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Mathematical Definition, Mapping, and Detection of (Anti)Fragility

We provide a mathematical definition of fragility and antifragility as negative or positive sensitivity to a semi-measure of dispersion and volatility (a variant of negative or positive "vega") and examine the link to nonlinear effects. We integrate model error (and biases) into the fragile or antifragile context. Unlike risk, which is linked to psychological notions such as subjective preferences (hence cannot apply to a coffee cup) we offer a measure that is universal and concerns any object that has a probability distribution (whether such distribution is known or, critically, unknown). We propose a detection of fragility, robustness, and antifragility using a single "fast-and-frugal", model-free, probability free heuristic that also picks up exposure to model error. The heuristic lends itself to immediate implementation, and uncovers hidden risks related to company size, forecasting problems, and bank tail exposures (it explains the forecasting biases). While simple to implement, it improves on stress testing and bypasses the common flaws in Value-at-Risk.
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The notions of fragility and antifragility were introduced in Taleb (2012). In short, fragility is related to how a system suffers from the variability of its environment beyond a certain preset threshold (when threshold is K, it is called K-fragility), while antifragility refers to when it benefits from this variability -in a similar way to "vega" of an option or a nonlinear payoff, that is, its sensitivity to volatility or some similar measure of scale of a distribution.

Simply, a coffee cup on a table suffers more from large deviations than from the cumulative effect of some shocksconditional on being unbroken, it has to suffer more from "tail" events than regular ones around the center of the distribution, the "at the money" category. This is the case of elements of nature that have survived: conditional on being in existence, then the class of events around the mean should matter considerably less than tail events, particularly when the probabilities decline faster than the inverse of the harm, which is the case of all used monomodal probability distributions. Further, what has exposure to tail events suffers from uncertainty; typically, when systems -a building, a bridge, a nuclear plant, an airplane, or a bank balance sheet-are made robust to a certain level of variability and stress

Fragility As Separate Risk From Psychological Preferences

Avoidance of the Psychological: We start from the definition of fragility as tail vega sensitivity, and end up with nonlinearity as a necessary attribute of the source of such fragility in the inherited case -a cause of the disease rather than the disease itself. However, there is a long literature by economists and decision scientists embedding risk into psychological preferences -historically, risk has been described as derived from risk aversion as a result of the structure of choices under uncertainty with a concavity of the muddled concept of "utility" of payoff, see [START_REF] Pratt | Risk aversion in the small and in the large[END_REF], [START_REF] Arrow | The theory of risk aversion[END_REF], Rothchild andStiglitz(1970,1971). But this "utility" business never led anywhere except the circularity, expressed by Machina and Rothschild (2008), "risk is what risk-averters hate." Indeed limiting risk to aversion to concavity of choices is a quite unhappy result -the utility curve cannot be possibly monotone concave, but rather, like everything in nature necessarily bounded on both sides, the left and the right, convex-concave and, as [START_REF] Kahneman | Prospect Theory: An Analysis of Decision Under Risk[END_REF] have debunked, both path dependent and mixed in its nonlinearity. Beyond Jensen's Inequality: Furthermore, the economics and decision-theory literature reposes on the effect of Jensen's inequality, an analysis which requires monotone convex or concave transformations -in fact limited to the expectation operator. The world is unfortunately more complicated in its nonlinearities. Thanks to the transfer function, which focuses on the tails, we can accommodate situations where the source is not merely convex, but convex-concave and any other form of mixed nonlinearities common in exposures, which includes nonlinear dose-response in biology. For instance, the application of the transfer function to the Kahneman-Tversky value function, convex in the negative domain and concave in the positive one, shows that its decreases fragility in the left tail (hence more robustness) and reduces the effect of the right tail as well (also more robustness), which allows to assert that we are psychologically "more robust" to changes in wealth than implied from the distribution of such wealth, which happens to be extremely fat-tailed. Accordingly, our approach relies on nonlinearity of exposure as detection of the vega-sensitivity, not as a definition of fragility. And nonlinearity in a source of stress is necessarily associated with fragility. Clearly, a coffee cup, a house or a bridge don't have psychological preferences, subjective utility, etc. Yet they are concave in their reaction to harm: simply, taking z as a stress level and ⇧(z) the harm function, it suffices to see that, with n > 1,

⇧(nz) < n ⇧(z) for all 0 < n z < Z ⇤
where Z ⇤ is the level (not necessarily specified) at which the item is broken. Such inequality leads to ⇧(z) having a negative second derivative at the initial value z.

So if a coffee cup is less harmed by n times a stressor of intensity Z than once a stressor of nZ, then harm (as a negative function) needs to be concave to stressors up to the point of breaking; such stricture is imposed by the structure of survival probabilities and the distribution of harmful events, and has nothing to do with subjective utility or some other figments. Just as with a large stone hurting more than the equivalent weight in pebbles, if, for a human, jumping one millimeter caused an exact linear fraction of the damage of, say, jumping to the ground from thirty feet, then the person would be already dead from cumulative harm. Actually a simple computation shows that he would have expired within hours from touching objects or pacing in his living room, given the multitude of such stressors and their total effect. The fragility that comes from linearity is immediately visible, so we rule it out because the object would be already broken and the person already dead. The relative frequency of ordinary events compared to extreme events is the determinant. In the financial markets, there are at least ten thousand times more events of 0.1% deviations than events of 10%. There are close to 8,000 micro-earthquakes daily on planet earth, that is, those below 2 on the Richter scale -about 3 million a year. These are totally harmless, and, with 3 million per year, you would need them to be so. But shocks of intensity 6 and higher on the scale make the newspapers. Accordingly, we are necessarily immune to the cumulative effect of small deviations, or shocks of very small magnitude, which implies that these affect us disproportionally less (that is, nonlinearly less) than larger ones.

