Case

The local fragility of a random variable X� depending on parameter �, at stress level K and semi-deviation level s–(�) with
pdf f� is its K-left-tailed semi-vega sensitivity V (X , f�, K , s�).

The finite-difference fragility of X� at stress level K and semi-deviation level s�(�)±�s with pdf f� is its K-left-tailed
finite-difference semi-vega sensitivity V (X , f�, K , s�,�s).

In this definition, the fragility relies in the unsaid assumptions made when extrapolating the distribution of X� from
areas used to estimate the semi-absolute deviation s–(�), around ⌦, to areas around K on which the risk measure ⇠
depends.

2.2 Definition of Fragility: The Inherited Case

Next we consider the particular case where a random variable Y = '(X) depends on another source of risk X, itself
subject to a parameter �. Let us keep the above notations for X, while we denote by g� the pdf of Y ,⌦Y = '(⌦) and

c�2013 N.N. Taleb and R. Douady 7 November 2013 
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u�(�) the left-semi-deviation of Y. Given a “strike” level
L = '(K), let us define, as in the case of X :

⇣
�
L,u�(�)
�
=
Z K

�1
(⌦Y � y)g�(y)dy

The inherited fragility of Y with respect to X at stress level L = '(K) and left-semi-deviation level s–(�) of X is the partial
derivative:

VX

�
Y, g�, L, s�(�)
�
=
@ ⇣

@ s

�
L,u�(�)
�
=

ÇZ K

�1
(⌦Y � Y )

@ g�
@ �
(y)dy

åÅ
ds�

d�

ã�1

(4)

Note that the stress level and the pdf are defined for the variable Y, but the parameter which is used for differentiation
is the left-semi-absolute deviation of X, s–(�). Indeed, in this process, one first measures the distribution of X and its
left-semi-absolute deviation, then the function ' is applied, using some mathematical model of Y with respect to X and
the risk measure ⇣ is estimated. If an error is made when measuring s–(�), its impact on the risk measure of Y is amplified
by the ratio given by the “inherited fragility”.

Once again, one may use finite differences and define the finite-difference inherited fragility of Y with respect to X,
by replacing, in the above equation, differentiation by finite differences between values �+ and �–, where s–(�+) = s– +
�s and s–(�–) = s– – �s.

3 Effect of Nonlinearity on Intrinsic Fragility

Let us study the case of a random variable Y = '(X); the pdf g� of which also depends on parameter �, related to
a variable X by the nonlinear function '. We are now interested in comparing their intrinsic fragilities. We shall say,
for instance, that Y is more fragile at the stress level L and left-semi-deviation level u�(�) than the random variable
X, at stress level K and left-semi-deviation level s�(�) if the L-left-tailed semi-vega sensitivity of Y� is higher than the
K-left-tailed semi-vega sensitivity of X�:

V (Y, g�, L,µ�)> V (X , f�, K , s�)

One may use finite differences to compare the fragility of two random variables:V (Y, g�, L,�µ)> V (X , f�, K ,�s). In
this case, finite variations must be comparable in size, namely �u/u– = �s/s–.

Let us assume, to start, that ' is differentiable, strictly increasing and scaled so that ⌦Y = '(⌦) =⌦ . We also
assume that, for any given x < ⌦, @ F�

@ � (x)> 0.
In this case, as observed above, �! s–(�) is also increasing.

Let us denote Gy(y) = Pg�(Y < y) . We have:

G� (�(x)) = Pg� (Y < �(y)) = P f�(X < x) = F�(x).

