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Abstract—This paper continues our quest for the weakest
failure detector which allows the k-set agreement problem to be
solved in asynchronous message-passing systems prone to process
failures. It has two main contributions which will be instrumental
to complete this quest.

The first contribution is a new failure detector (denoted ΠΣx,y)
that has several noteworthy properties. (a) It is stronger than Σx

which has been shown to be necessary. (b) It is equivalent to the
pair 〈Σ,Ω〉 when x = y = 1 (optimal to solve consensus). (c) It is
equivalent to the pair 〈Σn−1,Ωn−1〉 when x = y = n−1 (optimal
for (n− 1)-set agreement). (d) It is strictly weaker than the pair

〈Σx,Ωy〉 (which has been investigated in previous works). (e) It
is operational: the paper presents a ΠΣx,y-based algorithm that
solves k-set agreement for k ≥ xy (intuitively, x refers to the
maximum number of isolated groups of processes and y to the
number of leaders in each of these groups).

The second contribution of the paper is a proof that, for
1 < k < n − 1, the eventual leaders failure detector Ωk (which
eventually provides each process with the same set of k process
identities, this set including at least one correct process) is not
necessary to solve k-set agreement problem.

Index Terms—Asynchronous distributed system, Eventual
leader, Failure detector, Fault tolerance, Quorum.

I. INTRODUCTION

a) The k-set agreement problem: This problem is a

natural generalization of the consensus problem. It is a coor-

dination problem (also called decision problem) introduced by

S. Chaudhuri [10] to explore the relation linking the number

of process failures and the minimal number of values that

processes are allowed to decide. This problem can be defined

as follows [10]. Each process proposes a value and every non-

faulty process has to decide a value (termination), in such a

way that a decided value is a proposed value (validity) and

no more than k different values are decided (agreement). The

problem parameter k defines the coordination degree: k = 1
corresponds to its most constrained instance (consensus) while

k = n − 1 corresponds to its weakest non-trivial instance

(called set agreement).

Let t be the model parameter that defines the upper bound

on the number of processes that may crash in a run, 0 ≤ t < n.

If t < k, k-set agreement can be trivially solved in both

synchronous and asynchronous systems: k predetermined pro-

cesses broadcast (write in the shared memory) the values they

propose and a process decides the first proposed value it re-

ceives (reads from the shared memory). Hence, the interesting

setting is when t ≥ k, i.e., when the number of values that

can be decided is smaller or equal to the maximal number of

processes that may crash in a run.

Round-based algorithms that solve the k-set agreement

problem for k ≤ t < n in crash-prone synchronous message-

passing systems are presented in [2], [18]. These algorithms

are optimal in the sense that the processes decide in at

most ⌊ t
k
⌋ + 1 rounds which has been shown to be a lower

bound on the number of rounds for a process to decide.

For asynchronous systems where the processes communicate

by reading/writing a shared memory or sending/receiving

messages, the situation is different, namely, when t ≥ k, the

k-set agreement problem has no solution [6], [16], [25].

b) Failure detectors: Let us observe that in an asyn-

chronous system where the only means for processes to

communicate is a read/write shared memory or send/receive

message-passing network, no process is able to know if

another process has crashed or is only very slow. The concept

of a failure detector originates from this simple observation. A

failure detector is a device (distributed oracle) that enriches a

distributed system by providing alive processes with informa-

tion on failed processes [8]. Several classes of failure detectors

can be defined according to the type of information on failures

they provide to processes.

Given a system model M (e.g., asynchronous read/write

shared memory system model or asynchronous send/receive

message-passing system model) a failure detector A is stronger

than a failure detector B with respect to M (denoted A �M B
or B �M A) if there is an algorithm (called reduction) that

builds B in M enriched with A (we then also say that B is

weaker than A). If A is stronger than B and B is stronger than

A, then A and B are equivalent with respect to M (denoted

A ≃M B). If A �M B and B 6�M A then A is strictly

stronger than B -equivalently B is strictly weaker than A-

(denoted A ≻M B or B ≺M A). If A 6�M B and B 6�M A
(denoted A 6≃M B), A and B cannot be compared in M.

Failure detectors, to circumvent the “t ≥ k” impossibility

result associated with the k-set agreement problem in asyn-

chronous systems, have been investigated since 2000 [19].

(Random oracles to solve the k-set agreement problem have

also been investigated [20].) The question of the weakest

failure detector to solve the k-set agreement problem (k > 1)

has been stated first in [24]. A failure detector A is the weakest

failure detector that allows a problem P to be solved in a

model M if any failure detector B that allows P to be solved



in M is such that B �M A.

c) The weakest failure detector for k-set agreement in

shared memory systems where t = n − 1: The eventual

leader failure detector Ω introduced in [9] is the weakest

failure detector that allows consensus (i.e., 1-set agreement)

to be solved in shared memory systems where any number of

processes may crash [17]. Ω ensures that there is an unknown

but finite time after which all the processes have the same

non-faulty leader (before that time, there is an anarchy period

during which each process can have an arbitrarily changing

faulty or non-faulty leader). At the other end of the spectrum

(k = n− 1), the failure detector Ωn−1 (anti-omega) has been

introduced in [26] where it is shown to be the weakest failure

detector that allows (n−1)-set agreement to be solved in these

systems.

A simple generalization of Ω and Ωn−1 denoted Ωk, 1 ≤
k ≤ n − 1, (Ω1 is Ω) has been introduced in [23] where

it is conjectured to be the weakest failure detector class for

solving k-set agreement in asynchronous read/write shared

memory systems. This conjecture has been proved in [14].