Model error is not necessarily mean preserving. s -, the lower absolute semi-deviation does not just express changes in overall dispersion in the distribution, such as for instance the "scaling" case, but also changes in the mean, i.e. when the upper semi-deviation from ⌦ to infinity is invariant, or even decline in a compensatory manner to make the overall mean absolute deviation unchanged. This would be the case when we shift the distribution instead of rescaling it. Thus the same vega-sensitivity can also express sensitivity to a stressor (dose increase) in medicine or other fields in its effect on either tail. Thus s (l) will allow us to express the sensitivity to the "disorder cluster" [START_REF] Taleb | Antifragile: Things that Gain from Disorder, Random House W[END_REF]: i) uncertainty, ii) variability, iii) imperfect, incomplete knowledge, iv) chance, v) chaos, vi) volatility, vii) disorder, viii) entropy, ix) time, x) the unknown, xi) randomness, xii) turmoil, xiii) stressor, xiv) error, xv) dispersion of outcomes.

DETECTION HEURISTIC

Finally, thanks to the transfer function, this paper proposes a risk heuristic that "works" in detecting fragility even if we use the wrong model/pricing method/probability distribution. The main idea is that a wrong ruler will not measure the height of a child; but it can certainly tell us if he is growing. Since risks in the tails map to nonlinearities (concavity of exposure), second order effects reveal fragility, particularly in the tails where they map to large tail exposures, as revealed through perturbation analysis. More generally every nonlinear function will produce some kind of positive or negative exposures to volatility for some parts of the distribution.

Fragility and Model Error

As we saw this definition of fragility extends to model error, as some models produce negative sensitivity to uncertainty, in addition to effects and biases under variability. So, beyond physical fragility, the same approach measures model fragility, based on the difference between a point estimate and stochastic value (i.e., full distribution). Increasing the variability (say, variance) of the estimated value (but not the mean), may lead to one-sided effect on the model -just as an increase of volatility causes porcelain cups to break. Hence sensitivity to the volatility of such value, the "vega" of the model with respect to such value is no different from the vega of other payoffs. For instance, the misuse of thin-tailed distributions (say Gaussian) appears immediately through perturbation of the standard deviation, no longer used as point estimate, but as a distribution with its own variance. For instance, it can be shown how fat-tailed (e.g. power-law tailed) probability distributions can be expressed by simple nested perturbation and mixing of Gaussian ones. representation pinpoints the fragility of a wrong probability model and its consequences in terms of underestimation of risks, stress tests and similar matters.

Antifragility

It is not quite the mirror image of fragility, as it implies positive vega above some threshold in the positive tail of the distribution and absence of fragility in the left tail, which leads to a distribution that is skewed right. The central Table , Table 1 introduces the exhaustive map of possible outcomes, with 4 mutually exclusive categories of payoffs. Our steps in the rest of the paper are as follows: a. We provide a mathematical definition of fragility, robustness and antifragility. b. We present the problem of measuring tail risks and show the presence of severe biases attending the estimation of small probability and its nonlinearity (convexity) to parametric (and other) perturbations. c. We express the concept of model fragility in terms of left tail exposure, and show correspondence to the concavity of the payoff from a random variable. d. Finally, we present our simple heuristic to detect the possibility of both fragility and model error across a broad range of probabilistic estimations.

Fragility and Transfer Theorems

Conceptually, fragility resides in the fact that a small -or at least reasonable -uncertainty on the macro-parameter of a distribution may have dramatic consequences on the result of a given stress test, or on some measure that depends on the left tail of the distribution, such as an out-of-the-money option. This hypersensitivity of what we like to call an "out of the money put price" to the macro-parameter, which is some measure of the volatility of the distribution of the underlying source of randomness.

Formally, fragility is defined as the sensitivity of the left-tail shortfall (non-conditioned by probability) below a certain threshold K to the overall left semi-deviation of the distribution. ii-Tail distribution in the function of the arrival time of an aircraft.

iii-Hidden risks of famine to a population subjected to monoculture -or, more generally, fragilizing errors in the application of Ricardo's comparative advantage without taking into account second order effects.

iv-Hidden tail exposures to budget deficits' nonlinearities to unemployment.

v-Hidden tail exposure from dependence on a source of energy, etc. ("squeezability argument").

Tail Vega Sensitivity

We construct a measure of "vega" in the tails of the distribution that depends on the variations of s, the semi-deviation below a certain level W , chosen in the L 1 norm in order to ensure its existence under "fat tailed" distributions with finite first semi-moment. In fact s would exist as a measure even in the case of infinite moments to the right side of W . Let X be a random variable, the distribution of which is one among a one-parameter family of pdf f , 2 I ⇢ R. We consider a fixed reference value ⌦ and, from this reference, the left-semi-absolute deviation:

s ( ) = Z ⌦ 1 (⌦ x) f (x)dx
We assume that ! s -( ) is continuous, strictly increasing and spans the whole range R + = [0, +1), so that we may use the left-semi-absolute deviation s -as a parameter by considering the inverse function (s) : R + ! I, defined by s ( (s)) = s for s 2 R + .

This condition is for instance satisfied if, for any given x < ⌦, the probability is a continuous and increasing function of . Indeed, denoting

F (x) = P f (X < x) = Z x 1 f (t) dt,
an integration by part yields: This is the case when is a scaling parameter, i.e., X ⇠ ⌦ + (X 1 ⌦) indeed one has in this case

s ( ) = Z ⌦ 1 F (x)
F (x) = F 1 Å ⌦ + x ⌦ ã , @ F @ (x) = ⌦ x 2 f (x) and s ( ) = s (1)
. It is also the case when is a shifting parameter, i.e. X ⇠ X 0 , indeed, in this case F (x) = F 0 (x + ) and @ s @ (x) = F (⌦).