Hence, if ⇣(L, u–) denotes the equivalent of ⇠(K, s–) with variable (Y, g�) instead of (X, f�), we have:

⇣
�
L,u�(�)
�
=
Z ⌦

�1
F K
� (x)

d�
d x
(x)dx

Because ' is increasing and min('(x),'(K)) = '(min(x,K)). In particular

µ�(�) = ⇣
�
⌦,µ�(�)
�
=
Z ⌦

�1
F K
� (x)

d�
dx
(x) dx

The L-left-tail-vega sensitivity of Y is therefore:

V
�
Y, g�, L,u�(�)
�
=

R ⌦
�1

@ F K
�

@ � (x)
d�
d x (x)dx

R ⌦
�1

@ F�
@ � (x)

d�
d x (x)dx

For finite variations:

c�2013 N.N. Taleb and R. Douady 8 November 2013 
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V (Y, g�, L,u�(�),�u) =
1

2�u

Z ⌦

�1
�F K

�,�u(x)
d�
d x
(x)dx

Where �+u� and ��u� are such that u(�+u�) = u� +�u, u(�+u�) = u� ��u and F K
�,�u(x) = F K

�+u
(x)� F K

��u
(x).

Next, Theorem 1 proves how a concave transformation '(x) of a random variable x produces fragility.

THEOREM 1 (FRAGILITY TRANSFER THEOREM)
Let, with the above notations, ' : R ! R be a twice differentiable function such that '(⌦) = ⌦ and for any x < ⌦,

d'
dx (x) > 0 . The random variable Y = '(X) is more fragile at level L = '(K) and pdf gl ambda than X at level K and pdf
f� if, and only if, one has:

Z ⌦

�1
HK
� (x)

d2'

d x2
(x)dx < 0

Where

HK
� (x) =

@ PK
�

@ �
(x)
�
@ PK
�

@ �
(⌦)�

@ P�
@ �
(x)
�
@ P�
@ �
(⌦)

and where

P�(x) =
Z x

�1
F�(t)d t

is the price of the “put option” on X� with “strike” x and

PK
� (x) =
Z x

�1
F K
� (t)d t

is that of a “put option” with “strike” x and “European down-and-in barrier” at K.
H can be seen as a transfer function, expressed as the difference between two ratios. For a given level x of the

random variable on the left hand side of ⌦, the second one is the ratio of the vega of a put struck at x normalized by
that of a put “at the money” (i.e. struck at ⌦), while the first one is the same ratio, but where puts struck at x and ⌦ are
“European down-and-in options” with triggering barrier at the level K.

Proof
Let IX�

=
R ⌦
�1

@ F�
@ � (x)dx , I K

X�
=
R ⌦
�1

@ F K
�

@ � (x)dx , and IY�
=
R ⌦
�1

@ F�
@ � (x)

d'
dx (x)dx . One has One has V (X , f�, K , s�(�)) =

I K
X�

¿
IX�and V (Y, g�, L,u�(�)) = I L

Y�

¿
IY�hence:

V (Y, g�, L,u�(�))� V (X , f�, K , s�(�)) =
I L
Y�

IY�

�
I K
X�

IX�

=
I K
X�

IY�

Ç
I L
Y�

I K
X�

�
IY�

IX�

å
(5)

Therefore, because the four integrals are positive, Therefore, because the four integrals are positive,

V (Y, g�, L,u�(�))� V (X , f�, K , s�(�))

I L
Y�

¿
I K
X�
� IY�

�
IX� .

On the other hand, we have IX� =
@ P�
@ � (⌦)I

K
X�
= @ PK

�

@ � (⌦)and

IY�
=
Z ⌦

�1

@ F�
@ �
(x)

d'
dx
(x)dx =

@ P�
@ �
(⌦)

d'
dx
(⌦)�
Z ⌦

�1

@ P�
@ �
(x)

d2'

d x2
(x)dx (6)

I L
Y�
=
Z ⌦

�1

@ F K
�

@ �
(x)

d'
dx
(x)dx =

@ PK
�

@ �
(⌦)

d'
dx
(⌦)�
Z ⌦

�1

@ PK
�

@ �
(x)

d2'

d x2
(x)dx (7)
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An elementary calculation yields:

I L
Y�

I K
X�

�
IY�

IX�

= �
✓
@ PK
�

@ �
(⌦)
◆�1Z ⌦

�1

@ PK
�

@ �
(x)

d2'

d x2
dx +
✓
@ P�
@ �
(⌦)
◆�1Z ⌦

�1

@ P�
@ �
(x)

d2'

d x2
dx = �
Z ⌦

�1
HK
� (x)

d2'

d x2
dx . (8)

Let us now examine the properties of the function HK
� (x). For x  K , we have

@ PK
�

@ � (x) =
@ P�
@ � (x)> 0 (the positivity is

a consequence of that of @ F�
@ � ), therefore HK

� (x) has the same sign as

@ P�
@ �
(⌦)�

@ PK
�

@ �
(⌦).