A failure detector of the class Ωk provides each process with

a (possibly always changing) set of k processes such that,

after some unknown but finite time, all the sets that are output

have in common the same non-faulty process. The optimality

of Ωk to solve k-set agreement in shared memory systems

seems to be related to the fact that this problem is equivalent

to the k-simultaneous consensus problem [1] in which each

process executes k independent consensus instances (to which

it proposes the same input value) and is required to terminate

in one of them. As indicated in [26], this problem has

been instrumental in determining the weakest failure detector

for wait-free solving the (n − 1)-set agreement problem in

asynchronous shared memory systems.

d) The cases k = 1 and k = n − 1 in message-passing

systems where t = n−1: When k = 1, as already indicated k-

set agreement boils down to consensus, and it is known that the

failure detector denoted Ω is the weakest to solve consensus

in asynchronous message-passing systems where t < n/2 [9].

This lower bound result is extended to any value of t in [12]

where the failure detector Σ is introduced and is shown that

Σ × Ω is the weakest failure detector to solve consensus in

message-passing systems when t < n. This means that Σ is

the minimal additional power (as far as information on failures

is concerned) required to overcome the barrier t < n/2 and

attain t ≤ n − 1. Actually the power provided by Σ is the

minimal one required to implement a shared register in a

message-passing system [4], [12]. Σ provides each process

with a quorum (set of process identities) such that the values

of any two quorums (each taken at any time) intersect, and

there is a finite time after which any quorum includes only

correct processes. Fundamentally, Σ prevents partitioning. A

failure detector Σ×Ω outputs a pair of values, one for Σ and

one for Ω.

The Loneliness failure detector (denoted L) has been pro-

posed in [13] where it is proved that it is the weakest failure

detector for solving (n−1)-set agreement in the asynchronous

message-passing model with t = n−1. Such a failure detector

provides each process p with a boolean (that p can only

read) such that the boolean of at least one process remains

always false and, if all but one process crash, the boolean

of the remaining process becomes and remains true forever.

Let us notice that the weakest failure detector for (n− 1)-set

agreement is not the same in the read/write shared memory

model (where it is Ωn−1) and the send/receive message-

passing model (where it is L).
e) The quest for the weakest failure detector for k-set

agreement in message-passing systems: This quest seems to

be one of the most difficult research topics in the theory of

fault-tolerant distributed computing. Since a few years, several

new failure detectors have been proposed for solving k-set

agreement in asynchronous message passing systems prone to

any number of crashes, but so far finding the weakest still

remains a challenge.

The interested reader will find in [21] a study on relations

linking some of these failure detectors. Here we only present

the failure detector Σx introduced in [5] because it is central to

the paper. Σx generalizes the quorum failure detector class Σ
introduced in [12] (Σ1 is Σ). This failure detector provides

each process with a set (quorum) such that at least two

quorums do intersect in any set of x + 1 quorums (whose

values are taken at any times). Moreover, there is a finite (but

unknown) time after which the quorum of any process includes

only non-faulty processes. Two main results are proved in [5]:

(a) as far as information on failures is concerned, Σk is a

necessary requirement to solve k-set agreement; (b) Σn−1 is

sufficient to solve (n− 1)-set agreement. Interestingly, a Σx-

based algorithm is presented in [7] that solves k-set agreement

for k ≥ n− ⌊ n
x+1

⌋.
f) Contributions of the paper: This paper is a new step in

the quest for the weakest failure detector for k-set agreement

in message-passing systems. It has two main contributions.

• The first contribution is the definition and the investiga-

tion of a new failure detector class denoted ΠΣx,y .

– Intuitively ΠΣx,1 (1) prevents the system from parti-

tioning into more than k independent subsets and (2)

guarantees that the processes of at least one of these

subsets agree on a common leader. ΠΣx,y can be

seen as y independent instances of ΠΣx,1 in which

item (2) is guaranteed in only one of these instances.

– Let AMP denote the asynchronous message-

passing system model where up to n−1 process may

crash. The properties of ΠΣx,y are the following: (a)

ΠΣ1,y ≃AMP 〈Σ1,Ωy〉; (b) ΠΣx,n−1 ≃AMP Σx;

(c) ΠΣx,y �AMP 〈Σx,Ωy〉 for 1 ≤ x, y ≤ n and

ΠΣx,y ≺AMP 〈Σx,Ωy〉 for 1 < y < x < n.

It follows from (a) and (b) that ΠΣ1,1 and

ΠΣn−1,n−1 are the weakest failure detectors to solve

k-set agreement for k = 1 and k = n − 1,

respectively.

For 1 ≤ k ≤ n − 1, we have the following.

An algorithm based on the pair of failure detectors

〈Σx,Ωy〉 is presented in [7] that solves k-set agree-



ment for k ≥ xy (let BT-2010 denote this algorithm).

Moreover, it is shown in that paper that there is

no 〈Σx,Ωy〉-based k-set agreement algorithm when

(k < xy) ∧ (n ≥ 2xy).
Actually, an appropriate modification of BT-2010

provides us with a ΠΣx,y-based k-set algorithm that

has the same properties (listed above) as BT-2010.

The important point is here the following one: while

BT-2010 and the proposed algorithm work for the

same pairs (x, y), it follows from item (c) that the

proposed algorithm is based on weaker information

on failures than BT-2010.