For K < ⌦ and s 2 R + , let:

⇠(K, s ) = Z K 1 (⌦ x) f (s ) (x)dx
In particular, ⇠(⌦, s -) = s -. We assume, in a first step, that the function

⇠(K,s -) is differentiable on ( 1, ⌦] ⇥ R + . The K-left-tail-vega sensitivity of X at stress level K < ⌦ and deviation level s > 0 for the pdf f is: V (X , f , K, s ) = @ ⇠ @ s (K, s ) = Ç Z ⌦ 1 (⌦ x) @ f ) @ dx å Å ds d ã 1 (1)
As the in many practical instances where threshold effects are involved, it may occur that ⇠ does not depend smoothly on s -. We therefore also define a finite difference version of the vega-sensitivity as follows:

V (X , f , K, s ) = 1 2 s ⇠(K, s + s) ⇠(K, s s) = Z K 1 (⌦ x) f (s + s)(x) f (s s)(x) 2 s dx
Hence omitting the input s implicitly assumes that s ! 0. Note that

⇠(K, s ) = E(X |X < K) P f (X < K).
It can be decomposed into two parts:

⇠ K, s ( ) = ( ⌦ K)F (K) + P (K) P (K) = Z K 1 (K x) f (x) dx
Where the first part (⌦ K)F (K) is proportional to the probability of the variable being below the stress level K and the second part P (K) is the expectation of the amount by which X is below K (counting 0 when it is not). Making a parallel with financial options, while s -( ) is a "put at-the-money", ⇠(K,s -) is the sum of a put struck at K and a digital put also struck at K with amount ⌦ -K; it can equivalently be seen as a put struck at ⌦ with a down-and-in European barrier at K. Letting = (s -) and integrating by part yields 

⇠ K, s ( ) = ( ⌦ K)F (K) + Z K 1 F (x)dx = Z ⌦ 1 F K (x) dx (2) Where F K (x) = F (min(x, K)) = min (F (x), F (K)), so that V (X , f , K, s ) = @ ⇠ @ s (K, s ) = R ⌦ 1 @ F K @ (x) dx R ⌦ 1 @ F @ (x) dx (3) For finite differences V (X , f , K, s , s) = 1 2 s Z ⌦ 1 F K , s (x)dx c 2013 N.N.
) = s + s, s( s ) = s s and F K , s (x) = F K s + (x) F K s (x).

Mathematical Expression of Fragility

In essence, fragility is the sensitivity of a given risk measure to an error in the estimation of the (possibly one-sided) deviation parameter of a distribution, especially due to the fact that the risk measure involves parts of the distribution -tails -that are away from the portion used for estimation. The risk measure then assumes certain extrapolation rules that have first order consequences. These consequences are even more amplified when the risk measure applies to a variable that is derived from that used for estimation, when the relation between the two variables is strongly nonlinear, as is often the case.

Definition of Fragility: The Intrinsic Case

The local fragility of a random variable X depending on parameter , at stress level K and semi-deviation level s -( )

with pdf f is its K-left-tailed semi-vega sensitivity V (X , f , K, s ).
The finite-difference fragility of X at stress level K and semi-deviation level s ( ) ± s with pdf f is its K-left-tailed finite-difference semi-vega sensitivity V (X , f , K, s , s).

In this definition, the fragility relies in the unsaid assumptions made when extrapolating the distribution of X from areas used to estimate the semi-absolute deviation s -( ), around ⌦, to areas around K on which the risk measure ⇠ depends. 

Definition of Fragility: The Inherited Case

⇣ L, u ( ) = Z K 1 (⌦ Y y)g ( y) d y
The inherited fragility of Y with respect to X at stress level L = '(K) and left-semi-deviation level s -( ) of X is the partial derivative:

V X Y, g , L, s ( ) = @ ⇣ @ s L, u ( ) = Ç Z K 1 (⌦ Y Y ) @ g @ ( y)d y å Å ds d ã 1 (4)
Note that the stress level and the pdf are defined for the variable Y, but the parameter which is used for differentiation is the left-semi-absolute deviation of X, s -( ). Indeed, in this process, one first measures the distribution of X and its left-semi-absolute deviation, then the function ' is applied, using some mathematical model of Y with respect to X and the risk measure ⇣ is estimated. If an error is made when measuring s -( ), its impact on the risk measure of Y is amplified by the ratio given by the "inherited fragility".

Once again, one may use finite differences and define the finite-difference inherited fragility of Y with respect to X, by replacing, in the above equation, differentiation by finite differences between values + and -, where s -( + ) = s -+ s and s -( -) = s -s.

Effect of Nonlinearity on Intrinsic Fragility

Let us study the case of a random variable Y = '(X); the pdf g of which also depends on parameter , related to a variable X by the nonlinear function '. We are now interested in comparing their intrinsic fragilities. We shall say, for instance, that Y is more fragile at the stress level L and left-semi-deviation level u ( ) than the random variable X, at stress level K and left-semi-deviation level s ( ) if the L-left-tailed semi-vega sensitivity of Y is higher than the K-left-tailed semi-vega sensitivity of X :

V (Y, g , L, µ ) > V (X , f , K, s )
One may use finite differences to compare the fragility of two random variables:V (Y, g , L, µ) > V (X , f , K, s). In this case, finite variations must be comparable in size, namely u/u -= s/s -.