As this is a strict inequality, it extends to an interval on the right hand side of K, say (˘1, K] with K < K < . But on the
other hand:

@ P�
@ �
(⌦)�

@ PK
�

@ �
(⌦) =
Z ⌦

K

@ F�
@ �
(x)dx � (⌦� K)

@ F�
@ �
(K)

For K negative enough, @ F�
@ � (K) is smaller than its average value over the interval [K, ⌦], hence

@ P�
@ �
(⌦)�

@ PK
�

@ �
(⌦) > 0.

We have proven the following theorem.

THEOREM 2 ( FRAGILITY EXACERBATION THEOREM)

With the above notations, there exists a threshold ⇥� < ⌦ such that, if K  ⇥� then HK
� (x)> 0 for x 2 (–1,�] with

K < l ambda < ⌦. As a consequence, if the change of variable ' is concave_ on (�1,�]and linear on [�,⌦] , then Y
is more fragile at L = '(K) than X at K.

One can prove that, for a monomodal distribution, ⇥� < � < ⌦ (see discussion below), so whatever the stress level
K below the threshold ⇥�, it suffices that the change of variable ' be concave on the interval (–1, ⇥�] and linear on
[⇥�, ⌦] for Y to become more fragile at L than X at K. In practice, as long as the change of variable is concave around
the stress level K and has limited convexity/concavity away from K, the fragility of Y is greater than that of X.

Figure 3 shows the shape of HK
� (x) in the case of a Gaussian distribution where � is a simple scaling parameter

(� is the standard deviation �) and ⌦ = 0. We represented K = –2� while in this Gaussian case, ⇥� = –1.585�.

DISCUSSION

Monomodal case
We say that the family of distributions ( f�) is left-monomodal if there exists K� < ⌦ such that @ f�

@ � æ 0 on (–1, �] and
@ f�
@ � ∂ 0 on [µ�,⌦]. In this case @ P�

@ � is a convex function on the left half-line (–1, µ�], then concave after the inflexion

point µ�. For K  µ�, the function
@ PK
�

@ � coincides with @ P�
@ � on (–1, K], then is a linear extension, following the tangent

to the graph of @ P�
@ � in K (see graph below). The value of

@ PK
�

@ � (⌦) corresponds to the intersection point of this tangent

with the vertical axis. It increases with K, from 0 when K ! –1 to a value above
@ P�
@ � (⌦) when K = µ�. The threshold

⇥� corresponds to the unique value of K such that
@ PK
�

@ � (⌦) =
@ P�
@ � (⌦) . When K < ⇥� then G�(x) =

@ P�
@ � (x)
¿
@ P�
@ � (⌦) and

GK
� (x) =

@ PK
�

@ � (x)
.
@ PK
�

@ � (⌦) are functions such that G�(⌦) = GK
� (⌦) = 1 and which are proportional for x  K, the latter
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Figure 2: The distribution of G� and the various derivatives of the unconditional shortfalls

being linear on [K, ⌦]. On the other hand, if K < ⇥� then
@ PK
�

@ � (⌦) <
@ P�
@ � (⌦) and G�(K) < GK

� (K), which implies that
G�(x) < GK

� (x) for x  K. An elementary convexity analysis shows that, in this case, the equation G�(x) = GK
� (x) has a

unique solution � with µl ambda < � < ⌦. The “transfer” function HK
� (x) is positive for x < �, in particular when

x  µ� and negative for � < x < ⌦.
Scaling Parameter
We assume here that � is a scaling parameter, i.e. X� = ⌦ +�(X1 � ⌦). In this case, as we saw above, we have

f�(x) =
1
� f1

�
⌦+ x�⌦

�

�
, F�(x) = F1

�
⌦+ x�⌦

�

�
P�(x) = �P1

�
⌦+ x�⌦

�

�
and s

(�) = �s�(1). Hence

⇠(K , s�(�)) = (⌦� K)F1

Å
⌦+

K �⌦
�

ã
+�P1

Å
⌦+

K �⌦
�

ã

@ ⇠

@ s�
(K , s�) =

1
s�(1)