• The second contribution of the paper (which has been

obtained thanks to the previous failure detector ΠΣx,y)

is the following: Ωk is not necessary to solve k-set

agreement when 1 < k < n−1 1. Combined with the fact

that Σk is necessary [5], this result restricts the area we

have to look for in order to discover the weakest failure

detector for k-set agreement in message-passing systems

for 1 < k < n− 1.

g) Roadmap: The paper is made up of 8 sections.

Section II presents the base computation model and the k-set

agreement problem. Section III presents the eventual leaders

and generalized quorums failure detectors. Section IV defines

the new failure detector ΠΣx,y and shows that it is strictly

weaker than 〈Σx,Ωy〉 for 1 < y < x < n. Section V presents

a basic abstraction called Alphax which is used in Section VI

(assuming k ≥ xy) to build an algorithm that solves the k-

set agreement problem in the asynchronous message-passing

model enriched with ΠΣx,y . Section VII shows that Ωk is not

necessary for solving k-set agreement (when 1 < k < n− 1).

Finally, Section VIII concludes the paper.

II. BASE COMPUTATION MODEL AND k-SET AGREEMENT

A. Computation model

h) Process model: The system consists of a set of n
sequential processes denoted p1, ..., pn. P = {1, . . . , n} is the

set of process identities. Each process executes a sequence of

(internal or communication) atomic steps. A process executes

its code until it possibly crashes (if it ever crashes). After

it has crashed, a process executes no more steps. A process

that crashes in a run is said faulty in that run, otherwise it is

correct. Given a run, C and F denote the set processes that

are correct and the set of processes that are faulty in that run,

respectively. Up to t = n − 1 processes may crash in a run,

hence, 1 ≤ |C| ≤ n.

i) Communication model: The processes communicate

by executing atomic communication steps which are the send-

ing or the reception of a message. Every pair of processes is

connected by a bidirectional channel. The channels are failure-

free (no creation, alteration, duplication or loss of messages)

1In [11], a slightly different result is shown, namely 〈Σ,Ωk〉 is not
necessary to solve k-set agreement in message-passing. However, this is
not sufficient to prove our theorem since 〈Σ,Ωk〉 has a strictly stronger
computability power than Ωk in message-passing.

and asynchronous (albeit the time taken by a message to travel

from its sender to its receiver is finite, there is no bound on

transfer delays). The notation “broadcast MSG TYPE(m)” is

used as a (non-atomic) shortcut for “for each j ∈ P do send

MSG TYPE(m) to pj end for” (let us observe that pi sends

then the message also to itself).
j) Underlying time model: The underlying time model is

the set N of natural integers. As we are in an asynchronous

system, this time notion is not accessible to the processes

(hence, the model is sometimes called time-free model). It

can only be used from an external observer point of view to

state or prove properties. Time instants are denoted τ , τ ′, etc.
k) Notation: The previous asynchronous crash-prone

message-passing system model is denoted AMP[∅]. AMP
stands for “Asynchronous Message-Passing”; ∅ means this

is the “base” system (not enriched with a failure detector).

B. The k-Set agreement problem

As already indicated in the Introduction, the k-set agreement

problem has been introduced by Soma Chaudhuri [10]. It

generalizes the consensus problem (that corresponds to k = 1).

It is defined as follows. Each process proposes a value and has

to decide a value in such a way that the following properties

are satisfied:

• Termination. Every correct process decides a value.

• Validity. A decided value is one of the proposed values.

• Agreement. At most k different values are decided.

III. EXISTING FAMILIES OF FAILURE DETECTORS

This section presents failure detectors that have been pro-

posed in the quest of the weakest failure detector for k-set

agreement. The system model AMP[∅] enriched with a failure

detector A is denoted AMP[A].
A failure detector provides each alive process with a read-

only local variable. Let xxxi be such a variable of process pi.
Let xxxτ

i denotes the value of xxxi at time τ .

A. The Ωk and Ωk families

The eventual leaders failure detectors of the families Ωk

and Ωk provide each process pi with a local variable denoted

leadersi . They originates from Ω [9] (Ω1 ≡ Ω1 ≡ Ω). Ωk is

a straightforward generalization of Ωn−1 (introduced in [26]).

Ωk has been shown to be the weakest failure detector to solve

k-set agreement in asynchronous shared memory systems with

any number of process crashes in [14]. Let us consider the

following properties on the sets leadersi .

• Validity. ∀i, ∀τ : leadersτi is a set of k process identities.

• Strong eventual leadership. ∃ LD , τ : (LD ∩ C 6=
∅) ∧ (∀τ ′ ≥ τ, ∀i ∈ C : leadersτ

′

i = LD).
• Weak eventual leadership. ∃ ℓ ∈ C, τ : (∀τ ′ ≥ τ, ∀i ∈

C : ℓ ∈ leadersτ
′

i ).

Validity combined with strong eventual leadership states

that, after some unknown but finite time, all correct processes

have the same set of k leaders and at least one of them

is a correct process. Validity combined with weak eventual

leadership requires only that the correct processes eventually

share a common correct leader.



l) The Ωk family: This family (introduced in [22]) in-

cludes the failure detectors that satisfy the validity and strong

eventual leadership properties.

m) The Ωk family: This family (introduced in [23])

includes the failure detectors that satisfy the validity and weak

eventual leadership properties.

B. The Σk and Πk families

n) The Σk family: As noticed in the Introduction, the

generalized quorum failure detector Σk (introduced in [5]) is

a generalization of the quorum failure detector Σ introduced

in [12] where it is shown to be the weakest failure detector to

implement a register in AMP[∅].
Σk provides each process pi with a set qri (called quorum)

that satisfies the following properties (after a process pi has

crashed, we have qri = P by definition). The self-inclusion

property (which does not appear in [5]) is considered here

because it allows for a simpler formulation of algorithms.