Let us assume, to start, that ' is differentiable, strictly increasing and scaled so that ⌦ Y = '(⌦) =⌦ . We also assume that, for any given x < ⌦, @ F @ (x) > 0. In this case, as observed above, ! s -( ) is also increasing. Let us denote G y ( y) = P g (Y < y) . We have:

G ( (x)) = P g (Y < ( y)) = P f (X < x) = F (x).
Hence, if ⇣(L, u -) denotes the equivalent of ⇠(K, s -) with variable (Y, g ) instead of (X, f ), we have:

⇣ L, u ( ) = Z ⌦ 1 F K (x) d d x (x)dx
Because ' is increasing and min('(x),'(K)) = '(min(x,K)). In particular

µ ( ) = ⇣ ⌦, µ ( ) = Z ⌦ 1 F K (x) d dx (x) dx
The L-left-tail-vega sensitivity of Y is therefore: 

V Y, g , L, u ( ) = R ⌦ 1 @ F K @ (x) d d x (x) dx R ⌦ 1 @ F @ (x)
V (Y, g , L, u ( ), u) = 1 2 u Z ⌦ 1 F K , u (x) d d x (x)dx
Where + u and u are such that u(

+ u ) = u + u, u( + u ) = u u and F K , u (x) = F K + u (x) F K u (x).
Next, Theorem 1 proves how a concave transformation '(x) of a random variable x produces fragility.

THEOREM 1 (FRAGILITY TRANSFER THEOREM)

Let, with the above notations, ' : R ! R be a twice differentiable function such that '(⌦) = ⌦ and for any x < ⌦, d' dx (x) > 0 . The random variable Y = '(X) is more fragile at level L = '(K) and pdf g l ambda than X at level K and pdf f if, and only if, one has:

Z ⌦ 1 H K (x) d 2 ' d x 2 (x)dx < 0 Where H K (x) = @ P K @ (x) @ P K @ (⌦) @ P @ (x) @ P @ (⌦)
and where

P (x) = Z x 1 F (t)d t
is the price of the "put option" on X with "strike" x and

P K (x) = Z x 1 F K (t)d t
is that of a "put option" with "strike" x and "European down-and-in barrier" at K. H can be seen as a transfer function, expressed as the difference between two ratios. For a given level x of the random variable on the left hand side of ⌦, the second one is the ratio of the vega of a put struck at x normalized by that of a put "at the money" (i.e. struck at ⌦), while the first one is the same ratio, but where puts struck at x and ⌦ are "European down-and-in options" with triggering barrier at the level K.

Proof Let I X = R ⌦ 1 @ F @ (x)dx , I K X = R ⌦ 1 @ F K @ (x)dx , and I Y = R ⌦ 1 @ F @ (x) d' dx (x)dx. One has One has V (X , f , K, s ( )) = I K X ¿ I X and V (Y, g , L, u ( )) = I L Y ¿ I Y hence: V (Y, g , L, u ( )) V (X , f , K, s ( )) = I L Y I Y I K X I X = I K X I Y Ç I L Y I K X I Y I X å (5) 
Therefore, because the four integrals are positive, Therefore, because the four integrals are positive,

V (Y, g , L, u ( )) V (X , f , K, s ( )) I L Y ¿ I K X I Y I X .
On the other hand, we have I X = @ P @ (⌦)I K X = @ P K @ (⌦)and An elementary calculation yields:

I Y = Z ⌦ 1 @ F @ (x) d' dx (x)dx = @ P @ (⌦) d' dx (⌦) Z ⌦ 1 @ P @ (x) d 2 ' d x 2 (x)dx (6) 
I L Y = Z ⌦ 1 @ F K @ (x) d' dx (x)dx = @ P K @ (⌦) d' dx (⌦) Z ⌦ 1 @ P K @ (x) d 2 ' d x 2 (x)dx ( 
I L Y I K X I Y I X = ✓ @ P K @ (⌦) ◆ 1 Z ⌦ 1 @ P K @ (x) d 2 ' d x 2 dx + ✓ @ P @ (⌦) ◆ 1 Z ⌦ 1 @ P @ (x) d 2 ' d x 2 dx = Z ⌦ 1 H K (x) d 2 ' d x 2 dx. (8)
Let us now examine the properties of the function H K (x). For x  K, we have @ P K @ (x) = @ P @ (x) > 0 (the positivity is a consequence of that of @ F @ ), therefore H K (x) has the same sign as

@ P @ (⌦) @ P K @ (⌦).
As this is a strict inequality, it extends to an interval on the right hand side of K, say (˘1, K] with K < K < . But on the other hand:

@ P @ (⌦) @ P K @ (⌦) = Z ⌦ K @ F @ (x)dx (⌦ K) @ F @ (K)
For K negative enough, @ F @ (K) is smaller than its average value over the interval [K, ⌦], hence

@ P @ (⌦) @ P K @ (⌦) > 0.
We have proven the following theorem.

THEOREM 2 ( FRAGILITY EXACERBATION THEOREM)

With the above notations, there exists a threshold ⇥ < ⌦ such that, if K  ⇥ then H K (x) > 0 for x 2 (-1, ] with K <  l ambda < ⌦. As a consequence, if the change of variable ' is concave_ on ( 1,  ]and linear on [ , ⌦] , then Y is more fragile at L = '(K) than X at K.

One can prove that, for a monomodal distribution, ⇥ <  < ⌦ (see discussion below), so whatever the stress level K below the threshold ⇥ , it suffices that the change of variable ' be concave on the interval (-1, ⇥ ] and linear on [⇥ , ⌦] for Y to become more fragile at L than X at K. In practice, as long as the change of variable is concave around the stress level K and has limited convexity/concavity away from K, the fragility of Y is greater than that of X.

Figure 3 shows the shape of H K (x) in the case of a Gaussian distribution where is a simple scaling parameter ( is the standard deviation ) and ⌦ = 0. We represented K = -2 while in this Gaussian case, ⇥ = -1.585 .