@ ⇠

@ �
(K ,�) =

1
s�(�)
�
P�(K) + (⌦� K)F�(K) + (⌦� K)2 f�(K)

�

When we apply a nonlinear transformation ', the action of the parameter � is no longer a scaling: when small
negative values of X are multiplied by a scalar �, so are large negative values of X. The scaling � applies to small
negative values of the transformed variable Y with a coefficient d'

dx (0), but large negative values are subject to a different
coefficient d'

dx (K), which can potentially be very different.

4 Fragility Drift

Fragility is defined at as the sensitivity – i.e. the first partial derivative – of the tail estimate ⇠ with respect to the left
semi-deviation s–. Let us now define the fragility drift:

V 0K(X , f�, K , s�) =
@ 2⇠

@ K@ s�
(K , s�)

In practice, fragility always occurs as the result of fragility, indeed, by definition, we know that ⇠(⌦, s–) = s–, hence
V(X, f�, ⌦, s–) = 1. The fragility drift measures the speed at which fragility departs from its original value 1 when K
departs from the center ⌦.

Second-order Fragility
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The second-order fragility is the second order derivative of the tail estimate ⇠ with respect to the semi-absolute
deviation s–:

V 0s�(X , f�, K , s�) =
@ 2⇠

(@ s�)2
(K , s�)

As we shall see later, the second-order fragility drives the bias in the estimation of stress tests when the value of s– is
subject to uncertainty, through Jensen’s inequality.

5 Definitions of Robustness and Antifragility

Antifragility is not the simple opposite of fragility, as we saw in Table 1. Measuring antifragility, on the one hand,
consists of the flipside of fragility on the right-hand side, but on the other hand requires a control on the robustness of
the probability distribution on the left-hand side. From that aspect, unlike fragility, antifragility cannot be summarized
in one single figure but necessitates at least two of them.

When a random variable depends on another source of randomness: Y� = '(X�), we shall study the antifragility
of Y� with respect to that of X� and to the properties of the function '.

DEFINITION OF ROBUSTNESS

Let (X�) be a one-parameter family of random variables with pdf f�. Robustness is an upper control on the fragility
of X, which resides on the left hand side of the distribution.

We say that f� is b-robust beyond stress level K < ⌦ if V(X�, f�, K’, s(�))  b for any K’  K. In other words, the
robustness of f� on the half-line (–1, K] is

R(�1,K](X�, f�, K , s�(�)) =max
K 0∂K

V (X�, f�, K 0, s�(�)),

so that b-robustness simply means
R(�1,K](X�, f�, K , s�(�))∂ b

We also define b-robustness over a given interval [K1, K2] by the same inequality being valid for any K’ 2 [K1, K2].
In this case we use

R[K1,K2](X�, f�, K , s�(�)) = max
K1∂K 0∂K2

V (X�, f�, K 0, s�(�)). (9)

Note that the lower R, the tighter the control and the more robust the distribution f�.
Once again, the definition of b-robustness can be transposed, using finite differences V(X�, f�, K’, s–(�), �s).
In practical situations, setting a material upper bound b to the fragility is particularly important: one need to be

able to come with actual estimates of the impact of the error on the estimate of the left-semi-deviation. However, when
dealing with certain class of models, such as Gaussian, exponential of stable distributions, we may be lead to consider
asymptotic definitions of robustness, related to certain classes.