• Self-inclusion. ∀ i ∈ P , ∀ τ : i ∈ qrτi .

• Quorum liveness. ∃ τ : ∀ i ∈ C, ∀ τ ′ ≥ τ : qrτ
′

i ⊆ C.

• Quorum intersection. ∀ id1, . . . , idk+1 ∈ P ,

∀ τ1, . . . , τk+1: ∃ i, j : (i 6= j) ∧ (qrτiidi
∩ qr

τj
idj

6= ∅).

It is shown in [5] that Σk is necessary when one wants to

solve k-set agreement in AMP [∅].
o) The Πk family: The failure detector Πk (introduced

in [5]) is an extension of Σk to which it adds the following

property.

• Eventual leadership. ∃ LD , τ : (|LD | = k) ∧ (∀τ ′ ≥
τ, ∀i ∈ C : qrτ

′

i ∩ LD 6= ∅).

It is shown in [5] that Πk and the pair 〈Σk,Ωk〉 are equiv-

alent, i.e., Πk can be built in AMP[Σk,Ωk] and 〈Σk,Ωk〉
can be built in AMP [Πk]. It is also shown in [5] that Πn−1

and L are equivalent. If follows from these observations that

Π1 and Πn−1 are the weakest failure detectors for k = 1 and

k = n − 1. Unfortunately, as shown in [3], [7], Πk does not

allow to solve k-set agreement for 1 < k < n− 1.

IV. THE FAMILY OF FAILURE DETECTORS ΠΣx,y

A. Definition

The definition of ΠΣx,y is incremental, first is defined ΠΣx

and then ΠΣx,y.

p) The failure detector ΠΣx: A failure detector ΠΣx

provides each process pi with a set qri and a variable leaderi
which define the current quorum and the current leader of pi.
It is defined by the following properties.

• Self-inclusion. ∀ i ∈ P , ∀ τ : i ∈ qrτi .

• Quorum liveness. ∃ τ : ∀ i ∈ C, ∀ τ ′ ≥ τ : qrτ
′

i ⊆ C.

• Quorum intersection. ∀ id1, . . . , idx+1 ∈ P ,

∀ τ1, . . . , τx+1: ∃ i, j : (i 6= j) ∧ (qrτiidi
∩ qr

τj
idj

6= ∅).
• Eventual partial leadership. ∃ℓ ∈ C : ∀i ∈ C:

(

∀τ : ∃τi, τℓ ≥ τ : qrτii ∩ qrτℓℓ 6= ∅
)

⇒
(

∃τ : ∀τ ′ ≥ τ :

leaderτ
′

i = ℓ
)

.

The self-inclusion, liveness and intersection properties are

the properties that define Σx: after some time the quorum of

any correct process contains only correct processes (liveness)

and any set of x + 1 quorums contains two intersecting

quorums (intersection). Hence, ΠΣx � Σx.

Eventual partial leadership states that there is a correct

process pℓ such that, for any correct process pi whose quorum

qri intersects infinitely often its quorum qrℓ (left part of the

implication), then eventually pℓ is forever the leader of pi
(right part of the implication).

q) The failure detector ΠΣx,y: ΠΣx is ΠΣx,1. More

generally, ΠΣx,y provides each process pi with an array

FD i[1..y] such that for each each j ∈ {1, . . . , y}, FD i[j]
is a pair containing a quorum FD i[j].qr and a process

index FD i[j].leader. Let FD [j] denote the corresponding

distributed object (ie, FD [j] on pi is represented by FD i[j]).
The failure detector ΠΣx,y consists of an array FD [1..y] that

satisfies the following properties:

• Vector safety. ∀j ∈ [1..y]: FD [j].qr satisfies the liveness

and intersection properties of ΠΣx.

• Vector liveness. ∃j ∈ [1..y]: FD [j].leader satisfies the

eventual partial leadership property of ΠΣx related to

FD [j].qr for the same j.

B. ΠΣx,y vs 〈Σx,Ωy〉

A failure detector 〈Σx,Ωy〉 provides each process pi with

two independent read-only local variables: qri that satisfies

the properties defined by Σx, and leaders i that satisfies the

properties defined by Ωy .

Lemma 1: Let 1 ≤ x, y ≤ n− 1. ΠΣx,y �AMP 〈Σx,Ωy〉.

Algorithm 1 From 〈Σx,Ωy〉 to ΠΣx,y (code for pi)

(01) repeat forever rel broadcast LEADER(leadersi) end repeat.

(02) when LEADER(ld) is delivered:
(03) for each j /∈ ld do susp nbi[j]← susp nbi[j] + 1 end for;
(04) let j1, j2, . . . , jn be a permutation of {1, . . . , n} such that

(susp nbi[j1], j1) < (susp nbi[j2], j2) < · · ·
· · · < (susp nbi[jn], jn);

(05) for each x ∈ {1, . . . , y} do FD i[x].leader← jx end for.

Theorem 1: Let 1 ≤ y ≤ n− 1. ΠΣ1,y ≃AMP 〈Σ1,Ωy〉.
Proof Taking x = 1 in Lemma 1 we have ΠΣ1,y �AMP

〈Σ1,Ωy〉. Hence, we have only to show that 〈Σ1,Ωy〉 �AMP

ΠΣ1,y .

Let qri of Σ1 be the output of FD i[1].qr. Hence, the

quorums qri inherit the liveness and intersection properties

of FD i[1].qr that trivially satisfy the properties defining Σ1.