DISCUSSION

Monomodal case

We say that the family of distributions ( f ) is left-monomodal if there exists K < ⌦ such that @ f @ ae 0 on (-1,  ] and @ f @ ∂ 0 on [µ , ⌦]. In this case @ P @ is a convex function on the left half-line (-1, µ ], then concave after the inflexion point µ . For K  µ , the function @ P K @ coincides with @ P @ on (-1, K], then is a linear extension, following the tangent to the graph of @ P @ in K (see graph below). The value of @ P K @ (⌦) corresponds to the intersection point of this tangent with the vertical axis. It increases with K, from 0 when K ! -1 to a value above @ P @ (⌦) when K = µ . The threshold ⇥ corresponds to the unique value of K such that @ P K @ (⌦) = @ P @ (⌦) . When K < ⇥ then G (x) = @ P @ (x) On the other hand, if K < ⇥ then @ P K @ (⌦) < @ P @ (⌦) and G (K) < G K (K), which implies that G (x) < G K (x) for x  K. An elementary convexity analysis shows that, in this case, the equation G (x) = G K (x) has a unique solution  with µ l ambda <  < ⌦. The "transfer" function H K (x) is positive for x <  , in particular when x  µ and negative for  < x < ⌦.

¿ @ P @ (⌦) and G K (x) = @ P K @ (x) . @ P K @ (⌦) are functions such that G (⌦) = G K (⌦) =

Scaling Parameter

We assume here that is a scaling parameter, i.e. X = ⌦ + (X 1 ⌦). In this case, as we saw above, we have

f (x) = 1 f 1 ⌦ + x ⌦ , F (x) = F 1 ⌦ + x ⌦ P (x) = P 1 ⌦ + x ⌦ and s ( ) = s (1). Hence ⇠(K, s ( )) = (⌦ K)F 1 Å ⌦ + K ⌦ ã + P 1 Å ⌦ + K ⌦ ã @ ⇠ @ s (K, s ) = 1 s (1) @ ⇠ @ (K, ) = 1 s ( ) P (K) + ( ⌦ K)F (K) + ( ⌦ K) 2 f (K)
When we apply a nonlinear transformation ', the action of the parameter is no longer a scaling: when small negative values of X are multiplied by a scalar , so are large negative values of X. The scaling applies to small negative values of the transformed variable Y with a coefficient d' dx (0), but large negative values are subject to a different coefficient d' dx (K), which can potentially be very different.

Fragility Drift

Fragility is defined at as the sensitivity -i.e. the first partial derivative -of the tail estimate ⇠ with respect to the left semi-deviation s -. Let us now define the fragility drift:

V 0 K (X , f , K, s ) = @ 2 ⇠ @ K@ s (K, s )
In practice, fragility always occurs as the result of fragility, indeed, by definition, we know that ⇠(⌦, s -) = s -, hence V(X, f , ⌦, s -) = 1. The fragility drift measures the speed at which fragility departs from its original value 1 when K departs from the center ⌦. The second-order fragility is the second order derivative of the tail estimate ⇠ with respect to the semi-absolute deviation s -:

Second-order

V 0 s (X , f , K, s ) = @ 2 ⇠ (@ s ) 2 (K, s )
As we shall see later, the second-order fragility drives the bias in the estimation of stress tests when the value of s -is subject to uncertainty, through Jensen's inequality.

Definitions of Robustness and Antifragility

Antifragility is not the simple opposite of fragility, as we saw in Table 1. Measuring antifragility, on the one hand, consists of the flipside of fragility on the right-hand side, but on the other hand requires a control on the robustness of the probability distribution on the left-hand side. From that aspect, unlike fragility, antifragility cannot be summarized in one single figure but necessitates at least two of them.

When a random variable depends on another source of randomness: Y = '(X ), we shall study the antifragility of Y with respect to that of X and to the properties of the function '.

DEFINITION OF ROBUSTNESS

Let (X ) be a one-parameter family of random variables with pdf f . Robustness is an upper control on the fragility of X, which resides on the left hand side of the distribution.

We say that f is b-robust beyond stress level K < ⌦ if V(X , f , K', s( ))  b for any K'  K. In other words, the robustness of f on the half-line

(-1, K] is R ( 1,K] (X , f , K, s ( )) = max K 0 ∂K V (X , f , K 0 , s ( )), so that b-robustness simply means R ( 1,K] (X , f , K, s ( )) ∂ b
We also define b-robustness over a given interval [K1, K2] by the same inequality being valid for any K' 2 [K1, K2]. In this case we use

R [K 1 ,K 2 ] (X , f , K, s ( )) = max K 1 ∂K 0 ∂K 2 V (X , f , K 0 , s ( )). ( 9 
)
Note that the lower R, the tighter the control and the more robust the distribution f . Once again, the definition of b-robustness can be transposed, using finite differences V(X , f , K', s -( ), s).

In practical situations, setting a material upper bound b to the fragility is particularly important: one need to be able to come with actual estimates of the impact of the error on the estimate of the left-semi-deviation. However, when dealing with certain class of models, such as Gaussian, exponential of stable distributions, we may be lead to consider asymptotic definitions of robustness, related to certain classes.

For instance, for a given decay exponent a > 0, assuming that f (x) = O(e ax ) when x ! -1, the a-exponential asymptotic robustness of X below the level K is:

R exp (X , f , K, s ( ), a) = max K 0 ∂K e a(⌦ K 0 ) V (X , f , K 0 , s ( )) If one of the two quantities e a(⌦ K 0 ) f (K 0 ) or e a(⌦ K 0 ) V (X , f , K 0 , s ( ))
is not bounded from above when K[2032?] ! -1, then Rexp = +1 and X is considered as not a-exponentially robust.

Similarly, for a given power ↵ > 0, and assuming that f (x) = O(x -↵ ) when x ! -1, the ↵-power asymptotic c 2013 N.N. 