For instance, for a given decay exponent a > 0, assuming that f�(x) = O(eax) when x ! –1, the a-exponential
asymptotic robustness of X� below the level K is:

Rexp(X�, f�, K , s�(�), a) =max
K 0∂K

�
ea(⌦�K 0)V (X�, f�, K 0, s�(�))

�

If one of the two quantities
ea(⌦�K 0) f�(K 0)

or
ea(⌦�K 0)V (X�, f�, K 0, s�(�))

is not bounded from above when K[2032?] ! –1, then Rexp = +1 and X� is considered as not a-exponentially
robust.

Similarly, for a given power ↵ > 0, and assuming that f�(x) = O(x–↵) when x ! –1, the ↵-power asymptotic
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robustness of X� below the level K is:

Rpow(X�, f�, K , s�(�), a) =max
K 0∂K

Ä
(⌦� K 0)↵�2V (X�, f�, K 0, s�(�))

ä

If one of the two quantities
(⌦� K 0)↵ f�(K 0)

(⌦� K 0)↵�2V (X�, f�, K 0, s�(�))

is not bounded from above when K[2032?] ! –1, then Rpow = +1 and X� is considered as not ↵-power robust.
Note the exponent ↵ – 2 used with the fragility, for homogeneity reasons, e.g. in the case of stable distributions.

When a random variable Y� = '(X�) depends on another source of risk X�.
Definition 2a, Left-Robustness (monomodal distribution). A payoff y = '(x) is said (a,b)-robust below L = '(K)

for a source of randomness X with pdf f� assumed monomodal if, lettingg� be the pdf of Y = '(X), one has, for any K’  K
and L = '(K) :

VX

�
Y, g�, L0, s�(�)
�
∂ aV
�
X , f�, K 0, s�(�)

�
+ b

The quantity b is of order deemed of “negligible utility” (subjectively), that is, does not exceed some tolerance level
in relation with the context, while a is a scaling parameter between variables X and Y.

Note that robustness is in effect impervious to changes of probability distributions. Also note that this measure
robustness ignores first order variations since owing to their higher frequency, these are detected (and remedied) very
early on.

Example of Robustness (Barbells):
a. trial and error with bounded error and open payoff
b. for a "barbell portfolio" with allocation to numeraire securities up to 80% of portfolio, no perturbation below K

set at 0.8 of valuation will represent any difference in result, i.e. q = 0. The same for an insured house (assuming the
risk of the insurance company is not a source of variation), no perturbation for the value below K, equal to minus the
insurance deductible, will result in significant changes.

c. a bet of amount B (limited liability) is robust, as it does not have any sensitivity to perturbations below 0.

5.1 Definition of Antifragility

The second condition of antifragility regards the right hand side of the distribution. Let us define the right-semi-deviation
of X :

s+(�) =
Z +1

⌦
(x �⌦) f�(x)dx

And, for H > L > ⌦ :

⇠+(L, H, s+(�)) =
Z H

L
(x �⌦) f�(x)dx

W (X , f�, L, H, s+) =
@ ⇠+(L, H, s+)

@ s+
=

ÇZ H

L
(x �⌦)@ f�

@ �
(x)dx

å✓Z +1

⌦
(x �⌦)@ f�

@ �
(x)dx
◆�1

When Y = '(X) is a variable depending on a source of noise X, we define:

WX (Y, g�,'(L),'(H), s+) =

ÇZ '(H)

'(L)
(y �'(⌦))@ g�

@ �
(y)d y

å✓Z +1

⌦
(x �⌦)@ f�

@ �
(x)dx
◆�1

(10)
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Definition 2b, Antifragility (monomodal distribution). A payoff y = '(x) is locally antifragile over the range [L, H]
if

1. It is b-robust below ⌦ for some b > 0

2. WX (Y, g�, '(L),'(H), s+(�))æ aW (X , f�, L, H, s+(�)) where a = u+(�)
s+(�)

The scaling constant a provides homogeneity in the case where the relation between X and y is linear. In particular,
nonlinearity in the relation between X and Y impacts robustness.

The second condition can be replaced with finite differences �u and �s, as long as �u/u = �s/s.
REMARKS
Fragility is K-specific. We are only concerned with adverse events below a certain pre-specified level, the breaking

point. Exposures A can be more fragile than exposure B for K = 0, and much less fragile if K is, say, 4 mean deviations
below 0. We may need to use finite Ds to avoid situations as we will see of vega-neutrality coupled with short left tail.