Let leadersi be any subset of size y that contains

∪1≤j≤y{FD i[j].leader}. Due to the vector liveness property

of ΠΣ1,y , there is an entry j such that FD [j] satisfies the

eventual partial leadership (Observation O1). Moreover, as

x = 1, any pair of quorums output by FD [j] do intersect

(Observation O2). It follows from O1 and O2 that there is a

correct process pℓ such that, for each correct process pi, there

is a time after which the predicate FD i[j].leader = ℓ remains

forever true. Consequently, there is a finite time after which

the predicate ℓ ∈ leadersi remains forever true at any correct

process pi, from which follows the weak eventual leadership

property of Ωy . ✷Theorem 1



Theorem 2: Let 1 ≤ x ≤ n− 1. ΠΣx,n−1 ≃AMP Σx.

Proof Taking y = n − 1 in Lemma 1 we have

ΠΣx,n−1 �AMP 〈Σx,Ωn−1〉. Hence, we have only to show

that 〈Σx,Ωn−1〉 �AMP ΠΣx,n−1.

It is shown in [5] (Corollary 2 in [5]) that Σx �AMP

Σx+1 �AMP · · · �AMP Σn−1 �AMP Ωn−1. Moreover,

it follows directly from their definitions that Ωn−1 �AMP

Ωn−1. It follows that Σx �AMP 〈Σx,Ωn−1〉 which completes

the proof of the theorem. ✷Theorem 2

Lemma 2: Let 1 ≤ y < n. ΠΣy+1,1 6�AMP Ωy .

Theorem 3: Let 1 < y < x < n. ΠΣx,y ≺AMP 〈Σx,Ωy〉.
Proof ΠΣx,y �AMP 〈Σx,Ωy〉 follows from Lemma 1.

Hence, we have to show that ΠΣx,y 6�AMP 〈Σx,Ωy〉. Let

us first observe that ΠΣy+1,1 �AMP ΠΣy+1,y . This is easily

obtained by providing each FD [j] of the array FD [1..y] of

ΠΣy+1,y with the outputs supplied by ΠΣy+1,1. On an other

side, (as shown in [5]) Σz is strictly stronger than Σz+1 for 1 ≤
z < n−1 and, consequently, ΠΣy+1,y �AMP ΠΣx,y for y <
x. It follows from Lemma 2 (i.e., ΠΣy+1,1 6�AMP Ωy) that, as

ΠΣy+1,1 is stronger than ΠΣx,y, we have ΠΣx,y 6�AMP Ωy

which proves the theorem. ✷Theorem 3

r) Remark: A main difference between ΠΣx,y and

〈Σx,Ωy〉 lies in the fact that the eventual correct leader elected

by Ωy has to be the same for all correct processes, while

ΠΣx,y requires only that the correct processes of a subset

(dynamically defined by one of the y Σx failure detectors)

agree on a common leader. Hence, the scope of the leadership

provided by ΠΣx,y is not required to be the whole system but

only a subset of it.

V. A BASIC BUILDING BLOCK:

THE Alphax ABSTRACTION

A. Definition of Alphax

This paper presents an algorithm that solves the k-set

agreement problem in AMP [ΠΣx,y]. This algorithm uses an

abstraction called Alphax and has been introduced in [15]

to capture the safety property of consensus and generalized

in [24] to capture the safety property of k-set agreement in

crash-prone systems. [15], [24] give corresponding implemen-

tations in read/write shared memory systems and send/receive

message-passing systems.

Let ⊥ be a default value that cannot be proposed by

processes. Alphax is an object initialized to ⊥ that may

store up to x different values proposed by processes. It is

an abstraction (object) that provides processes with a single

operation denoted propose(r, v) (where r is a round number

and v a proposed value) that returns a value to the invoking

process. The round number plays the role of a logical time that

allows identifying the propose() invocations. It is assumed that

distinct processes use different round numbers and successive

invocations by the same process use increasing sequence

numbers. Alphax is a kind of abortable object in the sense that

propose() invocations are allowed to return the default value

⊥ (i.e., abort) in specific concurrency-related circumstances

(as defined from the obligation property, see below). More

precisely, the Alphax objects used in this paper are defined by

the following specification in which the obligation property

takes explicitly into account the fact that we are interested

into an Alphax object that will be implemented on top of

AMP[Σx] (which is a strictly stronger underlying model than

AMP[∅]).

• Termination. Any invocation of propose() by a correct

process terminates.

• Validity. If propose(r, v) returns v′ 6= ⊥, then

propose(r′, v′) has been invoked with r′ ≤ r.

• Quasi-agreement. At most k different non-⊥ values can

be returned by propose() invocations.

• Obligation. pℓ being a correct process let Q(ℓ, τ) = {i ∈
C | ∀ τi, τℓ ≥ τ : qrτii ∩ qrτℓℓ = ∅}. If, after time τ , (a)

only pℓ and processes of Q(ℓ, τ) invoke propose() and

(b) pℓ invokes propose() infinitely often, then at least one

invocation issued by pℓ returns a non-⊥ value.

Differently from the obligation property stated in [7], [15],

[24] the previous obligation property is Σx-aware which

allows for a weaker property (the Alphax object used in [7]

is implemented on top of AMP [Σx] but its specification is

not Σx-aware). More precisely, our obligation property allows

concurrent invocations of propose() to return non-⊥ values as

soon as the quorums of the invoking processes do not intersect

during these invocations.