R pow (X , f , K, s ( ), a) = max K 0 ∂K Ä (⌦ K 0 ) ↵ 2 V (X , f , K 0 , s ( )) ä
If one of the two quantities

(⌦ K 0 ) ↵ f (K 0 ) (⌦ K 0 ) ↵ 2 V (X , f , K 0 , s ( ))
is not bounded from above when K[2032?] ! -1, then Rpow = +1 and X is considered as not ↵-power robust. Note the exponent ↵ -2 used with the fragility, for homogeneity reasons, e.g. in the case of stable distributions.

When a random variable Y = '(X ) depends on another source of risk X .

Definition 2a, Left-Robustness (monomodal distribution).

A payoff y = '(x) is said (a,b)-robust below L = '(K) for a source of randomness X with pdf f assumed monomodal if, lettingg be the pdf of Y = '(X), one has, for any K'  K and L = '(K) :

V X Y, g , L 0 , s ( ) ∂ aV X , f , K 0 , s ( ) + b
The quantity b is of order deemed of "negligible utility" (subjectively), that is, does not exceed some tolerance level in relation with the context, while a is a scaling parameter between variables X and Y.

Note that robustness is in effect impervious to changes of probability distributions. Also note that this measure robustness ignores first order variations since owing to their higher frequency, these are detected (and remedied) very early on.

Example of Robustness (Barbells): a. trial and error with bounded error and open payoff b. for a "barbell portfolio" with allocation to numeraire securities up to 80% of portfolio, no perturbation below K set at 0.8 of valuation will represent any difference in result, i.e. q = 0. The same for an insured house (assuming the risk of the insurance company is not a source of variation), no perturbation for the value below K, equal to minus the insurance deductible, will result in significant changes.

c. a bet of amount B (limited liability) is robust, as it does not have any sensitivity to perturbations below 0.

Definition of Antifragility

The second condition of antifragility regards the right hand side of the distribution. Let us define the right-semi-deviation of X :

s + ( ) = Z +1 ⌦ (x ⌦) f (x)dx
And, for H > L > ⌦ :

⇠ + (L, H, s + ( )) = Z H L (x ⌦) f (x)dx W (X , f , L, H, s + ) = @ ⇠ + (L, H, s + ) @ s + = Ç Z H L (x ⌦) @ f @ (x)dx å ✓Z +1 ⌦ (x ⌦) @ f @ (x)dx ◆ 1
When Y = '(X) is a variable depending on a source of noise X, we define: 

W X (Y, g , '(L), '(H), s + ) = Ç Z '(H) '(L) ( y '(⌦)) @ g @ ( y)d y å ✓Z +1 ⌦ (x ⌦) @ f @ (x)dx

Definition 2b, Antifragility (monomodal distribution).

A payoff y = '(x) is locally antifragile over the range

[L, H] if 1. It is b-robust below ⌦ for some b > 0 2. W X (Y, g , '(L), '(H), s + ( )) ae aW (X , f , L, H, s + ( )) where a = u + ( ) s + ( )
The scaling constant a provides homogeneity in the case where the relation between X and y is linear. In particular, nonlinearity in the relation between X and Y impacts robustness.

The second condition can be replaced with finite differences u and s, as long as u/u = s/s. REMARKS Fragility is K-specific. We are only concerned with adverse events below a certain pre-specified level, the breaking point. Exposures A can be more fragile than exposure B for K = 0, and much less fragile if K is, say, 4 mean deviations below 0. We may need to use finite Ds to avoid situations as we will see of vega-neutrality coupled with short left tail.

Effect of using the wrong distribution f : Comparing V(X, f, K, s -, Ds) and the alternative distribution V(X, f*, K, s*, Ds), where f* is the "true" distribution, the measure of fragility provides an acceptable indication of the sensitivity of a given outcome -such as a risk measure -to model error, provided no "paradoxical effects" perturb the situation. Such "paradoxical effects" are, for instance, a change in the direction in which certain distribution percentiles react to model parameters, like s -. It is indeed possible that nonlinearity appears between the core part of the distribution and the tails such that when s -increases, the left tail starts fattening -giving a large measured fragility -then steps back -implying that the real fragility is lower than the measured one. The opposite may also happen, implying a dangerous underestimate of the fragility. These nonlinear effects can stay under control provided one makes some regularity assumptions on the actual distribution, as well as on the measured one. For instance, paradoxical effects are typically avoided under at least one of the following three hypotheses:

a.

The class of distributions in which both f and f* are picked are all monomodal, with monotonous dependence of percentiles with respect to one another.

b.

The difference between percentiles of f and f* has constant sign (i.e. f* is either always wider or always narrower than f at any given percentile) c.

For any strike level K (in the range that matters), the fragility measure V monotonously depends on s -on the whole range where the true value s* can be expected. This is in particular the case when partial derivatives @ k V/@ s k all have the same sign at measured s -up to some order n, at which the partial derivative has that same constant sign over the whole range on which the true value s* can be expected. This condition can be replaced by an assumption on finite differences approximating the higher order partial derivatives, where n is large enough so that the interval [s -n s] covers the range of possible values of s*. Indeed, in this case, f difference estimate of fragility uses evaluations of ⇠ at points spanning this interval.

