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Abstract—In this paper, we tackle the problem of texture
classification with a local approach based on measuring second
order deviations with respect to a dictionary of characteristic
patterns. At each pixel, we extract local signal properties thanks
to several Gabor filters that are aggregated on a small support
region. Then, we compute a dictionary of such features that serves
as a universal model. The texture signature is the deviation of
second order statistics between its local features and the universal
model. Experiments are made on two sets of photographic paper
textures, and show the soundness of the approach.

I. INTRODUCTION

In this paper, we are interested in the identification of
photographic paper textures sharing physical properties (same
sheet, same package, same manufacturer), based solely on
visual content [1]. The identification of photographic paper
is an important challenge for conservation science, since the
aging of old photographs depends strongly upon the material it
was printed of. Since these photographs are of high value, non-
destructive identification techniques have to be used. In our
case, the identification is performed on high resolution pictures
of the paper, using digital image processing techniques.

Usually, texture identification systems are designed to
discriminate between a wide variety of textures such as wood,
marble, cloth, etc. In our case, images from different papers
are visually very similar, and the distinction is made on tiny
variations. As such, usuall texture recognition approaches are
not well adapted to this specific problem.

To solve the problem, we propose an approach based on
Gabor filters, which have been widely used in texture discrim-
ination [2]. However, such characteristics are often computed
on the whole image and are not enough to discriminate
between the fine categories of photographic paper textures.
We argue these textures are composed of several distinctive
patterns (or textons), each having its own frequency charac-
teristics. To capture such patterns, we propose to compute a
universal dictionary of local responses of a Gabor filter bank
on all the available images. Then, we compute the second order
moments of the local Gabor responses of an image with respect
to the universal dictionary, which amounts to map the image on
several Riemannian manifolds (of symmetric positive definite
matrices S++). The distance between textures is computed
using a geodesic distance on S++, allowing to take into
account the specific topology of the proposed representation
space.

The remaining of this paper is as follows: First we present
a quick overview of texture recognition methods as well as

related work. Then, we present our method in section III. We
perform experiments in section IV before we conclude.

II. RELATED WORK

Texture recognition has been a major topic of interest in
the image processing community for several decades. Early
methods focused on characterizing the statistical distributions
of specific frequency band of the Fourier domain [2], [3].
in [4], the authors used polarograms to obtain rotation invariant
statistical features. In [5], the authors proposed to used Hough
transforms to describe the line structure of the texture.

All these global approaches have been outperformed by
local approaches that extract characteristic information on a
small neighborhood of the image. In [6], the authors proposed
for example to use local image patches quantized into a
texton codebook. In [7], the difference of intensities in the
neighborhood of a pixel is encoded into a binary code that
can be rotation invariant. the resulting Local Binary Pattern
(LBP) is shown to have very good performances in texture
recognition, although it encodes image properties at a small
local scale. This descriptor has been extended to encode more
information, like in Complete LBP [8] or in the Pattern of
Oriented Edge Magnitude [9].

Even more recently, visual dictionaries have been use to
perform texture recognition [10]. In these approaches, a set
of local features is extracted from the images and quantized
so as to produce a dictionary of prototypical descriptors. The
image is represented by computing moments of occurrences
of the dictionary entries. This approach has been very popular
in computer vision to perform object recognition [11]. Given
a set of local descriptors (such as LBP), the Bag of Word
method consist in assigning each descriptor to its nearest
entry in the dictinnary, and computing the histogram of such
assignments. This roughly corresponds to computing the zero
order moment of the image with respect to the dictionary.
Several authors extended this approach by computing higher
order moments [12], [13], [14]. In particular, second order
moments have shown very good performances in both image
retrieval [15]and image classification [16].

In this paper, with take advantage of these second order
dictionary approaches, while also taking inspiration from the
filter banks methods. In particular, we propose to compute
local descriptors using Gabor filters similar to that of the
VZ approach [6], while computing second order moments not
unlike [13] and [14].



(a) Images from the bw dataset.

(b) Images from the inkjet dataset.

Fig. 1. Images extracted from the texture datasets. The first row contains images from the bw dataset, while the second row contains images from the inkjet
dataset. Each image is from a different category.

III. PROPOSED METHOD

Our method is composed of three steps: Local Descriptors
extraction, feature computation, similarity measure. The first
step of local descriptors extraction is performed using Gabor
filters, while the features are computed by evaluating the
second order moments of a Gaussian mixture model. Finally,
since our features are covariance matrices, we compute the
similarity between textures by tacking into account the specific
topology of the space of positive definite matrices.

A. Local descriptors

We describe each pixel of the image by the responses
to a set of Gabor filters g(θ, f) [17], taken at m different
orientations θ and n different frequencies f :
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with

xθ = x cos(θ) + y sin(θ), yθ = −x sin(θ) + y cos(θ),

and γ = π/m. To allow better robustness to translation, we
compute the modulus of such responses at any pixel p:

rθ,f (p) = |gθ,f ? I(p)| (2)

To better account for the local properties, the responses are
then aggregated in a neighborhood around the pixel p by
convolution with a uniform filter u to form the descriptor d(p):

d(p) = [u ? rθ,f (p)]θ,f (3)

Each pixel of the image is thus described by a feature vector
of dimension mn, with m being the number of orientations
and n the number of frequencies. The pixels are then sorted
by decreasing norm of their feature vectors d and subsequently
normalized to have unit `2 norm.