B. The Alphax object used by Bouzid and Travers [7]

This section presents an implementation of an Alphax object

on top of AMP[Σx]. This implementation is obtained from

a modification of the algorithm proposed in [7] which is first

described.

s) The obligation property used in [7]: The Alphax
object used in [7] has the same specification as the one defined

in this paper (which is close to the one defined in [15], [24])

but for the obligation property which (similarly to [15]) is

defined as follows.

• Obligation. Let I = propose(r,−) be a terminating

invocation. If every invocation I ′ = propose(r′,−) that

starts before I returns is such that r′ < r, then I returns

a non-⊥ value.

It is easy to see that this specification is not Σx-aware.

In presence of concurrent invocations, it directs at most one

process to decide a non-⊥ value, namely, the one with the

highest round number. The current outputs of Σx are irrelevant

in this statement.

t) Principles: establish a priority on values: Each pro-

cess pi manages a local variable esti (initialized to ⊥) that

represents its current estimate v of the value it will decide

and a pair (lrei, posi) that defines the priority associated with

v from pi’s point of view (the aim is to decide values with

the highest priority); lrei = r means that r is the highest

round seen by pi and posi = ρ ∈ [1..2r] is the position of

v in round r. The pairs 〈r, ρ〉 are used to establish a priority

on proposed values. The function g(ρ, δ) = 2δ(ρ − 1) + 1



(where δ is a difference between two round numbers) is used

to compute the priority of a value in the following rounds.

More precisely, let (r, ρ) and (r′, ρ′) (such that r ≤ r′) be the

pairs associated with the values v and v′, respectively. Value v
has lower priority than value v′ at round r′ iff g(ρ, r′−r) < ρ′

or (g(ρ, r′ − r) = ρ′) ∧ (v < v′).
Our description of Bouzid-Travers’s algorithm (algorithm

2) is schematic. The reader will refer to [7] for more detailed

presentation and a proof. The implementation of the operation

propose() is made up of two sequential phases: a read phase

followed by write phase.

Algorithm 2 Alphak in AMP[Σk]: Bouzid-Travers’s imple-

mentation [7]

init lrei ← 0; esti ← ⊥; posi ← 0.

operation propose(r, vi):
(01) broadcast REQ R(r);
(02) repeat Qi ← qri
(03) until (∀j ∈ Qi : RSP R(r, 〈lrej , posj, estj〉) received from pj)
(04) end repeat;
(05) let rcvi = {〈lrej , posj , estj〉 : RSP R(r, 〈lrej , posj , estj〉) received};
(06) if (∃lre : 〈lre,−,−〉 ∈ rcvi : lre > lrei) then return(⊥) end if;
(07) posi ← max{pos | 〈r, pos, v〉 ∈ rcvi};
(08) esti ← max{v | 〈r, posi, v〉 ∈ rcvi};
(09) if (esti = ⊥) then esti ← vi end if;
(10) while(posi < 2r) do

(11) posi ← posi + 1; psti ← posi; // this line is executed atomically
(12) broadcast REQ W(r, psti, esti);
(13) repeat Qi ← qri
(14) until (∀j ∈ Qi :
(15) RSP W(r, psti, 〈lrej , posj , estj〉) received from pj)
(16) end repeat;
(17) let rcvi = {〈lrej , posj , estj〉 :
(18) RSP W(r, psti, 〈lrej , posj , estj〉) received};
(19) if (∃lre : 〈lre,−,−〉 ∈ rcvi : lre > r) then return(⊥) end if;
(20) posi ← max{pos | 〈r, pos, v〉 ∈ rcvi};
(21) esti ← max{v | 〈r, posi, v〉 ∈ rcvi}
(22) end while;
(23) return(esti).

when REQ R(rd) received from pj :
(24) if rd > lrei then posi ← g(posi, rd− lrei); lrei ← rd end if;
(25) send RSP R(rd, 〈lrei, posi, esti〉) to pj .

when REQ W(rd, pos, est) received from pj :
(26) if rd ≥ lrei then posi ← g(posi, rd− lrei); lrei ← rd
(27) case posj > posi then esti ← est; posi ← pos
(28) posj = posi then esti ← max{vi, est}
(29) posj < posi then nop
(30) end case

(31) end if;
(32) send RSP W(rd, pos, 〈lrei, posi, esti〉) to pj .

u) Succinct description of the algorithm: the read phase:

When it invokes propose(r, v), a process pi first broadcasts a

read-request message (line 01) to (a) obtain information on

values proposed in previous rounds (if any) and (b) learn if

other processes have started higher rounds.

When a process pj receives such a message REQ R(rd)
(where rd is a round number) it redefines its pair (lrej , posj)
if rd > lrej (line 24) (the new position posj of estj is re-

computed according to the values of rd and lrej). In all cases,

pj sends back an answer to pi carrying its current value estj
and the associated pair 〈lrej , posj〉 (line 25).

Then, when it has received a response from each process

in its current quorum qri as supplied by Σx (lines 02-04), pi
returns ⊥ if it has received an answer indicating that another

process has started a round higher than lrei (lines 05-06).

Otherwise, lrei = r is the greatest round number known by pi.
In that case, pi update posi to the greatest position associated

with round r it has seen and adopts the corresponding value

v as its current estimate esti (lines 07 and 08). Moreover, if

v = ⊥, pi adopts vi into esti, namely, the value it proposes

to the Alphax object (line 09).

v) Succinct description of the algorithm: the write phase:

Process pi enters then a loop that it will exit either by

returning ⊥ (line 19) or its current estimate value (line 23).