Unconditionality of the shortfall measure ⇠ : Many, when presenting shortfall, deal with the conditional shortfall

R K 1 x f (x) dx ¿ R K 1 f (x)
dx ; while such measure might be useful in some circumstances, its sensitivity is not indicative of fragility in the sense used in this discussion. The unconditional tail expectation ⇠ = R K 1 x f (x) dx is more indicative of exposure to fragility. It is also preferred to the raw probability of falling below K, which is R K 1 f (x) dx, as the latter does not include the consequences. For instance, two such measures

R K 1 f (x) dx and R K 1 g(x)
dx may be equal over broad values of K; but the expectation R K 1 x f (x) dx can be much more consequential than

R K 1 x g(x)
dx as the cost of the break can be more severe and we are interested in its "vega" equivalent. 1. X is stochastic and its stochastic character is ignored (as if it had zero variance or mean deviation) 2. Y is concave with respect to X in the negative part of the distribution, below ⌦ "Convexity Bias" or Jensen's Inequality Effect: Further, missing the stochasticity under the two conditions a) and b) , in the event of the concavity applying above ⌦ leads to the negative convexity bias from the lowering effect on the expectation of the dependent variable Y. the metadistribution of each). The so-called "perturbation" is not necessarily a change in the parameter so much as it is a means to verify whether f and g capture the full shape of the final probability distribution.

Example:Application to Budget Deficits

Any situation with a bounded payoff function that organically truncates the left tail at K will be impervious to all perturbations affecting the probability distribution below K.

For K = 0, the measure equates to mean negative semi-deviation (more potent than negative semi-variance or negative semi-standard deviation often used in financial analyses).

Model Error and Semi-Bias as Nonlinearity from Missed Stochasticity of Variables

Model error often comes from missing the existence of a random variable that is significant in determining the outcome (say option pricing without credit risk). We cannot detect it using the heuristic presented in this paper but as mentioned earlier the error goes in the opposite direction as model tend to be richer, not poorer, from overfitting. But we can detect the model error from missing the stochasticity of a variable or underestimating its stochastic character (say option pricing with non-stochastic interest rates or ignoring that the "volatility" s can vary).

Missing Effects:

The study of model error is not to question whether a model is precise or not, whether or not it tracks reality; it is to ascertain the first and second order effect from missing the variable, insuring that the errors from the model don't have missing higher order terms that cause severe unexpected (and unseen) biases in one direction because of convexity or concavity, in other words, whether or not the model error causes a change in z.

Model Bias, Second Order Effects, and Fragility

Having the right model (which is a very generous assumption), but being uncertain about the parameters will invariably lead to an increase in model error in the presence of convexity and nonlinearities.

As a generalization of the deficit/employment example used in the previous section, say we are using a simple function:

f ( x | ↵ )
Where ↵ is supposed to be the average expected rate, where we take ' as the distribution of ↵ over its domain }

↵ ↵ = Z } ↵ ↵ '(↵) d↵
The mere fact that ↵ is uncertain (since it is estimated) might lead to a bias if we perturb from the outside (of the integral), i.e. stochasticize the parameter deemed fixed. Accordingly, the convexity bias is easily measured as the difference between a) f integrated across values of potential a and b) f estimated for a single value of a deemed to be its average. The convexity bias ! A becomes:

! A ⌘ Z } x Z } ↵ f (x | ↵ ) ' ( ↵ ) d↵ dx Z } x f (x Ç Z } ↵ ↵ ' ( ↵ ) d↵ å )dx (11) 
And ! B the missed fragility is assessed by comparing the two integrals below K, in order to capture the effect on the left tail: Which can be approximated by an interpolated estimate obtained with two values of ↵ separated from a mid point by ↵ a mean deviation of ↵ and estimating

! B (K) ⌘ Z K 1 Z } ↵ f (x | ↵ ) ' ( ↵ ) d↵ dx Z K 1 f (x Ç Z } ↵ ↵ ' ( ↵ ) d↵ å )dx ( 
! B (K) ⌘ Z K 1 1 2 ( f (x | ↵ + ↵) + f (x | ↵ ↵)) dx Z K 1 f (x | ↵) dx (13) 
We can probe ! B by point estimates of f at a level of X  K

! 0 B (X ) = 1 2 ( f (X | ↵ + ↵) + f (X | ↵ ↵)) f (X | ↵) (14) So that ! B (K) = Z K 1 ! 0 B (x)dx (15) 
which leads us to the fragility heuristic. In particular, if we assume that ! B (X ) 0 has a constant sign for X  K, then ! B (K) has the same sign. If a bank issues a so-called "stress test" (something that has not proven very satisfactory), off a parameter (say stock market) at -15%. We ask them to recompute at -10% and -20%. Should the exposure show negative asymmetry (worse at -20% than it improves at -10%), we deem that their risk increases in the tails. There are certainly hidden tail exposures and a definite higher probability of blowup in addition to exposure to model error.

The

Note that it is somewhat more effective to use our measure of shortfall in Definition, but the method here is effective enough to show hidden risks, particularly at wider increases (try 25% and 30% and see if exposure shows increase). Most effective would be to use power-law distributions and perturb the tail exponent to see symmetry.

Example 2 (Detecting Tail Risk in Overoptimized System, ! B ). Raise airport traffic 10%, lower 10%, take average expected traveling time from each, and check the asymmetry for nonlinearity. If asymmetry is significant, then declare the system as overoptimized. (Both ! A and ! B as thus shown.

The same procedure uncovers both fragility and consequence of model error (potential harm from having wrong probability distribution, a thin-tailed rather than a fat-tailed one). For traders (and see Gigerenzer's discussions, in Gigerenzer and Brighton (2009), [START_REF] Gigerenzer | Reasoning the fast and frugal way: Models of bounded rationality[END_REF]) simple heuristics tools detecting the magnitude of second order effects can be more effective than more complicated and harder to calibrate methods, particularly under multi-dimensionality. See also the intuition of fast and frugal in [START_REF] Derman | The Financial Modelers' Manifesto[END_REF], [START_REF] Haug | Option Traders Use (very) Sophisticated Heuristics, Never the Black-Scholes-Merton Formula[END_REF].