B. Texture features

Starting from a sampling of the feature vectors of all the
images, we compute a dictionary of characteristic patterns. The
feature space is modeled as a Gaussian Mixture Model trained
on the subset of the feature vectors with highest norm (before
normalization), using the EM algorithm.

The images are represented by computing second order
moments with respect to the model obtained previously. For
each Gaussian of the model, we compute the covariance matrix
ΓI,c of all feature vectors d(p), p ∈ I of image I , weighted
by their respective likelihood hc(x) to model component c:

ΓI,c =

∑
p∈I hc(d(p))(d(p)− µI,c)(d(p)− µI,c)>∑

p∈I hc(d(p))
(4)

with

µI,c =

∑
p∈I hc(d(p))d(p)∑

x hc(d(p))
. (5)

Each image is thus represented by an ordered set of positive
definite matrices. These matrices correspond to the specificity
(or deviation) of the distribution of local Gabor features with
respect to a universal model, as measured by their second order
moments.

C. Similarity measure

The computation of the covariance matrix for each com-
ponent induces a mapping of the images into the space of
symmetric positive definite matrices S++:

ψc :RM×N → S++ (6)
I 7→ ΓI,c (7)

To compute the distance between any 2 images I1 and I2,
we consider the concatenation of the spaces induced by each
component of the Gaussian mixture. The square distance in



Fig. 2. Gabor filter bank used in this paper.

the concatenated space is then simply the sum of the square
distances in the spaces induced by each component:

dist(I1, I2) =
∑
c

distS++(ΓI1,c,ΓI2,c) (8)

To take into account the topology of S++, we propose
to use the Log-Euclidean distance instead of the Euclidean
(Frobenius) distance:

d(I1, I2)2 =
∑
c

‖ log(ΓI1,c)− log(ΓI2,c)‖2F (9)

The Log-Euclidean distance has nice properties: it is a metric
and corresponds to a geodesic distance on S++ [18].

The incentives to use the Log-Euclidean distance are the
following: We consider the eigen-decomposition of a matrix
ΓI,c. Each of its eigenvectors corresponds to a specific com-
bination of the filters in the bank, while the related eigenvalue
encodes the contribution (or energy) of this combination. When
using the Euclidean distance, the direction of the eigenvectors
(i.e., the weights of the filters for each combination) and
the contribution are considered equivalently. When using the
Log-Euclidean distance, the eigenvalues relative differences
are shrunk, whereas the directions remain. We claim that
the direction is more important than the contribution, since
slight variations in direction lead to textures based on different
pattern, while variations on the contributions lead textures
based on the same pattern, albeit in different proportions. Us-
ing the Log-Euclidean distance, the eigenvalues are processed
through a logarithm, which lower their effect on the total
distance. Using this distance, the changes in the direction of
the eigenvectors are better taken into account.

IV. EXPERIMENTS

We carried out experiments on two datasets of photographic
paper textures named inkjet and b&w [1]. Each of these
datasets contains 120 images grouped in 9 classes based on
their physical properties (same sheet, same package, same
manufacturer, etc). Each class contains 10 images, and the
last 30 images are distractors and do not belong to any class.
Images of representatives textures from these datasets are
shown in Figure 1. As we can see, the textures look already
similar, even though they are all drawn from different classes.

We compute local descriptors using a bank of 8 Gabor
filters using 4 orientations and 2 scales. These filters are shown

(a) Frobenius distance matrix (b) Frobenius distance matrix

(c) Log-Euclidean distance matrix (d) Log-Euclidean distance matrix

(e) Groundtruth distance matrix (f) Groundtruth distance matrix

(g) VLAT+POEM distance matrix (h) VLAT+POEM distance matrix

Fig. 3. Distance matrices for the inkjet dataset (left) and the BW dataset
(right). Dark colors indicate small distances. The last row is taken from [19].

in Figure 2. The signatures are computed using a Gaussian
mixture model with 8 components.

To evaluate our method, we compute the pairwise distance
matrices of each dataset. We perform the computation with
the Euclidean distance and the Log-Euclidean distance. On
Figure 3, we show the corresponding distance matrices, as
well as a reference distance matrix provided by the expert



P. Messier. As we can see, Using the Log-Euclidean distance
allows to obtain results more consistent with the groundtruth.

We also compared our results with the best distance matri-
ces from [19]. As we can see, the results from [19] are very
close to the groundtruth matrices. However, they tend to be
too discriminative (very diagonal structure), especially with
the textures from the distractors class (last 30 row/columns).
The distance obtained by our proposed method seems to better
take into account the true distance to the distractor textures.

V. CONCLUSION

In this paper, we presented a new method to perform texture
identification, primarily designed to handle the recognition
of photographic paper textures. Our approach is divided in
three steps. First, we compute and sum the response to a
bank of Gabor filter, leading to a set of local descriptors.
Then, we model the space of local descriptors with a Gaussian
mixture model, and we compute the covariance matrix of the
descriptors of each image, weighted by their likely hood with
respect to each component of the model. Finally, we compare
the matrices of different textures using the sum of component-
wise Log-Euclidean distances to better take into account the
topology of the space of covariance matrices. We show in the
experiments that this approach has promising results on this
challenging task.
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