The maximum number of times that this loop can be executed

depends on the round number r and the current position value

posi (line 10). The part of the loop body defined by lines 12-

21 is the same as lines 01-08. The difference is that, instead of

obtaining information on the current state, pi cooperate with

the processes of its current quorum qri in order to try to

increase the priority of its current esti. Hence instead of a

read-request, pi broadcasts write-request messages.

Each time a process pj receives such a message that carries

a triplet 〈rd, pos, val〉 it updates its current state in order this

local state contains the value with the highest priority (and the

associated control data). Operationally, if rd ≥ lrej , pj first

updates posj and lrej (line 26) exactly as it did at line 24

when it received a read-request message. Then, according to

the value of posj and pos (lines 27-30), pj updates estj and

posj if pos > posj or updates only estj if posj = pos. In all

cases, pj sends back a response carrying its local state to the

process that sent the write-request.

As already indicated, a proof that this algorithm implements

an Alphax object that satisfies the round-based obligation

property stated at the beginning of this section is given in

[7].

C. An implementation of Alphax as defined in this paper

Algorithm 3 describes an implementation of the Σx-aware

specification of Alphax defined in Section V-A. This algorithm

is an appropriate improvement of Algorithm 2.

To make the presentation easier, the line numbers are the

same in both algorithms. The lines that are new or modified are

prefixed by the letter N. These modifications concern message

filtering. This filtering is used to prevent a process pi from

sending read or write-requests to the processes pj such that pi
does not need information from pj to complete its current

invocation of propose(). Hence, such a process pj cannot

direct pi to return ⊥ while it could return a non-⊥ value

(and additionally the values not sent by pi cannot force other

processes to return ⊥).

w) Modification of the read phase: A process pi records

in r req seti the set of processes to which it has already

sent a REQ R(r) message (lines N01 and N02-2) and sends

read-request messages REQ R(r) only to the processes pj that

belong to its quorum qri (line N02-1).



Then, when it stops waiting for response messages, it

considers only the responses sent by the processes of its last

quorum plus its own response (lines N05-1 and N05-2).

x) Modification of the write phase: The message ex-

change pattern of that phase is modified similarly to what

has been done for the read phase (lines N12, N14-1, N14-2,

N17-1 and N17-2).

Algorithm 3 Alphak in AMP [Σk] as defined in Section V

init lrei ← 0; esti ← ⊥; posi ← 0.

operation propose(r, vi):
(N01) r req seti ← ∅;
(02) repeat Qi ← qri
(N02-1) send REQ R(r) to each pj , j ∈ Qi \ r req seti;
(N02-2) r req seti ← r req seti ∪Qi

(03) until (∀j ∈ Qi : RSP R(r, 〈lrej , posj , estj〉) received from pj)
(04) end repeat;
(N05-1) let rcvi = { 〈lrej , posj , estj〉 :
(N05-2) RSP R(r, 〈lrej , posj , estj〉) received from Qi };
(06) if (∃lre : 〈lre,−,−〉 ∈ rcvi : lre > lrei) then return(⊥) end if;
(07) posi ← max{pos | 〈r, pos, v〉 ∈ rcvi};
(08) esti ← max{v | 〈r, posi, v〉 ∈ rcvi};
(09) if (esti = ⊥) then esti ← vi end if;
(10) while(posi < 2r) do

(11) posi ← posi + 1; psti ← posi; // this line is executed atomically
(N12) w req seti ← ∅;
(13) repeat Qi ← qri
(N14-1) send REQ W(r, psti, esti) to each pj , j ∈ Qi \ w req seti;
(N14-2) w req seti ← w req seti ∪Qi

(14) until (∀j ∈ Qi :
(15) RSP W(r, psti, 〈lrej , posj , estj〉) received from pj)
(16) end repeat;
(N17-1) rcvi ← {〈lrej , posj , estj〉 :
(N17-2) RSP W(r, psti, 〈lrej , posj , estj〉) received from Qi };
(19) if (∃lre : 〈lre,−,−〉 ∈ rcvi : lre > r) then return(⊥) end if;
(20) posi ← max{pos | 〈r, pos, v〉 ∈ rcvi};
(21) esti ← max{v | 〈r, posi, v〉 ∈ rcvi}
(22) end while;
(23) return(esti).

when REQ R(rd) received from pj :
(24) if rd > lrei then posi ← g(posi, rd− lrei); lrei ← rd end if;
(25) send RSP R(rd, 〈lrei, posi, esti〉) to pj .

when REQ W(rd, pos, est) received from pj :
(26) if rd ≥ lrei then posi ← g(posi, rd− lrei); lrei ← rd
(27) case posj > posi then esti ← est; posi ← pos
(28) posj = posi then esti ← max{vi, est}
(29) posj < posi then nop

(30) end case
(31) end if;
(32) send RSP W(rd, pos, 〈lrei, posi, esti〉) to pj .

Theorem 4: Algorithm 3 implements an Alphax object as

defined in Section V-A.

VI. SOLVING k-SET AGREEMENT IN AMP[ΠΣx,y]

This section presents a simple algorithm that implements

k-set agreement in AMP [ΠΣx,y] for k ≥ xy. It is similar

to the one presented in [7]: it uses a base algorithm (similar

to the one introduced in [15]) that solves x-set agreement in

AMP [ΠΣx,1] and then assuming k ≥ xy (as in [1], [7])

it uses y instances of this base to solve k-set agreement in

AMP [ΠΣx,y].

y) x-Set agreement in AMP [ΠΣx,1]: Algorithm 4

solves x-set agreement in AMP [ΠΣx,1]. A process pi invokes

ks proposex,1 (vi) where vi is the value it proposes. It decides

a value d when it executes the statement return (d) which

terminates its invocation. The local variable ri is the local

round number (as it is easy to see, each process uses increasing

round numbers and no two distinct processes use the same

round numbers).