Effect of using the wrong distribution f : Comparing V(X, f, K, s–, Ds) and the alternative distribution V(X, f*, K, s*, Ds),
where f* is the “true” distribution, the measure of fragility provides an acceptable indication of the sensitivity of a given
outcome – such as a risk measure – to model error, provided no “paradoxical effects” perturb the situation. Such “para-
doxical effects” are, for instance, a change in the direction in which certain distribution percentiles react to model
parameters, like s–. It is indeed possible that nonlinearity appears between the core part of the distribution and the tails
such that when s– increases, the left tail starts fattening – giving a large measured fragility – then steps back – implying
that the real fragility is lower than the measured one. The opposite may also happen, implying a dangerous under-
estimate of the fragility. These nonlinear effects can stay under control provided one makes some regularity assumptions
on the actual distribution, as well as on the measured one. For instance, paradoxical effects are typically avoided under
at least one of the following three hypotheses:

a. The class of distributions in which both f and f* are picked are all monomodal, with monotonous dependence
of percentiles with respect to one another.

b. The difference between percentiles of f and f* has constant sign (i.e. f* is either always wider or always
narrower than f at any given percentile)

c. For any strike level K (in the range that matters), the fragility measure V monotonously depends on s– on the
whole range where the true value s* can be expected. This is in particular the case when partial derivatives @ kV/@ sk all
have the same sign at measured s– up to some order n, at which the partial derivative has that same constant sign over
the whole range on which the true value s* can be expected. This condition can be replaced by an assumption on finite
differences approximating the higher order partial derivatives, where n is large enough so that the interval [s– n�s]
covers the range of possible values of s*. Indeed, in this case, f difference estimate of fragility uses evaluations of ⇠ at
points spanning this interval.

Unconditionality of the shortfall measure ⇠ : Many, when presenting shortfall, deal with the conditional shortfallR K
�1 x f (x) dx
¿R K
�1 f (x) dx ; while such measure might be useful in some circumstances, its sensitivity is not indicative

of fragility in the sense used in this discussion. The unconditional tail expectation ⇠=
R K
�1 x f (x) dx is more indicative

of exposure to fragility. It is also preferred to the raw probability of falling below K, which is
R K
�1 f (x) dx , as the latter

does not include the consequences. For instance, two such measures
R K
�1 f (x) dx and

R K
�1 g(x) dx may be equal over

broad values of K; but the expectation
R K
�1 x f (x) dx can be much more consequential than

R K
�1 x g(x) dx as the cost

of the break can be more severe and we are interested in its “vega” equivalent.
-¶

6 Applications to Model Error

In the cases where Y depends on X, among other variables, often x is treated as non-stochastic, and the underestimation
of the volatility of x maps immediately into the underestimation of the left tail of Y under two conditions:
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1. X is stochastic and its stochastic character is ignored (as if it had zero variance or mean deviation)

2. Y is concave with respect to X in the negative part of the distribution, below ⌦

"Convexity Bias" or Jensen’s Inequality Effect: Further, missing the stochasticity under the two conditions a) and b)
, in the event of the concavity applying above ⌦ leads to the negative convexity bias from the lowering effect on the
expectation of the dependent variable Y.

6.1 Example:Application to Budget Deficits

Example: A government estimates unemployment for the next three years as averaging 9%; it uses its econometric
models to issue a forecast balance B of 200 billion deficit in the local currency. But it misses (like almost everything
in economics) that unemployment is a stochastic variable. Employment over 3 years periods has fluctuated by 1% on
average. We can calculate the effect of the error with the following: • Unemployment at 8% , Balance B(8%) = -75 bn
(improvement of 125bn) • Unemployment at 9%, Balance B(9%)= -200 bn • Unemployment at 10%, Balance B(10%)=
–550 bn (worsening of 350bn)

The convexity bias from underestimation of the deficit is by -112.5bn, since

B(8%) + B(10%)
2

= �312.5

Further look at the probability distribution caused by the missed variable (assuming to simplify deficit is Gaussian with
a Mean Deviation of 1% )

Figure 3: Histogram from simulation of government deficit as a left-tailed random variable as a result of randomizing unemployment of
which it is a convex function. The method of point estimate would assume a Dirac stick at -200, thus underestimating both the expected

deficit (-312) and the skewness (i.e., fragility) of it.