The Fragility Heuristic Applied to Model Error

1-First Step (first order). Take a valuation. Measure the sensitivity to all parameters p determining V over finite ranges p. If materially significant, check if stochasticity of parameter is taken into account by risk assessment. If not, then stop and declare the risk as grossly mismeasured (no need for further risk assessment). 2-Second Step (second order). For all parameters p compute the ratio of first to second order effects at the initial range p = estimated mean deviation. The Heuristic applied to a stress test:

H ( p) ⌘

In place of the standard, one-point estimate stress test S1, we issue a "triple", S1, S2, S3, where S2 and S3 are S1 ± p. Acceleration of losses is indicative of fragility.

Remarks

a. Simple heuristics have a robustness (in spite of a possible bias) compared to optimized and calibrated measures. Ironically, it is from the multiplication of convexity biases and the potential errors from missing them that calibrated models that work in-sample underperform heuristics out of sample [START_REF] Gigerenzer | Homo heuristicus: Why biased minds make better inferences[END_REF]. b. Heuristics allow to detection of the effect of the use of the wrong probability distribution without changing probability distribution (just from the dependence on parameters). c. The heuristic improves and detects flaws in all other commonly used measures of risk, such as CVaR, "expected shortfall", stress-testing, and similar methods have been proven to be completely ineffective [START_REF] Taleb | Dynamic Hedging: Managing Vanilla and Exotic Options[END_REF]. d. The heuristic does not require parameterization beyond varying p.

Further Applications

In parallel works, applying the "simple heuristic" allows us to detect the following "hidden short options" problems by merely perturbating a certain parameter p: i-Size and pseudo-economies of scale.

ii-Size and squeezability (nonlinearities of squeezes in costs per unit).

iii-Specialization (Ricardo) and variants of globalization. iv-Missing stochasticity of variables (price of wine). v-Portfolio optimization (Markowitz).

vi-Debt and tail exposure. vii-Budget Deficits: convexity effects explain why uncertainty lengthens, doesn't shorten expected deficits. viii-Iatrogenics (medical) or how some treatments are concave to benefits, convex to errors. ix-Disturbing natural systems.1 
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Figure 1 :

 1 Figure 1: Disproportionate effect of tail events on nonlinear exposures, illustrating the necessary character of the nonlinearity of the harm function and showing how we can extrapolate outside the model to probe unseen fragility.

  Examplesi-A porcelain coffee cup subjected to random daily stressors from use.

  Next we consider the particular case where a random variable Y = '(X) depends on another source of risk X, itself subject to a parameter . Let us keep the above notations for X, while we denote by g the pdf of Y ,⌦ Y = '(⌦) and c 2013 N.N. Taleb and R. Douady 7 November 2013 Documents de Travail du Centre d'Economie de la Sorbonne -2014.93 TALEB and DOUADY Mathematical Mapping of (Anti)Fragility u ( ) the left-semi-deviation of Y. Given a "strike" level L = '(K), let us define, as in the case of X :
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Figure 2 :

 2 Figure 2: The distribution of G and the various derivatives of the unconditional shortfalls
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  Applications to Model ErrorIn the cases where Y depends on X, among other variables, often x is treated as non-stochastic, and the underestimation of the volatility of x maps immediately into the underestimation of the left tail of Y under two conditions:c 2013 N.N.Taleb and R. Douady 14 November 2013 Documents de Travail du Centre d'Economie de la Sorbonne -2014.93

  Example: A government estimates unemployment for the next three years as averaging 9%; it uses its econometric models to issue a forecast balance B of 200 billion deficit in the local currency. But it misses (like almost everything in economics) that unemployment is a stochastic variable. Employment over 3 years periods has fluctuated by 1% on average. We can calculate the effect of the error with the following: • Unemployment at 8% , Balance B(8%) = -75 bn (improvement of 125bn) • Unemployment at 9%, Balance B(9%)= -200 bn • Unemployment at 10%, Balance B(10%)= -550 bn (worsening of 350bn)The convexity bias from underestimation of the deficit is by -112.5bn, sinceB(8%) + B(10%) 2 = 312.5Further look at the probability distribution caused by the missed variable (assuming to simplify deficit is Gaussian with a Mean Deviation of 1% )

Figure 3 :

 3 Figure 3: Histogram from simulation of government deficit as a left-tailed random variable as a result of randomizing unemployment of which it is a convex function. The method of point estimate would assume a Dirac stick at -200, thus underestimating both the expected deficit (-312) and the skewness (i.e., fragility) of it.
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  Step. Note parameters for which H is significantly > or < 1. 3-Fourth Step: Keep widening p to verify the stability of the second order effects.

Table 1 introduces the Exhaustive Taxonomy of all Possible Payoffs y=f(x)

 1 

Table 1 : Payoffs and Mixed Nonlinearities Type Condition Left Tail (Loss Domain) Right Tail (Gain Do- main) Nonlinear Payoff Func- tion y = f (x) "derivative" where x is a random vari- able Derivatives Equivalent (Taleb, 1997) Effect of fa- tailedness of f (x) compared to primitive x. Type 1

 1 

		Fragile	Fat (reg-	Fat	Mixed concave	Long	up-vega,	More	fragility
		(type 1)	ular	or		left, convex right	short down-vega	if	absorbing
			absorbing		(fence)			barrier, neutral
			barrier)						otherwise
	Type	Fragile	Thin		Thin	Concave		Short vega	More fragility
	2	(type 2)						
	Type	Robust	Thin		Thin	Mixed	convex	Short up -vega,	No effect
	3					left,	concave	long down -vega
						right	(digital,	
						sigmoid)		
	Type	Antifragile Thin		Fat	Convex		Long vega	More	an-
	4				(thicker				tifragility
					than left)			
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