A process loops until it decides. If during a loop iteration

pi is such that leaderi = i (leaderi is one of the two local

outputs provided by ΠΣx,1), pi invokes the Alphax object to

try to deposit its value vi into it (the success depends on the

concurrency and quorums pattern). If a non-⊥ value is returned

by this invocation, pi broadcasts it (with the reliable broadcast

operation). A process decides as soon as it is delivered a

DECISION() message.

Algorithm 4 x-set agreement in AMP [ΠΣx,1] (pi’s code)

operation ks proposex,1 (vi):
(01) deci ← ⊥; ri ← i;
(02) while (deci = ⊥) do
(03) if (leaderi = i) then Alphax.propose(ri, vi);

ri ← ri + n end if

(04) end while;
(05) rel broadcast DECISION(deci).

when DECISION(d) is delivered: return (d).

Theorem 5: Algorithm 4 solves the x-set agreement in

AMP[ΠΣx,1].
Proof Validity and agreement properties. Let us first observe

that, due to the test of line 02, the default value ⊥ cannot be

decided. The fact that a decided value is a proposed value

follows then from the validity of the underlying Alphax
object. Similarly, the fact that at most k non-⊥ values are

decided follows directly from the quasi-agreement property

of the underlying Alphax object.

Termination property. It follows from the reliable broadcast

operation that, at soon as a process decides (invokes return())
each correct process eventually delivers the same DECISION(d)
message and decides (if not yet done). The proof is by

contradiction: assuming that no process decides, we show

that at least one correct process executes rel broadcast() (and

consequently, all correct processes decide).

Let pℓ be a correct process that appears in the definition of

the eventual partial leadership property of ΠΣx. It follows

from the definition of pℓ that we eventually have forever

leaderℓ = ℓ.
Let Rℓ be the set of the identities of the processes pj

(with j 6= ℓ) such that we have leaderj = j infinitely

often. It follows from the contrapositive of the eventual partial

leadership property of ΠΣx that there is a time τRℓ
such that

∀ j ∈ Rℓ, ∀ τ1, τ2 ≥ τRℓ
: qrτ1j ∩ qrτ2ℓ = ∅, from which we

conclude that Rℓ ⊆ Q(ℓ, τRℓ
) (this is the set defined in the

obligation property of Alphax).

Let us notice that, due to test of line 03, there is a



finite time τa after which the only processes that invoke

Alphax.propose() are the processes in Rℓ∪{ℓ}. Moreover (as

by the contradiction assumption no process decides) it follows

that, after τa, pℓ invokes Alphax.propose() infinitely often. Let

τb be a time greater than max(τRℓ
, τa) from which we have

Rℓ ⊆ Q(ℓ, τRℓ
) ⊆ Q(ℓ, τb).

As after τb (a) only processes in Rℓ ∪ {ℓ} invoke

Alphax.propose(), (b) pℓ invokes Alphax.propose() infinitely

often and (c) Rℓ ⊆ Q(ℓ, τb), we conclude from the obligation

property of Alphax that at least one invocation of pℓ returns

a value d 6= ⊥ and consequently executes rel broadcast

DECISION(d). This contradicts the fact that no process decides

and concludes the proof of the theorem. ✷Theorem 5

z) k-Set agreement in AMP[ΠΣx,y]: As in [1], [7], a

simple k-set algorithm can be obtained by launching concur-

rently y instances of Algorithm 4, the jth one relying on

the component FD[j] of the failure detector AMP [ΠΣx,y].
A process decides the value returned by the first of the y
instances that locally terminates. As there are y instances of

Algorithm 4 and at most x values can be decided in each

of them, it follows that at most xy different values can be

decided. Moreover, as at least one FD[j] is a ΠΣx,y failure

detector, it follows that the correct processes decide (if not

done before) in at least one of the y instances of Algorithm 4.

Let us observe that, in such a “worst” case where the processes

decide in the same instance, at most x values are decided).

VII. Ωk IS NOT NECESSARY FOR k-SET AGREEMENT WHEN

1 < k < n− 1

Lemma 3: Let 1 < k < n − 1. Ωk cannot be built in

AMP [ΠΣk,1].

Theorem 6: Let 1 < k < n − 1. Ωk is not necessary for

solving k-set agreement in AMP[∅].
Let X(k) denote the (still unknown) weakest failure detector

such that k-set agreement can be solved in AMP[X(k)]. The

following corollary shows that, when 1 < k < n − 1, Ωk is

neither necessary nor sufficient for solving the k-set agreement

problem.

Corollary 1: Let 1 < k < n− 1. Ωk 6≃AMP X(k).

VIII. CONCLUSION

As indicated in the abstract, this paper is a new step in

the quest for discovering the weakest failure detector for

k-set agreement in asynchronous message-passing systems

prone to any number of process failures. It has presented

a new failure detector denoted ΠΣx,y which enjoys many

noteworthy features and an associated algorithm that solves k-

set agreement for k ≥ xy. It has also shown that the weakest

failure detector (that still remains to be discovered) and Ωk (a

well-studied failure detector) cannot be compared.

More generally, an important issue that remains to be solved

lies in capturing the “weakest” type of shared memory that has

to be emulated for solving k-set agreement in asynchronous

message-passing systems.
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