Adding Model Error and Metadistributions: Model error should be integrated in the distribution as a stochasticiza-
tion of parameters. f and g should subsume the distribution of all possible factors affecting the final outcome (including
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the metadistribution of each). The so-called "perturbation" is not necessarily a change in the parameter so much as it is
a means to verify whether f and g capture the full shape of the final probability distribution.

Any situation with a bounded payoff function that organically truncates the left tail at K will be impervious to all
perturbations affecting the probability distribution below K.

For K = 0, the measure equates to mean negative semi-deviation (more potent than negative semi-variance or
negative semi-standard deviation often used in financial analyses).

6.2 Model Error and Semi-Bias as Nonlinearity from Missed Stochasticity of Variables

Model error often comes from missing the existence of a random variable that is significant in determining the outcome
(say option pricing without credit risk). We cannot detect it using the heuristic presented in this paper but as mentioned
earlier the error goes in the opposite direction as model tend to be richer, not poorer, from overfitting. But we can
detect the model error from missing the stochasticity of a variable or underestimating its stochastic character (say option
pricing with non-stochastic interest rates or ignoring that the “volatility” s can vary).

Missing Effects: The study of model error is not to question whether a model is precise or not, whether or not it
tracks reality; it is to ascertain the first and second order effect from missing the variable, insuring that the errors from
the model don’t have missing higher order terms that cause severe unexpected (and unseen) biases in one direction
because of convexity or concavity, in other words, whether or not the model error causes a change in z.

7 Model Bias, Second Order Effects, and Fragility

Having the right model (which is a very generous assumption), but being uncertain about the parameters will invariably
lead to an increase in model error in the presence of convexity and nonlinearities.

As a generalization of the deficit/employment example used in the previous section, say we are using a simple
function:

f ( x | ↵ )

Where ↵ is supposed to be the average expected rate, where we take ' as the distribution of ↵ over its domain }↵

↵=
Z

}↵

↵ '(↵) d↵

The mere fact that ↵ is uncertain (since it is estimated) might lead to a bias if we perturb from the outside (of
the integral), i.e. stochasticize the parameter deemed fixed. Accordingly, the convexity bias is easily measured as the
difference between a) f integrated across values of potential a and b) f estimated for a single value of a deemed to be
its average. The convexity bias !A becomes:

!A ⌘
Z

}x

Z

}↵

f (x | ↵ )' (↵) d↵dx �
Z

}x

f (x

�����

ÇZ

}↵

↵ ' (↵) d↵

å
)dx (11)

And !B the missed fragility is assessed by comparing the two integrals below K, in order to capture the effect on the
left tail:

!B(K)⌘
Z K

�1

Z

}↵

f (x | ↵ )' (↵) d↵dx �
Z K

�1
f (x

�����

ÇZ

}↵

↵ ' (↵) d↵

å
)dx (12)
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Which can be approximated by an interpolated estimate obtained with two values of ↵ separated from a mid point
by �↵ a mean deviation of ↵ and estimating

!B(K)⌘
Z K

�1

1
2
( f (x |↵̄+�↵) + f (x |↵̄��↵))dx �

Z K

�1
f (x |↵̄)dx (13)

We can probe !B by point estimates of f at a level of X  K

!0B(X ) =
1
2
( f (X |↵̄+�↵) + f (X |↵̄��↵))� f (X |↵̄) (14)

So that

!B(K) =
Z K

�1
!0B(x)dx (15)

which leads us to the fragility heuristic. In particular, if we assume that !B(X )
0

has a constant sign for X  K, then
!B(K) has the same sign.

7.1 The Fragility/Model Error Detection Heuristic (detecting !A and !B when cogent)

Example 1 (Detecting Tail Risk Not Shown By Stress Test, !B). The famous firm Dexia went into financial distress a few
days after passing a stress test “with flying colors”.

If a bank issues a so-called "stress test" (something that has not proven very satisfactory), off a parameter (say
stock market) at -15%. We ask them to recompute at -10% and -20%. Should the exposure show negative asymmetry
(worse at -20% than it improves at -10%), we deem that their risk increases in the tails. There are certainly hidden tail
exposures and a definite higher probability of blowup in addition to exposure to model error.

Note that it is somewhat more effective to use our measure of shortfall in Definition, but the method here is effective
enough to show hidden risks, particularly at wider increases (try 25% and 30% and see if exposure shows increase).
Most effective would be to use power-law distributions and perturb the tail exponent to see symmetry.

Example 2 (Detecting Tail Risk in Overoptimized System,!B). Raise airport traffic 10%, lower 10%, take average
expected traveling time from each, and check the asymmetry for nonlinearity. If asymmetry is significant, then declare
the system as overoptimized. (Both !A and !B as thus shown.

The same procedure uncovers both fragility and consequence of model error (potential harm from having wrong
probability distribution, a thin- tailed rather than a fat-tailed one). For traders (and see Gigerenzer’s discussions, in
Gigerenzer and Brighton (2009), Gigerenzer and Goldstein(1996)) simple heuristics tools detecting the magnitude of
second order effects can be more effective than more complicated and harder to calibrate methods, particularly under
multi-dimensionality. See also the intuition of fast and frugal in Derman and Wilmott (2009), Haug and Taleb (2011).

7.2 The Fragility Heuristic Applied to Model Error

1- First Step (first order). Take a valuation. Measure the sensitivity to all parameters p determining V over finite ranges
�p. If materially significant, check if stochasticity of parameter is taken into account by risk assessment. If not, then
stop and declare the risk as grossly mismeasured (no need for further risk assessment). 2-Second Step (second order).
For all parameters p compute the ratio of first to second order effects at the initial range�p = estimated mean deviation.
H (�p)⌘ µ0µ , where

µ0 (�p)⌘ 1
2

Å
f
Å

p+
1
2
�p
ã
+ f
Å

p� 1
2
�p
ãã
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2-Third Step. Note parameters for which H is significantly > or < 1. 3- Fourth Step: Keep widening �p to verify the
stability of the second order effects.

The Heuristic applied to a stress test:
In place of the standard, one-point estimate stress test S1, we issue a "triple", S1, S2, S3, where S2 and S3 are S1

± �p. Acceleration of losses is indicative of fragility.

7.2.1 Remarks

a. Simple heuristics have a robustness (in spite of a possible bias) compared to optimized and calibrated measures.
Ironically, it is from the multiplication of convexity biases and the potential errors from missing them that calibrated
models that work in-sample underperform heuristics out of sample (Gigerenzer and Brighton, 2009). b. Heuristics allow
to detection of the effect of the use of the wrong probability distribution without changing probability distribution (just
from the dependence on parameters). c. The heuristic improves and detects flaws in all other commonly used measures of
risk, such as CVaR, “expected shortfall”, stress-testing, and similar methods have been proven to be completely ineffective
(Taleb, 2009). d. The heuristic does not require parameterization beyond varying p.

7.3 Further Applications

In parallel works, applying the "simple heuristic" allows us to detect the following “hidden short options” problems by
merely perturbating a certain parameter p:

i- Size and pseudo-economies of scale.

ii- Size and squeezability (nonlinearities of squeezes in costs per unit).

iii- Specialization (Ricardo) and variants of globalization.

iv- Missing stochasticity of variables (price of wine).

v- Portfolio optimization (Markowitz).

vi- Debt and tail exposure.

vii- Budget Deficits: convexity effects explain why uncertainty lengthens, doesn’t shorten expected deficits.

viii- Iatrogenics (medical) or how some treatments are concave to benefits, convex to errors.

ix- Disturbing natural systems.1
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